LFV with µ-beams: status and perspectives

Similar documents
Lepton Flavour Violation

Masaharu Aoki Osaka University

Experimental Searches for Muon to Electron Conversion

Overview of the COMET Phase-I experiment

COMET muon conversion experiment in J-PARC


The MEG/MEGII and Mu3e experiments at PSI. Angela Papa Paul Scherrer Institut on behalf of the MEG/MEGII and Mu3e collaborations

MEG. 2.1 KEK PSI PSI MEG II [4] GeV 2. Tevatron [5] 2017 ( 29 ) 12 12

Status and Future of the PSI Experiment *

Intense Slow Muon Physics

The Mu2e Transport Solenoid

The MEG Experiment at PSI: a sensitive search for

arxiv: v1 [physics.ins-det] 1 Sep 2009

Final Results from the MEG Experiment and the Status of MEG-II

Kenji Ozone (ICEPP, Univ. of Tokyo, Japan) Outline. Introduction prototype R&D ー PMTs ー small & large type summary

LIQUID XE DETECTOR FOR MU E GAMMA SEARCH

Update from the Mu3e Experiment

The MEG experiment at PSI

Lepton Flavor Violation Experimental Overview

The Mu3e PSI

Charged Lepton Flavour Violation:

Mu2e: Coherent μ e Conversion Experiment at Fermilab. David Brown, LBNL representing the mu2e collaboration

Muon to Electron Conversion: Experimental Status in Japan and the US

The Mu3e PSI

Lepton Flavor Violating Decays Review & Outlook

PoS(ICHEP2016)552. The Mu3e Experiment at PSI. Alessandro Bravar University of Geneva

arxiv: v1 [hep-ex] 7 Sep 2016

Liquid xenon gamma-ray calorimeter for the MEG experiment

Results and perspectives of the MEG and MEG II experiments

arxiv: v1 [hep-ex] 1 Oct 2015

clfv searches using DC muon beam at PSI


PoS(TIPP2014)033. Upgrade of MEG Liquid Xenon Calorimeter. Ryu SAWADA. ICEPP, the University of Tokyo

J-PARC μ-e --- PRISM/Phase-1 ---

PoS(EPS-HEP2017)238. Experimental limiting factors for the next generation

MEG II 実験の準備状況と 今後の展望 東京大学 素粒子物理国際研究センター 岩本敏幸 他MEG II コラボレーション 2018年9月14日 日本物理学会2018年秋季大会 信州大学 JSPS Core-to-Core Program

The achievements of the CERN proton antiproton collider

Mu2e Experiment at Fermilab

Track reconstruction for the Mu3e experiment Alexandr Kozlinskiy (Mainz, KPH) for the Mu3e collaboration DPG Würzburg (.03.22, T85.

BABAR results on Lepton Flavour Violating (LFV) searches for τ lepton + pseudoscalar mesons & Combination of BABAR and BELLE LFV limits

K + Physics at J-PARC

Search for heavy neutrinos in kaon decays

New Physics with a High Intensity PS (in Italy)

NA62: Ultra-Rare Kaon Decays

Fundamental Symmetries III Muons. R. Tribble Texas A&M University

Recent results at the -meson region from the CMD-3 detector at the VEPP-2000 collider

An Experimental Proposal on Nuclear and Particle Physics Experiments at the J-PARC 50 GeV Proton Synchrotron

MiniBooNE Progress and Little Muon Counter Overview

Muon Experiments. Masaharu Aoki, Osaka University. NP02 International workshop on Nuclear and Particle Physics at 50-GeV PS Kyoto

The Mu3e Experiment. Niklaus Berger. Physics Institute, University of Heidelberg. Charged Lepton Flavour Violation Workshop, Lecce, May 2013

Highlights from the 9 th Pisa Meeting on Advanced Detectors Calorimetry Session

Searching for at Jefferson Lab. Holly Szumila-Vance On behalf of the HPS, APEX, DarkLight, and BDX 2017 JLab User s Group Meeting 20 June 2017

Correlated Background measurement in Double Chooz experiment

Kaon Identification at NA62. Institute of Physics Particle, Astroparticle, and Nuclear Physics groups Conference 2015

PoS(NOW2016)003. T2K oscillation results. Lorenzo Magaletti. INFN Sezione di Bari

The HARP Experiment. G. Vidal-Sitjes (INFN-Ferrara) on behalf of the HARP Collaboration

Recent T2K results on CP violation in the lepton sector

Jacopo Pinzino CERN HQL /05/2018

MEG Lepton Flavor Violation Search:

Lepton-flavor violation in tau-lepton decay and the related topics

2 ATLAS operations and data taking

HARP (Hadron Production) Experiment at CERN

Results from the Tevatron: Standard Model Measurements and Searches for the Higgs. Ashutosh Kotwal Duke University

Discovery of the W and Z 0 Bosons

New Limits on Heavy Neutrino from NA62

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Polarized muon decay asymmetry measurement: status and challenges

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France.

Particle Detectors A brief introduction with emphasis on high energy physics applications

Proposal to measure the muon electric dipole moment with a compact storage ring at PSI

pp physics, RWTH, WS 2003/04, T.Hebbeker

(Lifetime and) Dipole Moments

a sensitive probe for New Physics

The Future of Heavy Flavor Physics

Non-collision Background Monitoring Using the Semi-Conductor Tracker of ATLAS at LHC

The Mu3e Experiment - Goal

Search for K + π + νν decay at NA62 experiment. Viacheslav Duk, University of Birmingham for the NA62 collaboration

Measurement of q 13 in Neutrino Oscillation Experiments. Stefan Roth, RWTH Aachen Seminar, DESY, 21 st /22 nd January 2014

Collider Physics Analysis Procedures

Testing the m-e universality with ±

PoS(KAON13)012. R K Measurement with NA62 at CERN SPS. Giuseppe Ruggiero. CERN

PSI. Muon Experiment at the PSI, KEK

PoS(HEP2005)177. Status of the OPERA experiment. Francesco Di Capua. Universita Federico II and INFN.

Search for the η e + e - decay at the SND detector

Walter Hopkins. February

The PIENU Experiment a sensitive probe in the search for new physics

The CNGS neutrino beam

Measurement of the η mass by the NA48 Experiment

Measurements of liquid xenon s response to low-energy particle interactions

Status of the LHCb Experiment. Ueli Strauman, University of Zurich, Switzerland. Sept. 13, 2001

HARP a hadron production experiment. Emilio Radicioni, INFN for the HARP collaboration

Searches for Exotics in Upsilon Decays in BABAR

The ortho-positronium lifetime puzzle & new Physics

Neutrino mixing II. Can ν e ν µ ν τ? If this happens:

Marcos Dracos IPHC-IN2P3/CNRS Strasbourg. 2 December 2008 M. Dracos, BENE 1

Measurement of the e + e - π 0 γ cross section at SND

Current Status of Luminosity Measurement with the CMD-3 Detector at the VEPP-2000 e + e collider

Particle production vs. energy: how do simulation results match experimental measurements?

章飞虹 ZHANG FeiHong INTERNATIONAL SCHOOL OF SUBNUCLEAR PHYSICS Ph.D. student from Institute of High Energy Physics, Beijing

New Hadroproduction results from the HARP/PS214 experiment at CERN PS

Transcription:

LFV with µ-beams: status and perspectives Donato Nicolò Università di Pisa & INFN XXXX Rencontres de Moriond 5-12 March 2005

Outline Theoretical issues for LFV SUSY predictions Connections with neutrino oscillations Past searches An historical touch Beam intensity, detection resolution & sensitivity µ eγ Signature and background The MEG experiment µ 3e The SINDRUM experiment µ e conversion SINDRUM2 MECO Beam developments and future experiments Conclusions Search for LFV... 2

LFV in the Standard Model Neutrino oscillations flavour mixing in lepton sector Extensions of SM with massive Dirac neutrinos allow LFV also with charged leptons (µ eγ, τ eγ, µ eee, µ e) Γ Γ( 2 2 ( µ eγ ) α 2 m 55 sin 2θ 10 2 e ) 2 µ νν π M W larger mass scale needed SUSY not observable! Search for LFV... 3

SUSY predictions LFV induced by finite slepton mixing through radiative corrections R. Barbieri et al., Phys. Lett. B338(1994) 212 R. Barbieri et al., Nucl. Phys. B445(1995) 215 P. Ciafaloni et al., Nucl. Phys. B458(1996) 3 SU(5) B (µ eγ) 10-14 10-13 SO(10) ~μ μ ~ χ 0 e Current experimental limit Next goal m 2 ~μ~e fl ~e B SO(10) (m τ /m µ ) 2 B SU(5) tan(β)<3 excluded at 95% C.L. by combined LEP results (hep-ex/0107030) Minimal SU(5) SUSY-SUGRA pure SUSY effect (no SM contamination) Search for LFV... 4

m 2 (ev 2 ) -3 10-5 10-6 10-7 10-8 10-9 10-10 10 99.73% CL -11 10-3 10 SUSY with ν R MSSM models with right-handed Majorana neutrinos (see-saw) Additional contribution to slepton mixing from V -4 21 (the matrix 10 element responsible MSW large angle for solar neutrino deficit) log( m /ev ) 2 2-4 -5-6 -7-8 -9-10 -11 (b) Confirmed by KamLAND 90% CL 95% CL 99% CL MSW small angle -2 10 LMA LOW (see E. Lisi s talk) 2 MSW large angle small mass -1 10 Search for LFV... 5 sin 2θ -12-4 -3-2 -1 0 2 1 log(tan θ) Just so 1 J. Hisano, N. Nomura, Phys. Rev. D59 (1999) ) µ e γ Br( -8 10-9 10-10 10-11 10-12 10-13 10-14 10-15 10 Experimental bound Experimental limit MSW LMA Next goal tan(β)=30 12 13 14 10 10 10 M MSW LOW ν R2 (GeV) tan(β)=1 Vacuum

The first attempt E.P.Hincks and B. Pontecorvo, Phys.Rev.73(1948)246 published before discovery of - electron spectrum J.Steinberger, PR74(1948)500 - ν µ and ν e G.Danby et al., PRL 9(1962)36 Use of cosmic rays as muon beam Lead blocks as moderator and γ- converter Geiger-Müller counters to detect µ and e B(µ eγ) < 10% Search for LFV... 6

History of LFV searches Improved by 2 orders of magnitudes per decade Muon intensity Detection resolution Cosmic µ stopped π MEG (2007) MECO (2010) PRIME (?) µ beams 2 orders of magnitudes more needed to constrain SUSY Experimental challenge Search for LFV... 7

µ + e + γ: signature and background signal µ e γ e + µ + γ θeγ = 180 Ee = Eγ = 52.8 MeV Te = Tγ correlated µ e γ ν ν ν e + µ + γ ν background accidental µ e ν ν µ e γ ν ν ee γ γ ez ez γ ν e + µ + ν γ Search for LFV... 8

Background rate Signal window µ-rate e + -energy γ-energy alignment timing e + -annihilation rad. µ-decay ) (2 4 7.33 ln 2 2 2 2 t E E E E E E R N N BR e e e acc acc δ δθ δ δ π α δ γ γ γ γ γ µ µ + = Search for LFV... 9 Continuous beam needed Sensitivity limited by accidental background at high intensities (must be accompanied by improvements in detection techniques)

MEG detector layout Beam outline Detector outline 1.8 ma of 590 MeV/c protons (1.1 MW) at PSI (Switzerland) 29 MeV/c muons from π-decay at rest continuous beam ( 10 8 µ/s) Stopped beam of >10 7 µ /sec in a 150 µm target Liquid Xenon calorimeter for γ detection (scintillation) -fast: 4 / 22 / 45 ns -high LY:~ 0.8 * NaI Liq. Xe Scintillation Detector Liq. Xe Scintillation Detector -short X 0 : 2.77 cm Thin Superconducting Coil Muon Beam γ Stopping Target γ Solenoid spectrometer & drift chambers for e + momentum Drift Chamber e + Timing Counter e + Scintillation counters for e + timing Drift Chamber 1m Search for LFV... 10

Based on CEX reaction of π - onto a liquid H target π - p π 0 n, π 0 γ γ 54.9 MeV < E(γ) < 82.9 MeV θ>170 ο FWHM = 1.3 MeV E θ>175 o FWHM = 0.3 MeV γ Energy (MeV) 85 80 MEG calorimeter result 75 170 o 70 65 60 55 175 o σ(e γ )/E γ = 4.8% σ(t) = 120 ps 50 150 155 160 165 170 175 180 opening angle (deg) Search for LFV... 11 θ in agreement with the proposal goal

µ + e + γ : present and future MEG is going to start taking data in Spring 2006 Revised LoI Proposal document now Planning R & D Assembly Data Taking 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2.5 events expected with BR(µ eγ) 10-13 BR acc 3 10-14 More details at http://meg.psi.ch http://meg.pi.infn.it http://meg.icepp.s.u-tokyo.ac.jp Is 10-14 within the reach of future experiments? Beam: continuous at 10 9 µ + /s (PSI beam can deliver up to 3x10 8 µ + /s) Better detector resolutions needed to limit accidental background Search for LFV... 12

µ + e + e + e - e + µ + Coplanarity Vertexing ΣE e = m µ Te+ = Te+ = Tesignal µ eee e + correlated e µ - e e e ν ν ν e + µ + ν e - background e + e - e + accidental µ e ν ν µ e ν ν e + e - e + e - ν e + µ + ν e - e + ν µ + ν Search for LFV... 13

µ + e + e + e - : SINDRUM α m ln 3π + + + 2 B (µ e e e ) µ + + 2 B(µ e γ) m e 11 4 = 0.006 Current limit B(µ 3e ) < 1x10-12 90%CL U.Bellgardt et al. Nucl.Phys. B299(1988)1 Background level 10-13 To be improved by 3 orders of magnitude to probe SUSY (BR 10-16 ) would require 10 9 µ + /s but background 10-10 (6 order of magnitude!) Possible improvements (not to be taken seriously) momentum resolution 10% FWHM 1% FWHM background scales quadratically with momentum resolution co-planarity test? vertex resolution 2 mm 2 <1 mm 2 target length 220 mm? target density 11 mg/cm 2? timing resolution ns 100 ps No other experimental proposal Search for LFV... 14

µ - e - conversion signal µ (A,Z) e (A,Z) (A,Z) e - µ - γ E e = m µ -E B E e = 105.4 MeV for Al E e = 104.3 MeV for Ti E e = 94.9 MeV for Pb Background (beam related) Muon-decay In Orbit µ (A,Z) e ν ν (A,Z) ν (A,Z) e - µ - ν Radiative Pion Capture π (A,Z) γ (A,Z-1) γ π - (A,Z) Search for LFV... 15

µ - e - / µ + e + γ comparison R.Kitano et al Phys.Rev.D66(2002)096002 Search for LFV... 16

µ - e - : SINDRUM II result MIO R (E -E B ) -5 signal SINDRUM II parameters beam intensity 3x10 7 µ /s µ momentum 53 MeV/c magnetic field 0.33T acceptance 7% momentum res. 2% FWHM S.E.S 3.3x10-13 B(µ e:au ) 8x10-13 A. Van der Schaaf, NOON03 Search for LFV... 17

µ - e - : MECO detector (BNL) Muon Stopping Target Straw Tracker Superconducting Transport Solenoid (2.5 T 2.1 T) Crystal Calorimeter Muon Beam Stop Superconducting Production Muon Solenoid Production (5.0 T 2.5 T) Target Collimators Proton Beam Proton beam from AGS Heat & Radiation Shield Superconducting Detector Solenoid (2.0 T 1.0 T) 4 x 10 13 incident p/s 1 x 10 11 stopping µ/s Search for LFV... 18

µ - e - : MECO Proton Beam Pulsed beam from AGS to eliminate prompt backgrounds Active time window 0.03 µ s 0.7 µ s 1.35 µ s 0000000000000 1111111111111 0000000000000 1111111111111 1111111111111 000000000000 1111111111111 000000000000 1.35 0000 1111 01 µ s Extinction of 10-9 0.5 second beam spill 1.0 second accelerator cycle Search for LFV... 19

Spectrometer Performance Search for LFV... 20 55, 91, & 105 MeV e - from target Performance calculated using Monte Carlo simulation of all physical effects Resolution dominated by multiple scattering in tracker ( p/p = 0.8%) Resolution function of spectrometer convolved with theoretical calculation of muon decay in orbit to get expected background.

µ - e - : MECO background ~ 0.45 background events for 10 7 s running time with 4x10 13 proton/s sensitivity of ~ 5 signal events for R µe = 10-16 Source Events Comments µ decay in orbit 0.25 S/N = 20 for R µe = 10-16 Tracking errors < 0.006 Radiative µ decay < 0.005 Beam e - < 0.04 µ decay in flight < 0.03 Without scattering in stopping target µ decay in flight 0.04 With scattering in stopping target π decay in flight < 0.001 Radiative π capture 0.07 From out of time protons Radiative π capture 0.001 From late arriving pions Anti-proton induced 0.007 Mostly from π Cosmic ray induced 0.004 Assuming 10-4 CR veto inefficiency Total Background 0.45 Assuming 10-9 inter-bunch extinction Search for LFV... 21

µ - e - : PRISM beam High intensity pulsed proton beam Pion capture solenoid Pion decay section Phase rotation (muon energy spread reduction) with a FFAG ring smaller µ-target better momentum resolution ( p/p = 0.3%) suppression of MIO background ( E 5 ) FFAG approved and financed Ready end 2007 Search for LFV... 22

µ - e - : PRIME detector PRISM/PRIME parameters beam intensity 3x10 11 µ /s µ momentum 68 MeV/c momentum res. 350KeV FWHM S.E.S 6x10-19 B(µ e) 10-18 Search for LFV... 23

Preliminary, rough, estimates for a possible SPL pulsed muon beam (J. Aysto et al., CERN-TH/2001-231, A.Baldini, MultiMW may04) Macro duty cycle: 1.2 ms every 20 ms (6% duty cycle) By the help of a chopper 40 ma of protons in bursts of 200 ns can be provided every 2 µs (good microstructure for mu-e conv) R.Garoby This corresponds to 1.5*10 15 p/s @2.2 GeV (0.5 MW) An extinction factor of 10 8 might be within reach (difficult to be measured): confirmation in 2007 An additional 10 3 might be added to the extinction factor by using a veto counter active only between the p bursts By using GHEISHA to scale #π/p from 8 to 2.2 GeV (HARP results needed) 10 12 µ/s (tungsten target) Sensitivity down to B=10-18 Need of precise design/estimates Search for LFV... 24

Conclusions µ are sensitive probes of physics beyond the Standard Model SUSY-SUGRA theories predicts LFV not far from present existing upper limits Strong case for experimental searches in all channels µ + e + γ results are expected in 2007 (10-13 ) µ - e - conversion search is planned at the level of 10-16 µ - e - conversion is not accidental background limited could benefit of new high intensity pulsed beams Search for LFV... 25

Beam requirements Experiment q µ N µ T µ P µ /P µ I off /I on δt t BR µ + e + e + e - + 10 17 < 4 (MeV) < 10 % DC n/a n/a 10-15 µ + e + γ + 10 17 < 4 (MeV) < 10 % DC n/a n/a µ - e - conv. - 10 21 < 80 (MeV) < 5 % < 10-10 < 100 ns > 1 µs 10-15 10-19 µ - e - conv. - 10 20 < 80 (MeV) < 5 % DC n/a n/a 10-19 Search for LFV... 26

Supplementary information Search for LFV... 27

µ + e + γ : correlated background The correlated background is smaller than the accidental one The correlated background has a complicate dependence on the photon (y) and positron (x) energy resolutions. depends linearly on the R µ is 3x10-15 Search for LFV... 28

MEG spectrometer COnstant Bending RAdius (COBRA) spectrometer Constant bending radius independent of emission angles Gradient field Uniform field High p T positrons quickly swept out Gradient field Uniform field Search for LFV... 29

MEG positron tracker 17 chamber sectors aligned radially with 10 intervals Two staggered arrays of drift cells Chamber gas: He-C 2 H 6 mixture Vernier pattern to measure z-position made of 15 µm kapton foils σ(x,y) ~200 µm (drift time) σ(z) ~ 300 µm (charge division vernier strips) Search for LFV... 30

MEG positron timing counter BC404 Two layers of scintillator read by PMTs placed at right angles with each other Outer: timing measurement Inner: additional trigger information Goal achieved on prototype σ time ~ 40 psec (100 ps FWHM) Search for LFV... 31

MEG Liquid Xe calorimeter 800 l of Liquid Xe ~800 PMT immersed in LXe Only scintillation light High luminosity Unsegmented volume Experimental check Cooling pipe Refrigerator H.V. Signals Vacuum for thermal insulation Liq. Xe Al Honeycomb window PMT Plasticfiller 1.5m

The LP α-sources LEDs Search for LFV... 33

Bibliography J.Aysto et al. CERN-TH/2001-231 NuFact03 proceedings NuFact02 proceedings MultiMW Workshop, May 2004 SINDRUM coll., W Bertl et al. Nucl.Phys. B260(1988)1 SINDRUM2 coll., W Honecker et al. Phys.Rev.Lett. 76(1996)200 MECO coll., BNL proposal AGS P940 (1997) MEG coll., The MEG proposal (2002) Search for LFV... 34

Physics motivation Charged-Lepton Flavour Violation (clfv) processes, like µ eγ, µ eee, µ e conversion, and also τ eγ, are negligibly small in the extended Standard Model (SM) with massive Dirac neutrinos (BR 10-50 ) Super-Symmetric extensions of the SM (SUSY-GUTs) with right handed neutrinos and see-saw mechanism may produce LFV processes at significant rates clfv decays are therefore a clean (no SM contaminated) indication of Super Symmetry and the expected BR are close to the experimental limits Search for LFV... 35

LFV in the Standard Model Neutrino oscillations flavour mixing in lepton sector Extensions of SM with massive Dirac neutrinos allow Lepton Flavour Violation (LFV) processes, like µ eγ, τ eγ, µ eee, µ e conversion with B 10-50 Super-Symmetric extensions of the SM (SUSY-GUTs) with right handed neutrinos and see-saw mechanism may produce LFV processes at significant rates A µ e γ decay is therefore a clean (no SM contaminated) indication of Super Symmetry but Are these rates accessible experimentally? Search for LFV... 36

µ + e + γ : present Present limit B(µ e ) < 1.2x10-11 by the MEGA Collab. M.L.Brooks et al. Phys.Rev.Lett. 83(1999)1521 New under-construction experiment: MEG Search for LFV... 37

µ + e + γ : MEG required performances The sensitivity is limited by the by the accidental background BR R E E θ t 2 The 2 2 3 10-14 acc µ e γ eγ eγ allows BR (µ eγ) 10-13 but needs FWHM Exp./Lab Year E e /E e (%) E γ /E γ (%) t eγ (ns) θ eγ (mrad) Stop rate (s -1 ) Duty cyc.(%) BR (90% CL) SIN 1977 8.7 9.3 1.4-5 x 10 5 100 3.6 x 10-9 TRIUMF 1977 10 8.7 6.7-2 x 10 5 100 LANL 1979 8.8 8 1.9 37 2.4 x 10 5 6.4 Crystal Box 1986 8 8 1.3 87 4 x 10 5 (6..9) MEGA 1999 1.2 4.5 1.6 17 2.5 x 10 8 (6..7) 1 x 10-9 1.7 x 10-10 4.9 x 10-11 1.2 x 10-11 MEG 2006 0.8 4 0.15 19 2.5 x 10 7 100 1 x 10-13 Search for LFV... 38

The PSI πe5 surface muon beam Primary proton beam 1.8 ma of 590 MeV/c protons (1.1 MW) 30 MeV/c muons from π stop at rest DC beam ( 10 8 µ/s)

A exit beam solenoid B gold target C vacuum wall D scintillator hodoscope E Cerenkov hodoscope µ - e - : SINDRUM II detector F inner drift chamber G outer drift chamber H superconducting coil I helium bath J magnet yoke I H J 1m A H D C D G F E B SINDRUM II configuration 2000 Search for LFV... 40

µ + e + γ : MEG sensitivity summary Detector parameters Signal Single Event Sensitivity Backgrounds T = 2.6 10 ε 0.9 e N sig 7 s ε sel R = 0.3 10 µ ( 0.9 ) Cuts at 1,4 FWHM = BR T R µ 3 8 µ s = 0.7 Ω ε e ε 4π γ ε sel Ω 4π ε 0.6 γ = 0.09 SES = 1 4 10 Ω -14 T Rµ ε e εγ ε sel 4π 2 BR R E E 2 θ 2 t 3 10-14 BR corr acc µ e γ eγ eγ 3 10-15 Upper Limit at 90% CL BR (µ eγ) 1 10-13 Discovery 4 events (P = 2 10-3 ) correspond BR = 2 10-13 Search for LFV... 41

µ + e + e + e - : SINDRUM α m ln 3π + + + 2 B (µ e e e ) µ + + 2 B(µ e γ) m e 11 4 = 0.006 Current limit B(µ 3e ) < 1x10-12 90%CL U.Bellgardt et al. Nucl.Phys. B299(1988)1 Background level 10-13 To be improved by 3 orders of magnitude would require 10 9 µ + /s background level 10-7 SINDRUM I future (?) beam intensity 6x10 6 µ + /s 10 9 µ + /s µ + momentum 25 MeV/c magnetic field 0.33T acceptance 24% momentum resolution 10% FWHM <1% FWHM vertex resolution 2 mm 2 FWHM.1 mm 2 FWHM timing resolution ns.1 ns target length 220 mm 1 m target density 11 mg/cm 2? Search for LFV... 42

µ - e - : present Present limit B(µ e:au ) < 8x10-13 by the SINDRUM II A. Van der Schaaf, NOON03 New approved experiment: MECO B(µ e) < 10-16 (2008?) New project LOI to J-PARC: PRISM/PRIME B(µ e) < 10-19 Search for LFV... 43

µ - e - : comparison Background SINDRUM MECO PRISM/PRIME µ decay in orbit MIO Resolution 2% Resolution.8% Resolution.3% (E -E B ) -5 Radiative µ decay Resolution 2% Beam e - µ decay in flight π decay in flight Radiative π capture RPC Anti-proton induced Cosmic ray induced Low momentum Low momentum Low momentum PMC magnet - Cosmic veto Pulsed beam + 10-9 extinction Pulsed beam + 10-9 extinction Pulsed beam + 10-9 extinction Pulsed beam + 10-9 extinction Pulsed beam + 10-9 extinction Cosmic veto FFAG FFAG FFAG FFAG FFAG n/a 10-5 in ROI Search for LFV... 44