On Ψ-Conditional Asymptotic Stability of First Order Non-Linear Matrix Lyapunov Systems

Similar documents
Midterm exam 2, April 7, 2009 (solutions)

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

A Condition for Stability in an SIR Age Structured Disease Model with Decreasing Survival Rate

Elementary Differential Equations and Boundary Value Problems

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

CSE 245: Computer Aided Circuit Simulation and Verification

Ψ-asymptotic stability of non-linear matrix Lyapunov systems

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Introduction and Linear Systems

On General Solutions of First-Order Nonlinear Matrix and Scalar Ordinary Differential Equations

I) Title: Rational Expectations and Adaptive Learning. II) Contents: Introduction to Adaptive Learning

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

Impulsive Differential Equations. by using the Euler Method

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

Lecture 4: Laplace Transforms

Asymptotic instability of nonlinear differential equations

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

A THREE COMPARTMENT MATHEMATICAL MODEL OF LIVER

DE Dr. M. Sakalli

EXERCISE - 01 CHECK YOUR GRASP

UNSTEADY FLOW OF A FLUID PARTICLE SUSPENSION BETWEEN TWO PARALLEL PLATES SUDDENLY SET IN MOTION WITH SAME SPEED

Smoking Tobacco Experiencing with Induced Death

Inextensible flows of S s surfaces of biharmonic

H is equal to the surface current J S

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES MATEMATICAL PHYSICS SOLUTIONS are

CHAPTER. Linear Systems of Differential Equations. 6.1 Theory of Linear DE Systems. ! Nullcline Sketching. Equilibrium (unstable) at (0, 0)

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

A NONHOMOGENEOUS BACKWARD HEAT PROBLEM: REGULARIZATION AND ERROR ESTIMATES

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

symmetric/hermitian matrices, and similarity transformations

Wave Equation (2 Week)

Charging of capacitor through inductor and resistor

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

Lagrangian for RLC circuits using analogy with the classical mechanics concepts

The Global and Pullback Attractors for a Strongly Damped Wave Equation with Delays *

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

Asymptotic Solutions of Fifth Order Critically Damped Nonlinear Systems with Pair Wise Equal Eigenvalues and another is Distinct

Double Slits in Space and Time

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

The Matrix Exponential

The Equitable Dominating Graph

arxiv: v1 [math.ap] 6 Jan 2016

Transfer function and the Laplace transformation

The Matrix Exponential

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

A Backstepping Simple Adaptive Control Application to Flexible Space Structures

Nonlocal Symmetries and Exact Solutions for PIB Equation

A MATHEMATICAL MODEL FOR NATURAL COOLING OF A CUP OF TEA

SUPERCRITICAL BRANCHING DIFFUSIONS IN RANDOM ENVIRONMENT

FUNDAMENTAL SOLUTION FOR ( λ z ) ν ON A SYMMETRIC SPACE G/K

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016

Existence of Ψ-Bounded Solutions for Linear Matrix Difference Equations on Z +

Polygon 2011 Vol. V 81

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Bicomplex Version of Laplace Transform

Bounded error flowpipe computation of parameterized linear systems

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

1. Inverse Matrix 4[(3 7) (02)] 1[(0 7) (3 2)] Recall that the inverse of A is equal to:

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

Revisiting what you have learned in Advanced Mathematical Analysis

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees

Institute of Actuaries of India

Olaru Ion Marian. In 1968, Vasilios A. Staikos [6] studied the equation:

WEIBULL FUZZY PROBABILITY DISTRIBUTION FOR RELIABILITY OF CONCRETE STRUCTURES

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is

Math 36. Rumbos Spring Solutions to Assignment #6. 1. Suppose the growth of a population is governed by the differential equation.

On the Speed of Heat Wave. Mihály Makai

A Simple Formula for the Hilbert Metric with Respect to a Sub-Gaussian Cone

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 11

Combinatorial Networks Week 1, March 11-12

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control

Chapter 12 Introduction To The Laplace Transform

EXISTENCE OF NON-OSCILLATORY SOLUTIONS TO FIRST-ORDER NEUTRAL DIFFERENTIAL EQUATIONS

An Introduction to Malliavin calculus and its applications

Microscopic Flow Characteristics Time Headway - Distribution

ON RIGHT(LEFT) DUO PO-SEMIGROUPS. S. K. Lee and K. Y. Park

LaPlace Transform in Circuit Analysis

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

Availability Analysis of Repairable Computer Systems and Stationarity Detection

Feedback Control and Synchronization of Chaos for the Coupled Dynamos Dynamical System *

Fixed-Relative-Deadline Scheduling of Hard Real-Time Tasks with Self-Suspensions

Ministry of Education and Science of Ukraine National Technical University Ukraine "Igor Sikorsky Kiev Polytechnic Institute"

A HAMILTON-JACOBI TREATMENT OF DISSIPATIVE SYSTEMS

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz

u 3 = u 3 (x 1, x 2, x 3 )

Poisson process Markov process

STABILITY OF NONLINEAR NEUTRAL DELAY DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

The Existence, Uniqueness and Stability of Almost Periodic Solutions for Riccati Differential Equation

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

Basic Polyhedral theory

ABEL TYPE THEOREMS FOR THE WAVELET TRANSFORM THROUGH THE QUASIASYMPTOTIC BOUNDEDNESS

Limiting value of higher Mahler measure

Stability Analysis of a delayed HIV/AIDS Epidemic Model with Saturated Incidence

Consider a system of 2 simultaneous first order linear equations

Final Exam : Solutions

Transcription:

In. J. Nonlinar Anal. Appl. 4 (213) No. 1, 7-2 ISSN: 28-6822 (lcronic) hp://www.ijnaa.smnan.ac.ir On Ψ-Condiional Asympoic Sabiliy of Firs Ordr Non-Linar Marix Lyapunov Sysms G. Sursh Kumar a, B. V. Appa Rao a, M. S. N. Murhy b, a Dparmn of Mahmaics, Konnu Lakshmaiah Univrsiy, Grn Filds, Vaddswaram-522 52, Gunur D., Andhra Pradsh, India. b Dparmn of Mahmaics, Acharya Nagarjuna Univrsiy, Nagarjuna Nagar 52251, Gunur, Andhrapradsh,,India. (Communicad by M. Eshaghi Gordji) Absrac W provid ncssary and sufficin condiions for Ψ-condiional asympoic sabiliy of h soluion of a linar marix Lyapunov sysm and sufficin condiions for Ψ-condiional asympoic sabiliy of h soluion of a firs ordr non-linar marix Lyapunov sysm X = A()X + XB() + F (, X). Kywords: Fundamnal Marix, Ψ-Boundd, Ψ-Sabl, Ψ-Condiional Asympoic Sabl. 2 MSC: 34D5, 34C11. 1. Inroducion Th imporanc of marix Lyapunov sysms, which aris in a numbr of aras of conrol nginring problms, dynamical sysms, and fdback sysms ar wll known. In his papr, w focus our anion o sudy of Ψ-condiional asympoic sabiliy of soluions of h firs ordr non-linar marix Lyapunov sysm X = A()X + XB() + F (, X) (1.1) as a prurbd sysm of X = A()X + XB(), whr A(), B() ar squar marics of ordr n, whos lmns ar ral valud coninuous funcions of on h inrval R + = [, ) and F (, X) is a coninuous squar marix of ordr n on R + R n n, (1.2) Corrsponding auhor Email addrsss: drgsk6@gmail.com (G. Sursh Kumar), bvardr21@gmail.com (B. V. Appa Rao), drmsn22@gmail.com (M. S. N. Murhy ) Rcivd: January 212 Rvisd: January 213

8 Sursh Kumar, Appa Rao and Murhy such ha F (, O) = O (zro marix), whr R n n dnos h spac of all n n ral valud marics. Th coninuiy of A, B and F nsurs h xisnc of a soluion of (1.1). Akinyl [1] inroducd h noion of Ψ-sabiliy and his concp xndd o soluions of ordinary diffrnial quaions by Consanin [3]. Lar Marchalo [1] inroducd h concp of Ψ-(uniform) sabiliy, Ψ-asympoic sabiliy of rivial soluions of linar and non-linar sysm of diffrnial quaions. Th sudy of condiional asympoic sabiliy of diffrnial quaions was moivad by Coppl [4]. Furhr, h concp of Ψ-condiional asympoic sabiliy o non-linar Volrra ingrodiffrnial quaions wr sudid by Diamandscu [5]. Rcnly, Mury and Sursh Kumar [[11], [12],[13]] xndd h concp of Ψ-bounddnss, Ψ-sabiliy and Ψ-insabiliy o Kronckr produc marix Lyapunov sysm associad wih firs ordr marix Lyapunov sysms. Th purpos of his papr is o provid sufficin condiions for Ψ-condiional asympoic sabiliy of (1.1). W invsiga condiions on h wo fundamnal marics of X = AX, X = B T X (1.3) (1.4) and F (, X) undr which h soluion of (1.1) or (1.2) ar Ψ-condiionally asympoically sabl on R +. Hr, Ψ is a coninuous marix funcion. Th inroducion of h marix funcion Ψ prmis o obain a mixd asympoic bhavior of h soluions. This papr is wll organizd as follows. In scion 2, w prsn som basic dfiniions, noaions, lmmas and propris rlaing o Kronckr produc of marics and Ψ-condiionally asympoically sabiliy, which ar usful for lar discussion. In Scion 3, w obain ncssary and sufficin condiions for Ψ-condiionally asympoic sabiliy of soluions of linar marix Lyapunov sysm (1.2). Th rsuls of his scion illusrad wih suiabl xampls. In scion 4, w obain sufficin condiions for h Ψ-condiional asympoic sabiliy of (1.1). This papr xnds som of h rsuls of Diamandscu [5] o marix Lyapunov sysms. Th main ool usd in his papr is Kronckr produc of marics. 2. Priliminaris In his scion w prsn som basic dfiniions, noaions and rsuls which ar usful for lar discussion. L R n b h Euclidan n-dimnsional spac. Elmns in his spac ar column vcors, dnod by u = (u 1, u 2, u 3,..., u n ) T ( T dnos ranspos) and hir norm dfind by u = max{ u 1, u 2, u 3,..., u n }. For A = [a ij ] R n n, w dfin h norm A = sup u 1 Au. I is wll-known ha n A = max { a ij }. 1 i n j=1 O n dno h zro marix of ordr n n and n is h zro vcor of ordr n. Dfiniion 2.1. [8] L A R m n and B R p q hn h Kronckr produc of A and B wrin A B is dfind o b h pariiond marix a 11 B a 12 B... a 1n B A B = a 21 B a 22 B... a 2n B...... a m1 B a m2 B... a mn B is an mp nq marix and is in R mp nq.

On Ψ-Condiional Asympoic Sabiliy of...4 (213) No. 1,7-2 9 Dfiniion 2.2. [8] L A = [a ij ] R m n, hn h vcorizaion opraor V c : R m n R mn, dfind and dno by A.1 a 1j A.2 Â = V ca =.., whr A a 2j.j =. (1 j n).. A.n a mj Lmma 2.3. [6] Th vcorizaion opraor V c : R n n R n2, is a linar and on-o-on opraor. In addiion, V c and V c 1 ar coninuous opraors. Rgarding propris and ruls for vcorizaion opraor and Kronckr produc of marics w rfr o [8]. L Ψ k : R + (, ), k = 1, 2,... n, b coninuous funcions, and l Ψ = diag[ψ 1, Ψ 2,..., Ψ n ]. Thn h marix Ψ() is an invribl squar marix of ordr n, for all R +. Dfiniion on R +. 2.4. [5] A funcion φ : R + R n is said o b Ψ- boundd on R + if Ψ()φ() is boundd Exnd his dfiniion for marix funcions. Dfiniion 2.5. [6] A marix funcion F : R + R n n is said o b Ψ boundd on R + if h marix ( funcion ΨF is boundd on ) R + i.., sup Ψ()F () <. Dfiniion 2.6. [5] Th soluion of h vcor diffrnial quaion x = f(, x) (whr x R n and f is a coninuous n vcor funcion) is said o b Ψ-sabl on R +, if for vry ɛ > and any R +, hr xiss a δ = δ(ɛ, ) > such ha any soluion x of x = f(, x), which saisfis h inqualiy Ψ( )( x( ) x( )) < δ(ɛ, ) xiss and saisfis h inqualiy Ψ()( x() x()) < ɛ, for all. Ohrwis, is said ha h soluion x() is Ψ-unsabl on R +. Exnd his dfiniion for marix diffrnial quaions. Dfiniion 2.7. Th soluion of h marix diffrnial quaion X = F (, X) (whr X R n n and F is a coninuous n n marix funcion) is said o b Ψ-sabl on R +, if for vry ɛ > and any R +, hr xiss a δ = δ(ɛ, ) > such ha any soluion X of X = F (, X), which saisfis h inqualiy Ψ( )( X( ) X( )) < δ(ɛ, ) xiss and saisfis h inqualiy Ψ()( X() X()) < ɛ, for all. Ohrwis, is said ha h soluion X() is Ψ-unsabl on R +. Dfiniion 2.8. [5] Th soluion of h vcor diffrnial quaion x = f(, x) is said o b Ψ- condiionally sabl on R + if i is no Ψ-sabl on R + bu hr xiss a squnc {x m ()} of soluions of x = f(, x) dfind for all such ha lim Ψ()x m() = Ψ()x(), uniformly on R +. m If h squnc {x m ()} can b chosn so ha lim Ψ() (x m() x()) = n, for m = 1, 2, 3,..., hn x() is said o b Ψ-condiionally asympoically sabl on R +.

1 Sursh Kumar, Appa Rao and Murhy W can asily xnd his dfiniion for marix diffrnial quaions. Dfiniion 2.9. Th soluion of h marix diffrnial quaion X = F (, X) is said o b Ψ- condiionally sabl on R + if i is no Ψ-sabl on R + bu hr xiss a squnc {X m ()} of soluions of X = F (, X) dfind for all such ha lim Ψ()X m() = Ψ()X(), uniformly onr +. m If h marix squnc {X m ()} can b chosn so ha lim Ψ() (X m() X()) = O n, for m = 1, 2, 3,..., hn X() is said o b Ψ-condiionally asympoically sabl on R +. Rmark 2.1. I is asy o s ha if Ψ() and Ψ 1 () ar boundd on R +, hn h Ψ-sabiliy, Ψ-boundd and Ψ-condiionally asympoically sabiliy implis classical sabiliy, bounddnss and condiional asympoic sabiliy. Th following lmmas play a vial rol in h proof of main rsul. Lmma 2.11. [? ] For any marix funcion F R n n, w hav 1 n Ψ()F () (I n Ψ()) ˆF () Ψ()F (), for all, R +. Lmma 2.12. [7] Th marix funcion X() is a soluion of (1.1) on h inrval J R + if and only if h vcor valud funcion ˆX() = V cx() is a soluion of h diffrnial sysm ˆX () = (B T I n + I n A) ˆX() + G(, ˆX()), (2.1) whr G(, ˆX) = V cf (, X), on h sam inrval J. Dfiniion 2.13. [7] Th abov sysm (2.1) is calld h corrsponding Kronckr produc sysm associad wih (1.1). Th linar sysm corrsponding o (2.1) is ˆX () = (B T I n + I n A) ˆX(). (2.2) Lmma 2.14. Th soluion of h sysm (1.1) is Ψ-unboundd on R + if and only if h soluion of h corrsponding Kronckr produc sysm (2.1) is I n Ψ-unboundd on R +. Proof. I is asily sn from Lmma 5 of [6] and Lmma 2.12. Lmma 2.15. Th soluion of h sysm (1.1) is Ψ-unsabl on R + if and only if h corrsponding Kronckr produc sysm (2.1) is I n Ψ-unsabl on R +. Proof. I is asily sn from Lmma 7 of [7]. Lmma 2.16. Th soluion of h sysm (1.1) is Ψ-condiionally asympoically sabl on R + if and only if h corrsponding Kronckr produc sysm (2.1) is I n Ψ-condiionally asympoically sabl on R +.

On Ψ-Condiional Asympoic Sabiliy of...4 (213) No. 1,7-2 11 Proof. Suppos ha h soluion of h sysm (1.1) is Ψ-condiionally asympoically sabl on R +. From Dfiniion 2.9, w hav ha h soluion X() of (1.1) is Ψ-unsabl and hr xiss a squnc of soluions X n () of (1.1) on R + such ha and lim Ψ()X m() = Ψ()X(), uniformly on R + (2.3) m lim Ψ() (X m() X()) = O n, for m = 1, 2, 3,. (2.4) Sinc X() is a Ψ-unsabl soluion of (1.1), from Lmmas 2.12 and 2.15, w hav ha ˆX() is I n Ψ-unsabl soluion of (2.1) on R +. Now applying vcorizaion(vc) opraor o (2.3) and (2.4), w hav and lim (I n Ψ()) ˆX m () = (I n Ψ()) ˆX(), uniformly on R + (2.5) m ( ˆX()) lim (I n Ψ()) ˆXm () = n 2, for m = 1, 2, 3,. (2.6) From Dfiniion 2.8, ˆX() is In Ψ-condiionally asympoically sabl on R +. Convrsly suppos ha, h soluion of (2.1) is I n Ψ-condiionally asympoically sabl on R +. From Dfiniion 2.8, w hav ha h soluion ˆX() of (2.1) is I n Ψ-unsabl and hr xiss a squnc of soluions ˆX m () of (2.1) on R +, which saisfis (2.5) and (2.6). Sinc ˆX() is a I n Ψ- unsabl soluion of (2.1), again from Lmmas 2.12 and 2.15, w hav ha X() = V c 1 ˆX() is a Ψ-unsabl soluion of (1.1) on R +. By applying Vc 1 opraor o (2.5) and (2.6), w hav ha h squnc of soluions X m ()=Vc 1 ˆXm () of (1.1) saisfying (2.3) and (2.4). Thus, from Dfiniion 2.9 h soluion X() of (1.1) is Ψ-condiionally asympoically sabl on R +. Lmma 2.17. L Y () and Z() b h fundamnal marics for h sysms (1.3) and (1.4) rspcivly. Thn h marix Z() Y () is a fundamnal marix of (2.2). Proof. I is asily sn from Lmma 2.4 of [13]. Thorm 2.18. L A(), B() and F (, X) b coninuous marix funcions on R +. If Y (), Z() ar h fundamnal marics for h sysms (1.3), (1.4) rspcivly and P 1, P 2 ar non-zro supplmnary projcions, hn ˆX() = + (Z() Y ())P 1 (Z 1 (s) Y 1 (s))g(s, ˆX(s))ds (Z() Y ())P 2 (Z 1 (s) Y 1 (s))g(s, ˆX(s))ds (2.7) is a soluion of (2.1) on R +. Proof. I is asily sn ha ˆX() is h soluion of (2.1) on R +.

12 Sursh Kumar, Appa Rao and Murhy 3. Linar Marix Lyapunov Sysms In his scion, w prov ncssary and sufficin condiions for h Ψ-condiional asympoic sabiliy of h linar marix Lyapunov sysm (1.2). Th rsuls of his scion ar illusrad wih suiabl xampls. Thorm 3.1. Th linar marix Lyapunov sysm (1.2) is Ψ-condiionally asympoically sabl on R + if and only if i has a Ψ-unboundd soluion and a non-rivial soluion W () such ha lim (I n Ψ())Ŵ () = n 2. Proof. Suppos ha h soluion of linar marix Lyapunov sysm (1.2) is Ψ-condiionally asympoically sabl on R +. From Lmmas 2.12 and 2.16 wih F = O n, i follows ha h soluion of (2.2) is I n Ψ-condiionally asympoically sabl on R +. From Thorm 3.1 of [5], w hav ha h linar sysm (2.2) has an I n Ψ-unboundd soluion and a non-rivial soluion Ŵ () such ha (3.1) saisfid. Sinc (2.2) has a I n Ψ-unboubd soluion and from Lmmas 2.12 and 2.14, h linar sysm (1.2) has a Ψ-unboundd soluion. Sinc Ŵ () is a non-rivial soluion of (2.2), hn W ()=Vc 1 Ŵ () is h corrsponding non-rivial soluion of (1.2). Convrsly suppos ha (1.2) has a las on Ψ-unboundd soluion on R + and a las on non-rivial soluion W () xiss and saisfis (3.1). From Lmma 2.14 and Thorm 3.1 of [5], i follows ha h soluion Ŵ () of (2.2) is I n Ψ-condiionally asympoically sabl on R +. Again from Lmmas 2.12 and 2.16, i follows ha h soluion of (1.2) is Ψ-condiionally asympoically sabl on R +. Exampl 3.2. Considr h linar marix Lyapunov marix sysm (1.2) wih ( 1 ) A = +1 1 1 and B =. 2 +1 Thn h fundamnal marics of (1.3) and (1.4) ar + 1 Y () = 1 and Z() = 2 +1 L Ψ() =. Clarly, ( + 1) ( + 1) X() = 2 +1 2 +1 is a soluion of (1.2) ( and Ψ()X() = + 1) 2,. Thrfor, X() is a Ψ-unboundd soluion ( + 1) 2 of (1.2). L W () =. Clarly, W () is a non-rivial soluion of (1.2) and +1 (I 2 Ψ())Ŵ () = 1 +1 2 +1 ( + 1) 3 +1. Also, lim (I 2 Ψ())Ŵ () = 4. From Thorm (3.1), h linar sysm (1.2) is Ψ-condiionally asympoically sabl on R +. Th condiions for Ψ-condiional asympoic sabiliy of (1.2) can b xprssd in rms of fundamnal marics of (1.3) and (1.4) in h following horms. (3.1)

On Ψ-Condiional Asympoic Sabiliy of...4 (213) No. 1,7-2 13 Thorm 3.3. L Y () and Z() b h fundamnal marics of (2.4) and (2.5). Thn h linar marix Lyapunov sysm (1.2) is Ψ-condiionally asympoically sabl on R + if and only if h following condiions ar saisfid; (i) hr xiss a projcion P 1, such ha (Z() Ψ()Y ())P 1 is unboundd on R +. (ii) hr xiss a projcion P 2 O n 2 such ha lim (Z() Ψ()Y ())P 2 = O n 2. Proof. Suppos ha h linar sysm (1.2) is Ψ-condiional asympoic sabl on R +. From Lmmas 2.12 and 2.16 wih F = O n, h Kronckr produc sysm (2.2) is I n Ψ-condiionally asympoically sabl on R +. From Lmma 2.17 and Thorm 3.2 of [5], i follows ha h fundamnal marix S() = Z() Y () of (2.2) saisfis h following condiions; 1. hr xiss a projcion P 1 such ha (I n Ψ())S()P 1 is unboundd on R +. 2. hr xiss a projcion P 2 O n 2 such ha lim (I n Ψ())S()P 2 = O n 2. Subsiu S() = Z() Y () in (1) and (2) and simplifying wih h us of Kronckr produc propris, w hav ha h fundamnal marics of (1.3) and (1.4) saisfis condiions (i) and (ii). Convrsly suppos ha, h fundamnal marics of (1.3) and (1.4) saisfis h condiions (i) and (ii). From Thorm 3.2 of [5], Lmma 2.12 and propris of Kronckr producs, h corrsponding Kronckr produc sysm (2.2) is I n Ψ-condiionally asympoically sabl on R +. Again from Lmmas 2.12 and 2.16, h linar sysm (1.2) is Ψ-condiionally asympoically sabl on R +. Exampl 3.4. In Exampl 3.2, aking Ψ() =. Thr xiss wo non-zro projcions I2 O P 1 = 2 O2 O and P O 2 O 2 = 2 2 O 2 I 2 such ha + 1 (Z() Ψ()Y ())P 1 = 2 +1 and (Z() Ψ()Y ())P 2 = 3 ( + 1) +1 Clarly, (Z() Ψ()Y ())P 1 is unboundd on R + and (Z() Ψ()Y ())P 2 O 4 as. Thrfor, from Thorm 3.3 h sysm (1.2) is Ψ- condiionally asympoically sabl on R +.

14 Sursh Kumar, Appa Rao and Murhy A sufficin condiion for Ψ-condiional asympoically sabiliy is givn by h following horm. Thorm 3.5. If hr xis wo supplmnary projcions P 1, P 2 (P i O n 2, i=1, 2) and a posiiv consan L such ha h fundamnal marics Y () and Z() of (1.3) and (1.4) saisfis h condiion (Z() Ψ()Y ())P 1 (Z 1 (s) Y 1 (s)ψ 1 (s)) ds + (Z() Ψ()Y ())P 2 (Z 1 (s) Y 1 (s)ψ 1 (s)) ds L (3.2) for all, hn, h linar quaion (1.2) is Ψ-condiionally asympoically sabl on R +. Proof. From Thorm 3.2, Thorm 3.1 and Lmma 2.2 of [12], w hav ha h condiions in Thorm 3.3 ar saisfid. Thrfor, h Kronckr produc sysm (2.2) is I n Ψ-condiionally asympoically sabl on R +. From Lmmas 2.12 and 2.16 wih F = O n, h linar sysm (1.2) is Ψ-condiionally asympoically sabl on R +. Exampl 3.6. Considr h linar marix Lyapunov sysm (1.2) wih A = I 2 and B = I 2, hn h fundamnal marics of (1.3) and (1.4) ar Y () = I 2 and Z() = I 2. L ( ) 1 Ψ() = +1, P 1 = 1 and P 2 = 1. 1 Now and (Z() Ψ()Y ())P 1 (Z 1 (s) Y 1 (s)ψ 1 (s)) = s (Z() Ψ()Y ())P 2 (Z 1 (s) Y 1 (s)ψ 1 (s)) = s + 1 s. + 1 Thrfor, h condiion (3.2) saisfid wih L = 2. Thus, from Thorm 3.5, h linar sysm (1.2) is Ψ-condiionally asympoically sabl on R +. 4. Non-Linar Marix Lyapunov Sysms In his scion, w prov sufficin condiions for h Ψ-condiional asympoic sabiliy of h non-linar marix Lyapunov sysm (1.1). Thorm 4.1. Suppos ha: 1. Thr xis supplmnary projcions P 1, P 2 (P i O n 2, i=1, 2) and a consan L > such ha h fundamnal marics Y (), Z() of (1.3), (1.4) saisfis h condiion (3.2). 2. Th funcion F (, X) saisfis h inqualiy Ψ() (F (, X()) F (, Y ())) ξ() Ψ() (X() Y ()), for and for all coninuous and Ψ-boundd marix funcions X, Y : R + R n n, whr ξ() is a coninuous nonngaiv boundd funcion on R + such ha ξ() M, for all, whr M is a posiiv consan.

On Ψ-Condiional Asympoic Sabiliy of...4 (213) No. 1,7-2 15 3. p = nml < 1. Thn, all Ψ-boundd soluions of (1.1) ar Ψ-condiionally asympoically sabl on R +. Proof. L X() b h soluion of (1.1) wih X( ) = X, hn by Lmma 2.12, ˆX() is h uniqu soluion of Kronckr produc sysm (2.1) wih ˆX( ) = ˆX. W pu { } S = ˆX : R+ R n2 : ˆX is coninuus and In Ψ boundd on R +. Dfin a norm on h s S by ˆX S = sup (I n Ψ()) ˆX(). I is wll-known ha (S,. S ) is a Banach spac. For ˆX S, w dfin (T ˆX)() = (Z() Y ())P 1 (Z 1 (s) Y 1 (s))g(s, ˆX(s))ds (Z() Y ())P 2 (Z 1 (s) Y 1 (s))g(s, ˆX(s))ds,. From Lmma 2.11 and hypohsis (2), i follows ha (I n Ψ())G(, ˆX) = (I n Ψ()) ˆF (, X) For v, w hav v Ψ()F (, X) ξ() Ψ()X() nm (I n Ψ()) ˆX(), R + and ˆX R n2. (Z() Y ())P 2 (Z 1 (s) Y 1 (s))g(s, ˆX(s))ds v I n Ψ 1 () (I n Ψ())(Z() Y ())P 2 (Z 1 (s) Y 1 (s)) (I n Ψ 1 (s))(i n Ψ(s))G(s, ˆX(s)) ds v Ψ 1 () (Z() Ψ()Y ())P 2 (Z 1 (s) Y 1 (s)ψ 1 (s)) (I n Ψ(s))G(s, ˆX(s)) ds v nm Ψ 1 () (Z() Ψ()Y ())P 2 (Z 1 (s) Y 1 (s)ψ 1 (s)) (I n Ψ(s)) ˆX(s) ds

16 Sursh Kumar, Appa Rao and Murhy pl 1 Ψ 1 () sup (I n Ψ()) ˆX() v (Z() Ψ()Y ())P 2 (Z 1 (s) Y 1 (s)ψ 1 (s)) ds. From h hypohsis (1), h ingral (Z() Ψ()Y ())P 2 (Z 1 (s) Y 1 (s)ψ 1 (s)) ds is convrgn. Thus, h opraor (T ˆX)() xiss and is coninuous for. For ˆX S and, w hav (I n Ψ())(T ˆX)() + + nm +nm Thrfor, (I n Ψ())(Z() Y ())P 1 (Z 1 (s) Y 1 (s)) (I n Ψ 1 (s))(i n Ψ(s))G(s, ˆX(s))ds (I n Ψ())(Z() Y ())P 2 (Z 1 (s) Y 1 (s)) (I n Ψ 1 (s))(i n Ψ(s))G(s, ˆX(s))ds (Z() Ψ()Y ())P 1 (Z 1 (s) Y 1 (s)ψ 1 (s)) (I n Ψ(s))G(s, ˆX(s)) ds (Z() Ψ()Y ())P 2 (Z 1 (s) Y 1 (s))ψ 1 (s)) (I n Ψ(s))G(s, ˆX(s)) ds (Z() Ψ()Y ())P 1 (Z 1 (s) Y 1 (s)ψ 1 (s)) (I n Ψ(s)) ˆX(s) ds (Z() Ψ()Y ())P 2 (Z 1 (s) Y 1 (s))ψ 1 (s)) p sup (I n Ψ()) ˆX(). T ˆX S p ˆX S. (I n Ψ(s)) ˆX(s) ds

On Ψ-Condiional Asympoic Sabiliy of...4 (213) No. 1,7-2 17 Thus, T S S. On h ohr hand, for Û, ˆV S and, w hav (I n Ψ())[(T Û)() (T ˆV )()] + nm +nm (Z() Ψ()Y ())P 1 (Z 1 (s) Y 1 (s)ψ 1 (s)) (I n Ψ(s))[G(s, Û(s)) G(s, ˆV (s))] ds (Z() Ψ()Y ())P 2 (Z 1 (s) Y 1 (s))ψ 1 (s)) (I n Ψ(s))[G(s, Û(s)) G(s, ˆV (s))] ds (Z() Ψ()Y ())P 1 (Z 1 (s) Y 1 (s)ψ 1 (s)) (I n Ψ(s))[Û(s) ˆV (s)] ds (Z() Ψ()Y ())P 2 (Z 1 (s) Y 1 (s))ψ 1 (s)) (I n Ψ(s))[Û(s) ˆV (s)] ds ( ) { nm sup (I n Ψ())[Û() ˆV ()] (Z() Ψ()Y ())P 1 (Z 1 (s) Y 1 (s)ψ 1 (s)) ds } + (Z() Ψ()Y ())P 2 (Z 1 (s) Y 1 (s))ψ 1 (s)) ds p sup (I n Ψ())[Û() ˆV ()]. I follows ha sup Thus, w hav (I n Ψ())[(T Û)() (T ˆV )()] p sup (I n Ψ())[Û() ˆV ()]. T Û T ˆV S p Û ˆV S. Thrfor, T is a conracion mapping on (S,. S ). Now, for any funcion Ŵ S, w dfin an opraor SŴ : S S, by h rlaion SŴ ˆX() = Ŵ () + (T ˆX)(), R +. By Banach conracion principl SŴ has fixd poin in S. Thrfor, for any Ŵ S, h ingral quaion ˆX = Ŵ + T ˆX (4.1) has a uniqu soluion ˆX S. Furhrmor, by h dfiniion of T, ˆX() Ŵ () is diffrniabl and ( ˆX() Ŵ () = (B T () I n + I n A()) ˆX() Ŵ ()) + G(, ˆX()).

18 Sursh Kumar, Appa Rao and Murhy From (4.1), if Ŵ () is a I n Ψ-boundd soluion of (2.2) if and only if ˆX() is a In Ψ-boundd soluion of (2.1). Thus, (4.1) sablishs a on-o-on corrspondnc bwn h I n Ψ-boundd soluions of (2.1) and (2.2). Now, w considr analogous quaion W g ˆX = Ŵ + T ˆX. (1 p) ˆX ˆX S Ŵ Ŵ S. (4.2) Now, w prov ha, if ˆX, Ŵ S ar I n Ψ-boundd soluions of (2.1) and (2.2) rspcivly such ha hy saisfy (4.1), hn ( lim (I n Ψ()) ˆX() Ŵ ()) =. (4.3) For a givn ɛ >, w can choos 1 such ha p ˆX S < ɛ 2, for 1. Morovr, sinc lim (I n Ψ())(Z() Y ())P 1 =, hr xiss a numbr 2 1 such ha pl 1 (Z() Ψ()Y ())P 1 ˆX 1 S P 1 (Z 1 (s) Y 1 (s)ψ 1 (s)) ds < ɛ 2, 2. For 2, w hav (I n Ψ()) ˆX() Ŵ () = (I n Ψ())(T ˆX)() + nm +nm (Z() Ψ()Y ())P 1 (Z 1 (s) Y 1 (s)ψ 1 (s)) (I n Ψ(s))G(s, ˆX(s)) ds (Z() Ψ()Y ())P 2 (Z 1 (s) Y 1 (s))ψ 1 (s)) (I n Ψ(s))G(s, ˆX(s)) ds (Z() Ψ()Y ())P 1 (Z 1 (s) Y 1 (s)ψ 1 (s)) (I n Ψ(s)) ˆX(s) ds (Z() Ψ()Y ())P 2 (Z 1 (s) Y 1 (s))ψ 1 (s)) (I n Ψ(s)) ˆX(s) ds pl 1 (Z() Ψ()Y ())P 1 ˆX 1 S P 1 (Z 1 (s) Y 1 (s)ψ 1 (s)) ds

On Ψ-Condiional Asympoic Sabiliy of...4 (213) No. 1,7-2 19 +nm ˆX S 1 (Z() Ψ()Y ())P 1 (Z 1 (s) Y 1 (s)ψ 1 (s)) ds +nm ˆX S (Z() Ψ()Y ())P 2 (Z 1 (s) Y 1 (s)ψ 1 (s)) ds ɛ 2 + nml ˆX S < ɛ 2 + ɛ 2 = ɛ. Now, w prov ha, if ˆX() is a In Ψ-boundd soluion of (2.1), hn i is I n Ψ-unsabl on R +. Suppos ha ˆX() is I n Ψ-sabl on R +. From Dfiniion 2.6, for vry ɛ > and any R +, hr xiss a δ = δ(ɛ, ) > such ha any soluion X() of (2.1), which saisfis h inqualiy (I n Ψ( ))( X( ) ˆX( )) < δ(ɛ, ) xiss and saisfis h inqualiy (I n Ψ())( X() ˆX()) < ɛ, for all. L u R n2 b such ha P 1 u = n 2 and (I n Ψ())u < δ(ɛ, ) and l X() b h soluion of (2.1) wih h iniial condiion X() = ˆX() + u. Thn (I n Ψ())u() < ɛ, for all, whr u() = X() ˆX(). Now considr h funcion w() = u() T u(),. Clarly, w() is a I n Ψ-boundd soluion of (2.2) on R +. Wihou loss of gnraliy, w can suppos ha Z() Y () = I n 2. I is asy o s ha P 1 w() = n 2. If P 2 w() n 2, hn from Lmma 2.3 of [12], w hav lim sup (I n Ψ())(Z() Y ())P 2 w() = lim sup (I n Ψ())w() =, which is conradicion o w() is I n Ψ-boundd on R +. Thus, P 2 w() = n 2 and hnc w() = n 2, for. I follows ha u = T u and u = n 2 (T is linar), which is a conradicion. Thus h soluion ˆX() is I n Ψ-unsabl on R +. L Ŵ = ˆX T ˆX. From Thorm 3.5 and Dfiniion 2.8, hr xiss a squnc {Ŵm} of soluions of (2.2) on R + such ha and lim m (I n Ψ())Ŵm() = (I n Ψ())Ŵ (), uniformly onr + ) lim (I n Ψ()) (Ŵm () Ŵ () = n 2, for m = 1, 2, 3,. L ˆX m = Ŵm + T ˆX m. From (4.2), i follows ha h squnc { ˆX m } of soluions of (2.1) on R + such ha lim (I n Ψ()) ˆX m () = (I n Ψ()) ˆX(), uniformly onr +. m Thrfor, h soluion ˆX() of (2.1) is I n Ψ-condiionally sabl on R +. From (4.3) and ( ˆX()) ) ) ˆXm () = ˆXm () Ŵm() + (Ŵm () Ŵ () + (Ŵ () ˆX(). I follows ha ( ˆX()) lim (I n Ψ()) ˆXm () = n 2, for m = 1, 2, 3,. Thus, h soluion ˆX() of (2.1) is I n Ψ-condiionally asympoically sabl on R +. From Lmma 2.16, h soluion X() = V c 1 ˆX() of (1.1) is Ψ-condiionally asympoically sabl on R+. Hnc h sysm (1.1) is Ψ-condiionally asympoically sabl on R +.

2 Sursh Kumar, Appa Rao and Murhy Exampl 4.2. Considr h non-linar marix Lyapunov sysm (1.1) wih ( 1 ) ( 1) A() = 1, B() = ( +1) +1 1 and F (, X) = 1 sin x1 () x 2 (). + 5 x 3 () sin x 4 () Th fundamnal marics of (1.3) and (1.4) ar ( ) Y () = 1 and Z() = +1. +1 L Ψ() =. + 1 Thn hr xi wo projcions O2 O P 1 = 2 I2 O and P O 2 I 2 = 2 2 O 2 O 2 such ha h fundamnal marics Y () and Z() of (1.3) and (1.4) saifis (3.2) wih L = 2. On h ohrhand, condiion (ii) of Thorm 4.1 is saisfid wih ξ() = 1, for and +5 M = 1. Also, p = nml = 2 1 5 5 2 = 4 < 1. Thrfor, h non-linar sysm (1.1) is Ψ-condiionally 5 asympoically sabl on R +. Rfrncs [1] O. Akinyl, On parial sabiliy and bounddnss of dgr k, Ai. Accad. Naz. Linci Rnd. Cl. Sci. Fis. Ma. Naur., 65 (1978) 259-264. [2] C. Avramscu, Asupra comporării asimpoic a soluţiilor unor cuaţii funcţional, Anall Univrsiăţiidin Timiş oara, Sria Şiinţ Mamaic-Fizic, 6 (1968) 41-55. [3] A. Consanin, Asympoic propris of soluions of diffrnial quaions, Anall Univrsiăţii din Timişoara, Sria Şiin ţ Mamaic, 3 (1992) 183-225. [4] W. A. Coppl, On h sabiliy of ordinary diffrnial quaions, Journal of London Mahmaical Sociy, 39 (1964) 255-26, doi:1.1112/jlms/s1-39.1.255. [5] A. Diamandscu, On h Ψ-condiional asympoic sabiliy of h soluions of a nonlinar volrra ingrodiffrnial sysm, Elcronic Journal of Diffrnial Equaions, 29 (1984) 1-13. [6] A. Diamandscu, Ψ-boundd soluion for a Lyapunov marix dirnial quaion, J. App. Num. Mah., 17 (29) 1-11. [7] A. Diamandscu, On Ψ-sabiliy of non-linar Lyapunov marix dirnial quaions, Elcronic Journal of Qualiaiv Thory of Diffrnial Equaions, 54 (29) 1-18. [8] A. Graham, Kronckr Producs and Marix Calculus: Wih Applicaions, Ellis Horwood Ld. England, 1981. [9] T. G. Hallam, On asympoic quivalnc of h boundd soluions of wo sysms of diffrnial quaions, Mich. Mah. Journal, 16 (1969) 353-363, doi:1.137/mmj/129319. [1] J. Morchalo, On Ψ L p -sabiliy of nonlinar sysms of diffrnial quaions, Anall Şiinţific al Univrsiăţii Al. I. Cuza Iaşi, Mamaică, 3 (199) 353-36. [11] M. S. N. Mury and G. Sursh Kumar, On Ψ-Bounddnss and Ψ-Sabiliy of Marix Lyapunov Sysms, Journal of Applid Mahmaics and Compuing, 26 (28) 67-84, doi: 1.17/s1219-7-7-2. [12] M. S. N. Mury, G. Sursh Kumar, P. N. Lakshmi and D. Anjanyulu, On Ψ-insabiliy of non-linar Marix Lyapunov Sysms, Dmonsrio Mahmaica 42 (29) 731-743. [13] M. S. N. Mury and G. Sursh Kumar, On Ψ-Boundd soluions for non-homognous Marix Lyapunov Sysms on R, Elcronic Journal of Qualiaiv Thory of Diffrnial Equaions, 62 (29) 1-12.