CHAPTER 6 APPLICATIONS OF DEFINITE INTEGRALS

Similar documents
APPLICATIONS OF DEFINITE INTEGRALS

R(3, 8) P( 3, 0) Q( 2, 2) S(5, 3) Q(2, 32) P(0, 8) Higher Mathematics Objective Test Practice Book. 1 The diagram shows a sketch of part of

7.1 Integral as Net Change and 7.2 Areas in the Plane Calculus

Mathematics. Area under Curve.

660 Chapter 10 Conic Sections and Polar Coordinates

x 2 1 dx x 3 dx = ln(x) + 2e u du = 2e u + C = 2e x + C 2x dx = arcsin x + 1 x 1 x du = 2 u + C (t + 2) 50 dt x 2 4 dx

APPM 1360 Exam 2 Spring 2016

Chapter 7: Applications of Integrals

[ ( ) ( )] Section 6.1 Area of Regions between two Curves. Goals: 1. To find the area between two curves

Review Exercises for Chapter 4

(b) Let S 1 : f(x, y, z) = (x a) 2 + (y b) 2 + (z c) 2 = 1, this is a level set in 3D, hence

7.1 Integral as Net Change Calculus. What is the total distance traveled? What is the total displacement?

APPLICATIONS OF THE DEFINITE INTEGRAL IN GEOMETRY, SCIENCE, AND ENGINEERING

Chapter 9 Definite Integrals

x = a To determine the volume of the solid, we use a definite integral to sum the volumes of the slices as we let!x " 0 :

5.2 Volumes: Disks and Washers

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution

APPLICATIONS OF THE DEFINITE INTEGRAL

First Semester Review Calculus BC

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution

50. Use symmetry to evaluate xx D is the region bounded by the square with vertices 5, Prove Property 11. y y CAS

10.5. ; 43. The points of intersection of the cardioid r 1 sin and. ; Graph the curve and find its length. CONIC SECTIONS

The Trapezoidal Rule

( x )( x) dx. Year 12 Extension 2 Term Question 1 (15 Marks) (a) Sketch the curve (x + 1)(y 2) = 1 2

Total Score Maximum

Topics Covered AP Calculus AB

Further applications of integration UNCORRECTED PAGE PROOFS

Form 5 HKCEE 1990 Mathematics II (a 2n ) 3 = A. f(1) B. f(n) A. a 6n B. a 8n C. D. E. 2 D. 1 E. n. 1 in. If 2 = 10 p, 3 = 10 q, express log 6

Paul s Notes. Chapter Planning Guide

Area of a Region Between Two Curves

AB Calculus Review Sheet

CONIC SECTIONS. Chapter 11

( ) as a fraction. Determine location of the highest


7Applications of. Integration

( ) where f ( x ) is a. AB Calculus Exam Review Sheet. A. Precalculus Type problems. Find the zeros of f ( x).

2 b. , a. area is S= 2π xds. Again, understand where these formulas came from (pages ).

Mathematics Extension 2

Ch AP Problems

Chapter 9. Arc Length and Surface Area

Eigen Values and Eigen Vectors of a given matrix

PROPERTIES OF AREAS In general, and for an irregular shape, the definition of the centroid at position ( x, y) is given by

( β ) touches the x-axis if = 1

Thomas Whitham Sixth Form

Calculus AB. For a function f(x), the derivative would be f '(

KEY CONCEPTS. satisfies the differential equation da. = 0. Note : If F (x) is any integral of f (x) then, x a

4.6 Numerical Integration

P 1 (x 1, y 1 ) is given by,.

CHAPTER 11 PARAMETRIC EQUATIONS AND POLAR COORDINATES

The problems that follow illustrate the methods covered in class. They are typical of the types of problems that will be on the tests.

Applications of Definite Integral

LINEAR ALGEBRA APPLIED

A LEVEL TOPIC REVIEW. factor and remainder theorems

1. If * is the operation defined by a*b = a b for a, b N, then (2 * 3) * 2 is equal to (A) 81 (B) 512 (C) 216 (D) 64 (E) 243 ANSWER : D

y = f(x) This means that there must be a point, c, where the Figure 1

ES.182A Topic 32 Notes Jeremy Orloff

Applications of Definite Integral

8.6 The Hyperbola. and F 2. is a constant. P F 2. P =k The two fixed points, F 1. , are called the foci of the hyperbola. The line segments F 1

Solutions to Problems Integration in IR 2 and IR 3

PREVIOUS EAMCET QUESTIONS

4.4 Areas, Integrals and Antiderivatives

The Trapezoidal Rule

MAC 1105 Final Exam Review

Math 1102: Calculus I (Math/Sci majors) MWF 3pm, Fulton Hall 230 Homework 2 solutions

Calculus AB Bible. (2nd most important book in the world) (Written and compiled by Doug Graham)

x ) dx dx x sec x over the interval (, ).

Definite integral. Mathematics FRDIS MENDELU

Math 113 Exam 2 Practice

Thammasat University Department of Common and Graduate Studies

6.2 Volumes. V Ah 430 CHAPTER 6 APPLICATIONS OF INTEGRATION. h h w l (c) Rectangular box V=lwh. (a) Cylinder V=Ah. (b) Circular cylinder

Math 113 Exam 1-Review

AP Calculus BC Review Applications of Integration (Chapter 6) noting that one common instance of a force is weight

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

Trigonometric Functions

Year 12 Mathematics Extension 2 HSC Trial Examination 2014

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

Exercise Qu. 12. a2 y 2 da = Qu. 18 The domain of integration: from y = x to y = x 1 3 from x = 0 to x = 1. = 1 y4 da.

Shape and measurement

Not for reproduction

k ) and directrix x = h p is A focal chord is a line segment which passes through the focus of a parabola and has endpoints on the parabola.

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 8 (First moments of a volume) A.J.Hobson

Polynomials and Division Theory

Math 0230 Calculus 2 Lectures

CHAPTER : INTEGRATION Content pge Concept Mp 4. Integrtion of Algeric Functions 4 Eercise A 5 4. The Eqution of Curve from Functions of Grdients. 6 Ee

Chapter 8.2: The Integral

Mathematics Extension 2

Calculus Module C21. Areas by Integration. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved.

10.2 The Ellipse and the Hyperbola

15 - TRIGONOMETRY Page 1 ( Answers at the end of all questions )

Log1 Contest Round 3 Theta Individual. 4 points each 1 What is the sum of the first 5 Fibonacci numbers if the first two are 1, 1?

Time : 3 hours 03 - Mathematics - March 2007 Marks : 100 Pg - 1 S E CT I O N - A

IMPORTANT QUESTIONS FOR INTERMEDIATE PUBLIC EXAMINATIONS IN MATHS-IB

Section 6: Area, Volume, and Average Value

( ) Same as above but m = f x = f x - symmetric to y-axis. find where f ( x) Relative: Find where f ( x) x a + lim exists ( lim f exists.

Unit 5. Integration techniques

Chapter 5 1. = on [ 1, 2] 1. Let gx ( ) e x. . The derivative of g is g ( x) e 1

Final Exam - Review MATH Spring 2017

Distributed Forces: Centroids and Centers of Gravity

We divide the interval [a, b] into subintervals of equal length x = b a n

Physics 3323, Fall 2016 Problem Set 7 due Oct 14, 2016

Transcription:

CHAPTER 6 APPLICATIONS OF DEFINITE INTEGRALS 6. VOLUMES USING CROSS-SECTIONS. A() ;, ; (digonl) ˆ Ȉ È V A() d d c d 6 (dimeter) c d c d c ˆ 6. A() ;, ; V A() d d. A() (edge) È Š È Š È ;, ; V A() d d 8 ˆ c 6 (digonl) Š Š c ˆ 8. A() ;, ; V A() d d. () STEP ) A() (side) (side) ˆ sin Š Èsin Š Èsin ˆ sin È sin STEP ), STEP ) V A() d È sin d È cos È( ) È () STEP ) A() (side) Š Èsin Š Èsin sin STEP ), STEP ) V A() d sin d c cos d 8 (dimeter) 6. () STEP ) A() (sec tn ) sec tn sec tn sin sec sec STEP ) cos, Î ˆ sin ˆ Î cos cos Î STEP ) V A() d sec d tn c Î È È Š Š Š Š È ˆ ˆ () STEP ) A() (edge) (sec tn ) ˆ sin sec cos STEP ), Î STEP ) V A() d ˆ sec d Š È È cî sin cos 7. () STEP ) A() length height 6 6 STEP ), STEP ) V A() d 6 d c 6 d 6 6 Copright Person Eduction, Inc. Pulishing s Addison-Wesle.

8 Chpter 6 Applictions of Definite Integrls 6 () STEP ) A() length height 6 Š 6 6 9 STEP ), STEP ) V A() d 6 9 d c d 8 6 8. () STEP ) A() se height ˆ È 6 6È STEP ), STEP ) V A() d ˆ Î 6 d Î 8 È Î 8 Î () STEP ) A() ˆ dimeter Š ˆ STEP ), 8 8 8 STEP ) V A() d ˆ Î d Î ˆ 8 6 6 9. A() (dimeter) Š È ; c, d ; V A() d d d c ˆ Š 8 d ˆ 8 c c. A() (leg)(leg) È ˆ È ˆ È ; c, d ; V A() d d. The slices perpendiculr to the edge leled re tringles, nd similr tringles we hve h Ê h. The eqution of the line through, nd, is, thus the length of the se nd the height ˆ 6.Thus A se height ˆ ˆ 6 6 6 ˆ nd V A d 6 d 6. The slices prllel to the se re squres. The cross section of the prmid is tringle, nd similr tringles we hve d 9 9 h c Ê h. Thus A se ˆ Ê V A d d. () It follows from Cvlieris Principle tht the volume of column is the sme s the volume of right prism with squre se of side length s nd ltitude h. Thus, STEP ) A() (side length) s ; STEP ), h; STEP ) V A() d s d s h h () From Cvlieris Principle we conclude tht the volume of the column is the sme s the volume of the prism descried ove, regrdless of the numer of turns Ê V s h Copright Person Eduction, Inc. Pulishing s Addison-Wesle.

Section 6. Volumes Using Cross-Sections 9. ) The solid nd the cone hve the sme ltitude of. ) The cross sections of the solid re disks of dimeter ˆ. If we plce the verte of the cone t the origin of the coordinte sstem nd mke its is of smmetr coincide with the -is then the cones cross sections will e circulr disks of dimeter ˆ (see ccompning figure). ) The solid nd the cone hve equl ltitudes nd identicl prllel cross sections. From Cvlieris Principle we conclude tht the solid nd the cone hve the sme volume.. R() Ê V [R()] d ˆ d Š d 8 ˆ 9 6. R() Ê V [R()] d ˆ d d 8 6 7. R() tn ˆ ; u Ê du d Ê du d; Ê u, Ê u ; Î Î Î ˆ V [R()] d tn d tn u du sec u du [ u tn u] ˆ 8. R() sin cos ; R() Ê nd re the limits of integrtion; V [R()] d Î Î (sin ) (sin cos ) d d; du d u Ê du d Ê ; Ê u, 8 u ˆ 8 8 8 6 Ê u Ä V sin u du sin u d 9. R() Ê V [R()] d d Î. R() Ê V [R()] d d d ( 8 7 7 Copright Person Eduction, Inc. Pulishing s Addison-Wesle.

Chpter 6 Applictions of Definite Integrls. R() È9 Ê V [R()] d 9 d c c 9 7 9() 8 6. R() Ê V [R()] d d d ˆ (6) Î Î È. R() cos Ê V [R()] d cos d csin d Î ( ). R() sec Ê V [R()] d sec d Î Î Î cî cî c tn d Î [ ( )] Î. R() È sec tn Ê V [R()] d Î Š È sec tn d Î Š sec tn sec tn d È Î Î Î Œ d È sec tn d (tn ) sec d Î Œ[] È Î tn [sec ] Î ˆ È È Š Š È Copright Person Eduction, Inc. Pulishing s Addison-Wesle.

Î 6. R() sin ( sin ) Ê V [R()] d Î Î Î ( sin ) d sin sin d ( cos ) sin d ˆ cos sin Î sin cos Î ˆ () (8) È c c 7. R() Ê V [R()] d d c d [ ( )] Section 6. Volumes Using Cross-Sections Î 8. R() Ê V [R()] d d 9. R() È sin Ê V [R()] d Î sin d ccos d Î Î [ ( )] c. R() Écos Ê V [R()] d cos ˆ d sin c [ ( )]. R() Ê V [R()] d d Copright Person Eduction, Inc. Pulishing s Addison-Wesle.

Chpter 6 Applictions of Definite Integrls È. R() Ê V [R()] d d; cu Ê du d; Ê u, Ê u d Ä V u du ( ) u. For the sketch given,, ; R(), r() È cos ; V [R()] [r()] d Î Î ( cos ) d ( cos ) d [ sin ] ˆ cî Î d. For the sketch given, c, d ; R(), r() tn ; V [R()] [r()] d c Î Î Î tn d sec d [ tn ] ˆ. r() nd R() Ê V [R()] [r()] d ˆ d 6. r() È nd R() Ê V [R()] [r()] d ( ) d ˆ 7. r() nd R() c Ê V [R()] [r()] d c ( ) d c c 69 d d c 68 d 6 8 ˆ 6 ˆ 8 ˆ 8 8 ˆ 8 6 7 Copright Person Eduction, Inc. Pulishing s Addison-Wesle.

Section 6. Volumes Using Cross-Sections 8. r() nd R() c Ê V [R()] [r()] d c ( ) d c c 6 8 d d c 9 d 8 ˆ 8 ˆ ˆ 9. r() sec nd R() È Î Ê V [R()] [r()] d c Î Î c Î Î ˆ ˆ ( ) Î sec d [ tn ]. R() sec nd r() tn Ê V [R()] [r()] d sec tn d d []. r() nd R() Ê V [R()] [r()] d c( ) dd d d ˆ. R() nd r() Ê V [R()] [r()] d d ˆ c ( ) d d c d d Copright Person Eduction, Inc. Pulishing s Addison-Wesle.

Chpter 6 Applictions of Definite Integrls. R() nd r() È Ê V [R()] [r()] d ( ) d (6 8) 8. R() È nd r() È È Ê V [R()] [r()] d È È c d d d È È. R() nd r() È Ê V [R()] [r()] d ˆ d È ˆ È d ˆ È d Î ˆ ˆ 8 8 7 6 6 Î 6. R() nd r() Ê V [R()] [r()] d ˆ d Î ˆ Î Î d ˆ Î Î d Î Î ˆ 7. () r() È nd R() Ê V [R()] [r()] d ( ) d (6 8) 8 () r() nd R() Ê V [R()] [r()] d d Î 8 6 6 8 (c) r() nd R() È Ê V [R()] [r()] d ˆ È d ˆ È d ˆ 6 Copright Person Eduction, Inc. Pulishing s Addison-Wesle.

Section 6. Volumes Using Cross-Sections (d) r() nd R() Ê V [R()] [r()] d 6 d 8 6 6 6 8 d 8 d ˆ 8. () r() nd R() Ê V [R()] [r()] d ˆ Š 8 d d ˆ () r() nd R() Ê V [R()] [r()] d ˆ d Š d 8 8 Š d ˆ 6 ˆ 9. () r() nd R() c c c Ê V [R()] [r()] d d d ˆ ˆ c c d d c c ( ) Ê c c d d c c ( ) () r() nd R() Ê V [R()] [r()] d d ˆ (c) r() nd R() V [R()] [r()] d d ˆ. () r() nd R() h Ê V [R()] [r()] d h ˆ h h d Š h d h h ˆ h ˆ h h ˆ h h h h Š ˆ h h h h h h h h () r() nd R() Ê V [R()] [r()] d d d h h Copright Person Eduction, Inc. Pulishing s Addison-Wesle.

6 Chpter 6 Applictions of Definite Integrls. R() È nd r() È c Ê V [R()] [r()] d c ˆ È ˆ È d È d È d c re of semicircle of rdius c. () A cross section hs rdius r È nd re r. The volume is d c d. dv dv dv dh dh dh dv dh dt dh dt dt dt Ah dt () Vh Ahdh, so Ah. Therefore Ah, so. dh units units For h, the re is ), so. dt ) sec ) sec hc hc c c. () R() È Ê V d h (h ) Š h h ( h) h h h h Š h h h dv dh h ( h) h h () Given dt. m /sec nd m, find dt. From prt (), V(h) h Ê dv h h Ê dv dv dh h( h) dh Ê dh. dh dt dh dt dt dt h ( ) ( )(6) m/sec.. Suppose the solid is produced revolving out the -is. Cst shdow of the solid on plne prllel to the -plne. Use n pproimtion such s the Trpezoid Rule, to estimte c R d d Œ. n k d k^. The cross section of solid right circulr clinder with cone removed is disk with rdius R from which disk of rdius h hs een removed. Thus its re is A R h R h. The cross section of the hemisphere is disk of rdius ÈR h. Therefore its re is A Š ÈR h R h. We cn see tht A A. The ltitudes of oth solids re R. Appling Cvlieris Principle we find Volume of Hemisphere (Volume of Clinder) (Volume of Cone) R R R R R. 6 6 6 6. R() È6 Ê V [R()] d 6 d 6 d 6 6 6 96 6 6 6 Š ˆ ˆ ˆ ˆ 6 6 cm. The plum o will weigh out W (8.) 9 gm, to the nerest grm. 7. R() È6 Ê V [R()] d 6 d 6 c7 c7 c6 c6 7 6 7 6 (6)( 7) Š (6)( 6) Š 6(6 7) cm 8 cm ( Copright Person Eduction, Inc. Pulishing s Addison-Wesle.

Section 6. Volume Using Clindricl Shells 7 ˆ cos c c sin d ˆ cos c c sin d ˆ sin ˆ ˆ dv dc ˆ ˆ 8 ˆ ˆ. (See lso the ccompning grph.) 8. () R() kc sin k, so V [R()] d (c sin ) d c c sin sin d c c cos c c ( c ) ˆ c c. Let V(c) c c. We find the etreme vlues of V(c): (c ) Ê c is criticl point, nd V ; Evlute V t the endpoints: V() nd V() ( ). Now we see tht the functions solute minimum vlue is, tken on t the criticl point c () From the discussion in prt () we conclude tht the functions solute mimum vlue is the endpoint c. (c) The grph of the solids volume s function of c for Ÿ c Ÿ is given t the right. As c moves w from [ß ] the volume of the solid increses without ound. If we pproimte the solid s set of solid disks, we cn see tht the rdius of tpicl disk increses without ounds s c moves w from [ß ]., tken on t 9. Volume of the solid generted rotting the region ounded the -is nd f from to out the -is is V [f()] d, nd the volume of the solid generted rotting the sme region out the line f() d f() d is V [f() ] d 8. Thus [f() ] d [f()] d 8 Ê [f()] f() [f()] d Ê f() d Ê f() d d Ê Ê 6. Volume of the solid generted rotting the region ounded the -is nd f from to out the -is is V [f()] d 6, nd the volume of the solid generted rotting the sme region out the line is V [f() ] d. Thus [f() ] d [f()] d 6 Ê [f()] f() [f()] d Ê f() d Ê f() d d Ê f() d Ê f() d 6. VOLUME USING CYLINDRICAL SHELLS. For the sketch given,, ; V ˆ Š d Š d Š d ˆ 6 rdius height 6 6 6. For the sketch given,, ; V ˆ Š d Š d Š d ( ) 6 rdius height 6. For the sketch given, c, d È ; d È È È V ˆ d Š d d c rdius height Copright Person Eduction, Inc. Pulishing s Addison-Wesle.

8 Chpter 6 Applictions of Definite Integrls. For the sketch given, c, d È ; d È È È V ˆ d Š c d d d c rdius height. For the sketch given,, È ; È V ˆ Š d Š È d; rdius height u Ê du d; Ê u, È Ê u Î Ä V u du Î u ˆ Î ˆ (8 ) 6. For the sketch given,, ; V ˆ 9 Š d Š d; rdius height È 9 cu 9 Ê du d Ê du 9 d; Ê u 9, Ê u 6d 6 Ä V Î u du 6 Î u Š È6 È9 6 9 * 9 7., ; V ˆ Š d ˆ d rdius height d d c d 8 8., ; V ˆ d ˆ Š d rdius height Š d d c d 9., ; V ˆ d Š c( ) dd rdius height d 6 ˆ ˆ., ; V ˆ d Š c d d rdius height d d ˆ Copright Person Eduction, Inc. Pulishing s Addison-Wesle.

., ; V ˆ Š d È ( ) d rdius height ˆ Î d Î ˆ ˆ 7 Section 6. Volume Using Clindricl Shells 9., ; V ˆ d ˆ Î Š d rdius height Î Î Î d ˆ (8), Ÿ sin, Ÿ. () f() Ê f() ; since sin we hve,, sin, Ÿ f() Ê f() sin, Ÿ Ÿ sin, () V ˆ Š d f() d nd f() sin, Ÿ Ÿ prt () sin rdius height Ê V sin d [ cos ] ( cos cos ) tn, Ÿ tn, Ÿ /. () g() Ê g() ; since tn we hve,, g() tn, Ÿ / Ê g() tn, Ÿ Ÿ / tn, Î () V ˆ Š d g() d nd g() tn, Ÿ Ÿ / prt (). c, d ; rdius height Î Î Î Ê V tn d sec d [tn ] ˆ V ˆ Š d È ( ) d d c rdius height È È Î ˆ Î d Š È 8 8 Š 6Š Š È 6 Copright Person Eduction, Inc. Pulishing s Addison-Wesle.

Chpter 6 Applictions of Definite Integrls 6. c, d ; d V ˆ d Š c ( ) dd c rdius height ˆ 6 d 6ˆ 6 7. c, d ; d V ˆ d Š d c rdius height ˆ 8 d ˆ 6 6 8. c, d ; d V ˆ d Š d c rdius height 6 d d ˆ 9. c, d ; d V ˆ Š d [ ( )]d c rdius height d c d. c, d ; V ˆ d ˆ Š d c rdius height d 8 d c d. c, d ; d V ˆ d Š c( ) dd c rdius height d ˆ (88) 8 6 6 6 Copright Person Eduction, Inc. Pulishing s Addison-Wesle.

Section 6. Volume Using Clindricl Shells. c, d ; d V ˆ d Š c( ) d d c rdius height d 6 6 ˆ (). () V ˆ Š d d 6 d c d 6 rdius height rdius height () V ˆ d d 6 d 6 Š 6ˆ 8 8 rdius height (c) V ˆ d d 6 d 6 Š 6ˆ 8 8 d 6 6 6 c rdius height 9 (d) V ˆ d ˆ d ˆ d Š 6 d 6 6 6 c rdius height 6 9 (e) V ˆ d 7 ˆ d ˆ d Š 878 6 d 6 6 6 c rdius height 9 (f) V ˆ d ˆ d ˆ d Š 8 96 rdius height. () V ˆ d 8 d 8 d Š ˆ 6 () V ˆ Š d 8 d 8 d rdius height ˆ 6 ˆ Š rdius height ˆ 6 d 8 8 ˆ Î Î 6 Š 7Î 8 6 768 c rdius height 7 7 7 8 6 (c) V d 8 d 6 8 d 6 6 8 (d) V d d d 8 d 8 8 8 c rdius height 7 8 76 7 7 d 8 8 ˆ Î ˆ Î Î Š 7Î Î 8 c rdius height 7 8 96 7 7 (e) V ˆ Î d 8 d ˆ Î Î Š 8 d Î 7Î 6 ˆ 96 (f) V d d d ˆ rdius height c c 8 8 ˆ 7 ˆ Š rdius height c c 6 ˆ 7 d ˆ Š ˆ È ˆ È ˆ È c rdius height Î d 8 ˆ Î d Î Î 8 6 6 6 7 ˆ ˆ. () V ˆ d d d Š. () V d d d (c) V d d d Copright Person Eduction, Inc. Pulishing s Addison-Wesle.

Chpter 6 Applictions of Definite Integrls d (d) V ˆ Š d ˆ È ˆ È d ˆ È d c rdius height ˆ È Î ˆ Î È 8 Î Î Î 8 Î ˆ 8 ˆ 6 6 6 ˆ 8 8 d 6 8 d 8 8 8 6. () V ˆ Š d d d rdius height c c 6 ˆ ˆ 6 6 6 6 d ˆ Š ˆ È ˆ È É Š É c rdius height () V d d d Î d È d cu Ê u Ê du d; Ê u, Ê u d È 6 9 6 6 8 9 Î uèu du 9 ˆ Èu u Î du 9 u Î u Î È È È È Š 8È È 6 8 6 88 87 9 9 d 7. () V ˆ Š d d d c rdius height 6 d ˆ Š c d c rdius height d ˆ ˆ d ˆ ˆ 8 ˆ 8 c rdius height ˆ 8 8 ˆ 8 6 d ˆ ˆ Š c d ˆ c rdius height ˆ () V d ( ) d ( ) d (c) V Š d c dd d d ( 9 ) (d) V d d d ˆ d ˆ d ˆ (8 9 ) 6 d 8. () V ˆ Š d Š d Š d Š d c rdius height Š ˆ ˆ ˆ 8 6 d ˆ Š Š Š c rdius height Š ˆ 6 6 6 8 d ˆ Š Š Š c rdius height Š ˆ 6 6 6 d ˆ ˆ Š Š ˆ Š c rdius height 8 8 Š ˆ 6 6 6 8 6 6 () V d ( ) d ( ) d d (c) V d ( ) d ( ) d d 8 (d) V d d d d Copright Person Eduction, Inc. Pulishing s Addison-Wesle.

Section 6. Volume Using Clindricl Shells rdius height 9. () Aout -is: V cd ˆ Š d ˆ È d ˆ Î d ˆ Î rdius height Aout -is: V ˆ Š d ˆ d d () Aout -is: R nd r V R r Ê d c dd ˆ Aout -is: R È nd r V R r Ê d c dd ˆ. () V R r d ˆ d ˆ d () V ˆ d ˆ Š d rdius height ˆ d Š d d c ˆ ˆ ˆ ˆ rdius height ˆ ˆ Š ˆ d ) ) ( ) (c) V Š d d d Š ) d ) (d) V R r d ) d d. () V ˆ Š d ( ) d d c rdius height d ˆ 8 ˆ ˆ () 7 () V ˆ Š d ( ) d d rdius height 8 8 ˆ ˆ ˆ 6 Š rdius height 8 ˆ 8 ˆ 8 ˆ d ˆ () Š c rdius height ˆ ˆ ˆ ˆ ˆ (c) V d ( ) d d (d) V d ( )( ) d ( ) Copright Person Eduction, Inc. Pulishing s Addison-Wesle.

Chpter 6 Applictions of Definite Integrls. () V ˆ Š d d d c rdius height d Š 8 rdius height () V ˆ Š d ˆ È d ˆ Î d Š 6 Î 6 Š È rdius height ˆ 6 (8 6) (c) V ˆ d ( ) ˆ d ˆ Î Î 8 d 8 ˆ 6 ( 9) () 8 Î Î 6 6 d ˆ Š c rdius height 6 6 8 (d) V d ( ) d d ˆ (). () V ˆ Š d d d c rdius height d ˆ rdius height () V cd ˆ Š d () d d ˆ () 7 6 rdius height. () V cd ˆ Š d c dd d ˆ ( 6) () Use the wsher method: d c 97 7 7 ( V cr () r () dd d d ˆ ( ) (c) Use the wsher method: d c ( d 7 7 (7 ) d ˆ Š c d c rdius height d d ˆ 6 ( ) V cr () r () dd c d d d ˆ (d) V d ( ) d ( ) d Copright Person Eduction, Inc. Pulishing s Addison-Wesle.

. () V ˆ Š d ˆ È 8 d d c rdius height Š È Î d È Î È Š È Š 8 8 ˆ (8) Section 6. Volume Using Clindricl Shells () V ˆ Š d Š È Î Î d Š d rdius height 8 8 8 6 6 Š Š ) ( ( ) * rdius height 6. () V ˆ Š d c d d 6 d d ˆ () V ˆ Š d ( ) c dd ( ) d rdius height ˆ 6 d (68) 7. () V cr () r () dd ˆ Î d Î6 Î ( ) ˆ Î 6 ˆ 7 9 6 6 rdius height 6 ˆ d 6 ˆ ˆ ˆ 8 8 (8 ) 9 6 () V ˆ Š d Š d 8. () V cr () r () dd Š d d c 6 ˆ ˆ 6 8 6 ( 6 6 ) 8 8 ˆ Š Š rdius height Î È ˆ Î Î d Î Î ˆ ˆ ˆ 8 6 6 8 ( 6 8 8 ) 8 () V d d 9. () H=: V V V V [R ()] d nd V [R ()] with R () É nd R () È,, ;, Ê two integrls re required Copright Person Eduction, Inc. Pulishing s Addison-Wesle.