Electric Field. Lab 4: Part 1: Electric Field from One Point Charge. Name: Group Members: Date: TA s Name:

Similar documents
Electric Potential Energy and Electric Potential

Electric Field. EQUIPMENT. Computer with Charges and Fields software.

General Physics Lab 1 Siena College

Lab 8: Magnetic Fields

PHY222 Lab 2 - Electric Fields Mapping the Potential Curves and Field Lines of an Electric Dipole

Coulomb s Law Mini-Lab

Physics Lab 202P-3. Electric Fields and Superposition: A Virtual Lab NAME: LAB PARTNERS:

Speed of waves. Apparatus: Long spring, meter stick, spring scale, stopwatch (or cell phone stopwatch)

Electric Fields and Equipotentials

Activity 8b - Electric Field Exploration

Representations of Motion in One Dimension: Speeding up and slowing down with constant acceleration

LAB 2 - ONE DIMENSIONAL MOTION

Lab 10: DC RC circuits

2018 AP PHYSICS 1 FREE-RESPONSE QUESTIONS. PHYSICS 1 Section II 1 Questions Time 25 minutes

Changes in Energy and Momentum

Electric Field Around a Conductor

Physics 1050 Experiment 6. Moment of Inertia

Electric Fields and Equipotentials

Remember that C is a constant and ë and n are variables. This equation now fits the template of a straight line:

The Coefficient of Friction

θ Beam Pivot F r Figure 1. Figure 2. STATICS (Force Vectors, Tension & Torque) MBL-32 (Ver. 3/20/2006) Name: Lab Partner: Lab Partner:

Electric Field and Electric Potential

Name: Block: Date: Electrical Potentials and Electrical Fields: Potentially Dangerous Situations

Lab 2. Electric Fields and Potentials

Lab 3 Acceleration. What You Need To Know: Physics 211 Lab

Lab #5: Newton s First Law

Electric Fields. Goals. Introduction

Energy Flow in Technological Systems. December 01, 2014

Equipotential Lines and Electric Fields

Electric Field and Electric Potential

PHY 221 Lab 3 Vectors and Motion in 1 and 2 Dimensions

Magnetic Fields. Goals. Introduction. Mapping magnetic fields with iron filings

LAB 2: INTRODUCTION TO MOTION

ElectroChemistry * Section I: Reactivity of Metals and Metal Ions PRELAB

Modeling the Motion of a Projectile in Air

Otterbein University Department of Physics Physics Laboratory Partner s Name: EXPERIMENT D FORCE VECTORS

Electric Fields and Potential

Lab: Determining Distances and Ages of Star Clusters

Magnetic Fields. Goals. Introduction. Mapping magnetic fields with iron filings

Newton s Second Law. Computer with Capstone software, motion detector, PVC pipe, low friction cart, track, meter stick.

Electric Field Mapping (approx. 2 h 15 min.) (8/8/2018)

Physics 123 Lab 2: Electric Field Physics 123: Electricity and Magnetism

Newton's 2 nd Law. . Your end results should only be interms of m

You will return this handout to the instructor at the end of the lab period. Experimental verification of Ampere s Law.

Harmonic Motion. Mass on a Spring. Physics 231: General Physics I Lab 6 Mar. 11, Goals:

Vector components and motion

Richter Scale and Logarithms

PHY 123 Lab 4 - Conservation of Energy

Experiment 1: Electric Fields and Potential Phet Lab

Worksheet for Exploration 6.1: An Operational Definition of Work

Simple Harmonic Motion

Physics 1A. Lecture 1B

Electric Field PHYS 296

Kinematics Lab. 1 Introduction. 2 Equipment. 3 Procedures

University of Maryland Department of Physics Physics 132 Spring 2014 Sample exam 2 problems 11 April 2014

Pizza Box Spectrometer Data & Report

Physics 1B ELECTRIC FIELDS AND POTENTIALS Rev. 3-AH. Introduction

Acceleration and Force: I

LHS Algebra Pre-Test

EXPERIMENT: THE SPRING II Subtitle: Time Dependence of Oscillations

Calculating Bond Enthalpies of the Hydrides

Lab: Vectors. You are required to finish this section before coming to the lab. It will be checked by one of the lab instructors when the lab begins.

Experiment 7 : Newton's Third Law

Name, Date, Period. R Θ R x R y

PHY 123 Lab 6 - Angular Momentum

PHY 111L Activity 2 Introduction to Kinematics

Literature values: ΔH f, gas = % error Source: ΔH f, solid = % error. For comparison, your experimental value was ΔH f = phase:

If you don t understand a question or how to answer it, read the lab write-up or your lab report to refresh your memory.

Linear Motion with Constant Acceleration

2. In words, what is electrical current? 3. Try measuring the current at various points of the circuit using an ammeter.

Electric Fields and Potentials

Introduction to Simple Harmonic Motion

How Do We Get Light from Matter: The Origin of Emission

Lab 3: Electric Field Mapping Lab

MATH REFRESHER ANSWER SHEET (Note: Only this answer sheet and the following graph page will be evaluated)

PHYSICS 221 LAB #3: ELECTROSTATICS

Lab #10 Atomic Radius Rubric o Missing 1 out of 4 o Missing 2 out of 4 o Missing 3 out of 4

Pea Lab Report Sheet Team No. Your Name

Electric Fields and Potentials

Prelab: Complete the prelab section BEFORE class Purpose:

Conservation of Momentum

Simple Harmonic Motion

PHY 112L Activity 1 Electric Charges, Potentials, and Fields

Electric Fields. Goals. Introduction

Lab 5. Magnetic Fields

PHYSICS 211 LAB #8: Periodic Motion

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3)

Motion II. Goals and Introduction

Lab 11 Simple Harmonic Motion A study of the kind of motion that results from the force applied to an object by a spring

371 Lab Rybolt Data Analysis Assignment Name

Electric Fields and Potentials

Mapping the Electric Field and Equipotential Lines. Multimeter Pushpins Connecting wires

PHYSICS 122/124 Lab EXPERIMENT NO. 9 ATOMIC SPECTRA

CLEA/VIREO PHOTOMETRY OF THE PLEIADES

Electric field and electric potential

Name: Date: Honors Physics

SDI LAB #7: NEWTON S LAWS REVISITED

Honors Physics / Unit 01 / CVPM. Name:

Materials: One of each of the following is needed: Cart Meter stick Pulley with clamp 70 cm string Motion Detector

Transcription:

Lab 4: Electric Field Name: Group Members: Date: TA s Name: Simulation link: http://phet.colorado.edu/sims/charges-and-fields/charges-and-fields_en.html Type Charges and Fields PHET in Google and click the link. Objectives: 1. To understand the magnitude and direction of the electric field produced by a point charge at different directions and distances around the point charge. 2. To understand the magnitude and direction of the electric field produced by a dipole at different directions and distances around the dipole. Before you begin: Your TA has set up a demonstration using two charged electrodes, a pan of water, and an electric field sensor. This sensor has LEDs (light emitting diodes) whose brightness is proportional to the electric field component in the direction that the sensor is pointing. Take a few minutes to move the sensor around and observe how the magnitude and direction of the electric field depends on location. In this lab you will be using a simulation where electric field sensors operate in a similar fashion. Part 1: Electric Field from One Point Charge 1. The strength of the electric field around a positive point charge Q at a distance r from the center of the charge is given by the equation E =!! 4πε 0!!. The direction of the electric field vector is radially outward. Sketch E vs. r graph for a positive charge. Label the horizontal and vertical axes of the graph. 1

2. Now open the simulation. Activate grid and show numbers to read values. Place a 1 nc positive (red color) charge on the grid. This is sometimes called a source charge since it s the source of the electric field we are going to measure. To make a measurement of electric field, grab an E-field sensor and place it where you want to measure the electric field. The arrow of the sensor indicates the direction of the E-field at that point and the length of the arrow is proportional to the strength of the electric field. Move the sensor around and observe how the electric field is different in magnitude and direction at different locations. Summarize what you observe about how the magnitude of the electric depends on location. Summarize what you observe about how the direction of the electric field depends on location. 3. Make a measurement of the electric field at 1.0 m away from the charge (scale is shown at bottom of the screen). Note that the units of electric field are V/m = N/C. Record the value below. E = 4. Predict what the strength of the electric field will be at the same point if you double the amount of charge? E = 5. Place another 1 nc positive charge on top of the previous charge and measure the electric field again at the same place. Record your result below and put back the added charge in the charge bucket. E = 6. Did your prediction agree? What can you conclude about the dependence of electric field on the amount of charge? 2

7. Now we want to investigate how the strength of the electric field depends on distance from the 1 nc positive charge. Make measurements of the magnitude of the electric field at different r values and complete the following table, where r is the distance measured in meters. r(m) 0.50 1.00 1.50 2.00 2.50 E (N/C) 8. Plot the electric field vs. r graph in Excel. Does your graph show the behavior of the electric field with distance as you predicted in #1, Yes or No? 9. Select a Power Law trend line to fit the data and display the equation. Does your power law fitting give the same dependence of the electric field with distance as you described in #1, Yes or No? 10. Find the equation of the trend line from Excel and record it below. Also copy your Excel graph into your Word document. Power Law Equation: Now rearrange this equation to be in the same form as the theoretical equation and re-write it in the box. Electric field around a point charge(theoretical) Electric field around a point charge (experimental) E = Q 1 4πε! r! Compare the equation you obtained with the theoretical equation of electric field around point charge. From your comparison calculate your experimental determination of the electrostatic constant, k. k = 1 4πε! = 11. Remove the positive charge and place a 1 nc negative (blue color) charge at the same place. What is different and what is the same about the electric field due to 1 nc negative charge compared with 1 nc positive electric charge? 3

Part 2: Electric Field from an Electric Dipole Since atoms in a molecule often carry a net charge, many molecules are permanent electric dipoles. The figures below shows a carbon monoxide molecule, CO, and a water molecule, H! O. A dipole is characterized by the dipole moment with a magnitude of p = qs, where p is the charge and s is the distance between the charges. The direction of the dipole moment is defined from negative charge to positive as shown. The units of dipole moment are units of charge multiplied by units of distance, such as Cm. Direction of the dipole moment +q C +q s p = qs -q O dipole moment -q of the carbon monoxide molecule Direction of the dipole moment +e +e +2e H H s dipole moment p = 2es O -2e -2e of the water molecule 12. Now we will examine the electric field of a dipole. The magnitude and direction of the electric field depends on the distance and the direction. We will investigate in detail just two directions. With charges available in the simulation how do you create a dipole with dipole moment 1 x 10-9 Cm with a direction for the dipole moment pointing to the right? Look back at the figure at the top of the page to make sure you determined the direction of the dipole moment correctly. Make a sketch below that shows the amounts of charge and the distance between the charges. There are many correct answers. 13. On your drawing in #12, mark the center of the dipole as the origin (x=0, y=0). Pick a point to the right of the charges and mark it as P 1. At that point draw vectors to represent the electric field contributions from each of the individual charges in your dipole. Each electric field vector should be drawn with its tail at point P 1. Also draw a vector to represent the net electric field produced by all the charges in the dipole. Label that vector as E!"#. 4

14. Now reproduce the dipole on the grid in the simulation making sure that the dipole moment is directed to the right and the magnitude of the dipole moment is 1 x 10-9 Cm. We ll make the center of the dipole to be our origin (x=0 m, y=0 m) on the grid. 15. Make measurements of E at a series of points along the x-axis to the right of the dipole and record its magnitude and direction at each position. x(m) y (m) E(N/C) Direction 1.0 0.0 1.5 0.0 2.0 0.0 2.5 0.0 3.0 0.0 16. Does the magnitude of the electric field of a dipole depend more strongly on distance than the electric field of a single point charge? Complete following table using your data in #7 and in #15 and then use normalized values of E, that is E(x,y)/E(1,0) at each position to support your conclusion. x(m) y (m) Normalized E Single charge: E(x,y)/E(1,0) 1.0 0.0 1.5 0.0 2.0 0.0 2.5 0.0 3.0 0.0 Normalized E Dipole: E(x,y)/E(1,0) 17. Make some measurements of E at points along the x-axis to the left of the dipole. How do the magnitude and direction of the electric field on the left side of the dipole compare to the right side for the same distance? 18. On your drawing in #12, pick a point above the center of the dipole and mark it as P 2. At that point draw vectors to represent the electric field contributions from each of the individual charges in your dipole. Each electric field vector should be drawn with its tail at point P 2. Also draw a vector to represent the net electric field produced by all the charges in the dipole. Label that vector as E!"#. 5

19. Make measurements of E at a series of points along the y-axis above the dipole and record its magnitude and direction at each position. x(m) y (m) E (N/C) Direction 0.0 0.5 0.0 1.0 0.0 1.5 0.0 2.0 0.0 2.5 20. Make some measurements of E at points along the y-axis below the dipole. How do the magnitude and direction of the electric field above the dipole compare to below the dipole? Part 3: Conclusions 21. Summarize what you observed about the magnitude and direction of the electric field from a single point charge. In particular, how does it depend on distance and direction from the point charge? 22. Summarize what you observed about the magnitude and direction of the electric field from a dipole. In particular, how does it depend on distance and direction from the dipole? Instructions on how to submit the graphs: 1. Open a word document and type the names of all present group members. 2. Copy your Excel graphs (with title and axis labels) to your Word document. 3. Print the document and attach it to the lab write-up. 6