Production and decay studies of 261 Rf, 262. Db, 265 Sg, and 266 Bh for superheavy element chemistry at RIKEN GARIS

Similar documents
RIKEN GARIS for Superheavy Element Chemistry

Perspectives of the superheavy element chemistry at RIKEN GARIS

Development of a rapid solvent extraction apparatus for aqueous chemistry of the heaviest elements

Chemistry GARIS

Development of a rapid solvent extraction apparatus coupled to the GARIS gas-jet transport system for aqueous chemistry of the heaviest elements

Present status of the heaviest elements study using GARIS at RIKEN

First synthesis and investigation

Aqueous Chemistry of Rf and Db Y. Nagame for JAEA-RIKEN-Osaka-Niigata-TMU-Tsukuba- Kanazawa-Shizuoka-GSI-Mainz collaboration

SHE experiments with GARIS-I/-II at RIKEN

RITU and the GREAT Spectrometer

G SI Darmstadt. TASCA TransActinide Separator and Chemistry Apparatus

Chemistry of the Heaviest Elements

Fission research at JAEA and opportunity with J-PARC for fission and nuclear data

Nuclear Reactions. Shape, interaction, and excitation structures of nuclei scattering expt. cf. Experiment by Rutherford (a scatt.

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

Performance of the Gas-jet Transport System Coupled to the RIKEN Gas-filled Recoil Ion Separator GARIS for the 238 U( 22 Ne, 5n) 255 No Reaction

Production of Super Heavy Nuclei at FLNR. Present status and future

Synthesis of New Elements and New Approaches in SHE Research

D1. TASCA Focal Plane Detector Setup (Physics) - first mounting and detector tests

Atoms and the Periodic Table

Gas-phase chemistry of element 114, flerovium

CHEM 10113, Quiz 5 October 26, 2011

8. Relax and do well.

Synthesis of SHE with S3

Method of active correlations in the experiment 249 Cf+ 48 Ca n

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

The Periodic Table of Elements

Last 4 Digits of USC ID:

HANDOUT SET GENERAL CHEMISTRY II

1 Genesis 1:1. Chapter 10 Matter. Lesson. Genesis 1:1 In the beginning God created the heavens and the earth. (NKJV)

Solutions and Ions. Pure Substances

02/05/09 Last 4 Digits of USC ID: Dr. Jessica Parr

What do we know experimentally about the N=149, N=151 and N=153 isotones?

Radiometric Dating (tap anywhere)

Ultra-Pure 163 Ho Samples for Neutrino Mass Measurements

PERIODIC TABLE OF THE ELEMENTS

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start.

News from the chemistry of heaviest elements around flerovium, element Christoph E. Düllmann

7. Relax and do well.

The neutron multiplicity study at spontaneous fission of short-lived isotopes (z > 100) using VASSILISSA recoil separator

MANY ELECTRON ATOMS Chapter 15

Chemistry Standard level Paper 1

Chemistry 431 Practice Final Exam Fall Hours

8. Relax and do well.

Secondary Support Pack. be introduced to some of the different elements within the periodic table;

INSTRUCTIONS: Exam III. November 10, 1999 Lab Section

Part 2. Multiple choice (use answer card). 90 pts. total. 3 pts. each.

MRTOF mass measurements at GARIS-II: Toward SHE identification via mass spectroscopy

Studies of Flerovium Homologs with Macrocyclic Extractants

Charge-state distribution measurements using gas charge stripper toward

Chemistry 2 Exam Roane State Academic Festival. Name (print neatly) School

CHEM 172 EXAMINATION 1. January 15, 2009

Made the FIRST periodic table

Chemistry Standard level Paper 1

TASCA Commissioning Experiments

Status of the magnetic spectrometer PRISMA

Gamma spectroscopy in the fermium region at SHIP

Wir schaffen Wissen heute für morgen. Paul Scherrer Institut Patrick Steinegger Diamond Detectors for Fast Transactinide Experiments

DO NOW: Retrieve your projects. We will be reviewing them again today. Textbook pg 23, answer questions 1-3. Use the section 1.2 to help you.

30 Zn(s) 45 Rh. Pd(s) Ag(s) Cd(s) In(s) Sn(s) white. 77 Ir. Pt(s) Au. Hg(l) Tl. 109 Mt. 111 Uuu. 112 Uub. 110 Uun. 65 Tb. 62 Sm. 64 Gd. 63 Eu.

PLEASE PRINT YOUR NAME IN BLOCK LETTERS. Practice Exam 3. Last 4 Digits of USC ID:

B. X : in phase; Y: out of phase C. X : out of phase; Y: in phase D. X : out of phase; Y: out of phase


(C) Pavel Sedach and Prep101 1

Advanced Placement. Chemistry. Integrated Rates

Laser Spectroscopy on Bunched Radioactive Ion Beams

CHEM Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.

Chemistry 2000 Fall 2017 Final Examination

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Why all the repeating Why all the repeating Why all the repeating Why all the repeating

Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1

Essential Chemistry for Biology

(please print) (1) (18) H IIA IIIA IVA VA VIA VIIA He (2) (13) (14) (15) (16) (17)

Citation EPJ Web of Conferences (2014), provided the original work is prope

8. Relax and do well.

single-layer transition metal dichalcogenides MC2

HANDOUT SET GENERAL CHEMISTRY I

8. Relax and do well.

Measurements of the first ionization potentials of the heaviest actinides. T. K. Sato. Advanced Science Research Center Japan Atomic Energy Agency

Physical Chemistry I CHEM 4641 Final Exam 13 questions, 30 points

4.1 Atomic structure and the periodic table. GCSE Chemistry

7. Relax and do well.

CHEM 251 (Fall-2003) Final Exam (100 pts)

9/20/2017. Elements are Pure Substances that cannot be broken down into simpler substances by chemical change (contain Only One Type of Atom)

CHEM 10123/10125, Exam 2

Fall 2011 CHEM Test 4, Form A

8. Relax and do well.

7. Relax and do well.

CHM 101 PRACTICE TEST 1 Page 1 of 4

If anything confuses you or is not clear, raise your hand and ask!

Chemistry 185 Exam #2 - A November 5, Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start.

K. 27 Co. 28 Ni. 29 Cu Rb. 46 Pd. 45 Rh. 47 Ag Cs Ir. 78 Pt.

The Periodic Table of the Elements

Chem Exam 1. September 26, Dr. Susan E. Bates. Name 9:00 OR 10:00

INSTRUCTIONS: CHEM Exam I. September 13, 1994 Lab Section

Experimental Study of Stellar Reactions at CNS

Towards TASCA

8. Relax and do well.

Capture barrier distributions and superheavy elements

8. Relax and do well.

Transcription:

Production and decay studies of 261 Rf, 262 Db, 265 Sg, and 266 Bh for superheavy element chemistry at RIKEN GARIS RIKEN Nishina Center Hiromitsu Haba for RIKEN SHE Chemistry Collaboration CONTENTS 1. Coupling SHE chemistry to a recoil separator 2. Production and decay studies of SHE nuclides for chemistry studies with GARIS 3. SHE chemistry behind GARIS 4. Summary and perspectives

1. Coupling SHE chemistry to a recoil separator

Publications of experimental studies on SHE chemistry 2017 2010 Publication year 2000 1990 1980 Aqueous Gas Aqueous chemistry: 104, 105, 106 Gas chemistry: 104 108, 112 114 RIKEN JAEA IMP GSI LBNL Dubna 1970 A few pioneering experiments for elements heavier than Sg PSI Orsay 104 Rf 105 Db 106 Sg 107 Bh 108 Hs 109 Mt 110 Ds 111 Rg 112 Cn 113 Nh 114 Fl

Gas jet transport technique just behind the target 248 Cm( 22 Ne,5n) 265 Sg Chemistry apparatuses Gas or liquid chromatography α/sf spectrometry 22 Ne beam Ta slit He cooling 248 Cm target α spectrum of 265 Sg 265 Sg + + + + 10 μm Be 90 kpa C beam stopper He/KCl aerosol and/or reactive gas Counts per 40 kev Problems in the conventional method 500 400 300 200 100 7.995 211m Po, 8.026 215 At 8.376 213 Po, 8.305 211m Po 8.782 214m At, 8.819 214 At 8.883 211m Po Target: 480 μg/cm 2 Energy: 120 MeV Dose: 9.9 10 16 Meas.: 105 s, 15 s coll. 265 Sg? 0 7 8 9 10 11 12 Energy / MeV Large amount of background radiations from unwanted reaction products Decrease of gas jet yields due to plasma condition induced by an intense beam 11.650 212m Po

Coupling SHE chemistry to a recoil separator Breakthroughs in SHE chemistry Chemical experiments under low background condition Stable and high gas jet transport yield New chemical reactions Proceedings of The 1st Workshop on Recoil Separator for Superheavy Element Chemistry, March 20 21, 2002, Darmstadt, Germany. Recoil Separator for nuclear physics studies Differential pumping section Gas jet transport system Rotating target Beam Evaporation Residues (ERs) Beam dump Gas inlet Focal plane ERs ~0.1 kpa Mylar window ~100 kpa Chemistry apparatus Elastic scattering beam monitor D1 Q1 Q2 D: Dipole magnet Q: Quadrupole magnet D2 0 1 2 m He(KCl) 0 100 mm

RIKEN GAs filled recoil ion separator GARIS for SHE chemistry Development of a gas jet transport system coupled to GARIS 169 Tm( 40 Ar,3n) 206 Fr; 208 Pb( 40 Ar,3n) 245 Fm [JNRS 8, 55 (2007); EPJD 45, 81 (2007)] 238 U( 22 Ne,5n) 255 No [JNRS 9, 27 (2008)] nat Ge( 19 F,xn) 88 Nb; nat Gd( 19 F,xn) 170 Ta [JRNC 304, 845 (2015)] Production and decay studies of 261 Rf a,b, 262 Db, 265 Sg a,b, and 266 Bh for chemical studies using the GARIS gas jet system 248 Cm( 18 O,5n) 261 Rf a,b [Chem. Lett. 38, 426 (2009); PRC 83, 034602 (2011)] 248 Cm( 19 F,5n) 262 Db [PRC 89, 024618 (2014)] 248 Cm( 22 Ne,5n) 265 Sg a,b [PRC 85, 024611 (2012)] 248 Cm( 23 Na,5n) 266 Bh [under study] Startup of SHE chemistry at RIKEN Synthesis of Sg(CO) 6 [Science 345, 1491 (2014).] Decomposition of Mo(CO) 6 and W(CO) 6 [Radiochim. Acta 104, 141 (2016).] Synthesis of Re(CO) 5 Development of a rapid solvent extraction apparatus for 265 Sg and 266 Bh

2. Production and decay studies of SHE nuclides for chemistry studies with GARIS

RIKEN RI Beam Factory (RIBF), Wako, Japan D2(10 o ) Q2 Q1 D1(45 o ) Gas filled Recoil Ion Separator (GARIS) Hot Laboratory RIKEN Linear ACcelerator (RILAC)

Experimental setup RIKEN GARIS Gas jet transport system Differential pumping section Evaporation Beam from RILAC Residues (ERs) Focal plane Mylar window 50 kpa Rotating target Gas inlet ERs 33 Pa Elastic scattering beam monitor D1(45 o ) Q1 Q2 D2(10 o ) 0 1 2 m He/KCl 0 100 mm Focal plane Si detector Si PIN photodiode Chemistry laboratory MANON for α/sf spectrometry 10 m ERs 15 pairs of Si PIN photodiodes Mylar foil 33 Pa Exhaust 0 100 mm

Experimental setup RIKEN GARIS Differential pumping section Evaporation Beam from RILAC Residues (ERs) Focal plane Gas jet transport system Mylar window 50 kpa ERs Rotating target Gas inlet ERs 33 Pa Elastic scattering beam monitor D1(45 o ) Q1 Q2 D2(10 o ) 0 1 2 m Gas jet chamber He/KCl 0 100 mm Focal plane Si detector Si PIN photodiode Chemistry laboratory MANON for α/sf spectrometry 10 m ERs 100 mm Si PIN photodiodes Mylar foil 33 Pa 248 Cm 0 100 mm 2 O 3 target Exhaust MANON

Production and decay studies of 261 Rf, 262 Db, 265 Sg, and 266 Bh Nuclide 261 Rf a,b (Z=104) 262,263 Db (Z=105) 265 Sg a,b (Z=106) 266,267 Bh (Z=107) Half life 68, 3 s 1) 34 s, 27 s 2) 8.9, 16.2 s 1) 1.7 s, 17 s 4) Reaction 248 Cm( 18 O,5n) 248 Cm( 19 F,5;4n) 248 Cm( 22 Ne,5n) 248 Cm( 23 Na,5;4n) Cross section (nb) 12 3),? 1.5 3),? 0.2 0.3 1)? 0.05 5)? Beam energy (MeV) 95 103, 97.4 118 135, 131, 126, 121 Beam intensity (pμa) 7 4 3 3 248 Cm 2 O 3 target (μg/cm 2 ) 280, 230 230, 290, 330 230, 280 290, 260, 270 Magnetic rigidity (Tm) 1.58 2.16 1.73 2.09 1.73 2.16 2.12 GARIS He (Pa) 33 32 33 33 GARIS transmission (%) 7.8±1.7 8.1±2.2 13 15 RTC Mylar window (μm) 0.5 0.5 0.7 0.7 Honeycomb grid (%) 78/84 84 72/84 78 Gas jet He (kpa) 49 47 49 80 Chamber depth (mm) 20 20 40 20 He flow rate (L/min) 2.0 2.0 2.0 5.0 KCl generator ( o C) 620 620 600/605 620 MANON step interval (s) 30.5, 2.0 15.5 20.5, 10.5 5.0, 8.5, 15.0 1) Düllmann and Türler, PRC 77, 064320 (2008). 2) Firestone and Shirley, Table of Isotopes, 8th ed. (Wiley, New York, 1996). 3) Nagame et al., JNRS 3, 85 (2002). 4) Wilk et al., PRL 85, 2697 (2000). 5) Morita et al., JSPS 78, 064201 (2009).

Production and decay studies of 261 Rf, 262 Db, 265 Sg, and 266 Bh Nuclide 261 Rf a,b (Z=104) 262,263 Db (Z=105) 265 Sg a,b (Z=106) 266,267 Bh (Z=107) Half life 68, 3 s 1) 34 s, 27 s 2) 8.9, 16.2 s 1) 1.7 s, 17 s 4) Reaction 248 Cm( 18 O,5n) 248 Cm( 19 F,5;4n) 248 Cm( 22 Ne,5n) 248 Cm( 23 Na,5;4n) Cross section (nb) 12 3),? 1.5 3),? 0.2 0.3 1)? 0.05 5)? Production cross section and excitation function Beam energy (MeV) 95 103, 97.4 118 135, 131, 126, 121 Beam intensity Effec ve (pμa) produc on 7 of SHE 4 RIs with extremely 3 low 3 248 Cm 2 O 3 target production (μg/cm 2 ) yields 280, 230 230, 290, 330 230, 280 290, 260, 270 Magnetic rigidity (Tm) 1.58 2.16 1.73 2.09 1.73 2.16 2.12 Long term experiments with cost accelerators GARIS He (Pa) 33 32 33 33 GARIS transmission (%) 7.8±1.7 8.1±2.2 13 15 Decay properties such as E RTC Mylar window (μm) 0.5 0.5 α and T 1/2 0.7 0.7 Honeycomb Unambiguous grid (%) 78/84 assignment 84of SHEs to 72/84 derive their 78 Gas jet chemical He (kpa) properties 49 47 49 80 Chamber depth (mm) 20 20 40 20 T He flow rate 1/2 : Direct measure for chemical constants such as (L/min) 2.0 2.0 2.0 5.0 KCl generator equilibrium ( o C) constant 620 and 620 adsorption 600/605 enthalpy 620 MANON step interval (s) 30.5, 2.0 15.5 20.5, 10.5 5.0, 8.5, 15.0 1) Düllmann and Türler, PRC 77, 064320 (2008). 2) Firestone and Shirley, Table of Isotopes, 8th ed. (Wiley, New York, 1996). 3) Nagame et al., JNRS 3, 85 (2002). 4) Wilk et al., PRL 85, 2697 (2000). 5) Morita et al., JSPS 78, 064201 (2009).

Production and decay studies of 261 Rf, 262 Db, 265 Sg, and 266 Bh 248 Cm( 22 Ne,5n): 180/200 pb 8.84 (I ɑ = 91/9), SF (b 50) 248 Cm( 18 O,5n): 12/11 nb ~0.5 min 1 ( 261 Rf a ) 8.222 (I ɑ = 83), 8.323 (I ɑ = 17) ~1 h 1 ( 265 Sg a,b ) 8.28, SF (b < 13) 257 No 24.5 s 261 Rf 68 s 2.6 s 8.51 (18) 265 Sg 8.5 s 14.4 s 8.69 (I ɑ = 20/80) SF ( 51) SF (82) Preliminary 8.46 (I ɑ = 70), 8.68 (I ɑ = 30) 8.565 (I ɑ = 20), 8.595 (I ɑ = 46), 8.621 (I ɑ = 25), 8.654 (I ɑ = 9) 248 Cm( 23 Na,5n): 57 pb ~5 d 1 ( 266 Bh) 248 Cm( 19 F,5n): 2.1 nb ~5 h 1 ( 262 Db) 8.62 9.40 262 Db 34 s EC (b = 2.6) SF (b = 52) 258 Lr 3.5 s 266 Bh 10.0 s Haba et al., Chem. Lett. 38, 426 (2009). Haba et al., Phys. Rev. C 83, 034602 (2011). Haba et al., Phys. Rev. C 85, 024611 (2012). Murakami et al., Phys. Rev. C 88, 024618 (2013). Haba et al., Phys. Rev. C 89, 024618 (2014). Haba, EPJ Web of Conferences 131, 07006 (2016). Pre separated SHEs are ready for chemistry experiments at GARIS.

3. SHE chemistry behind GARIS

(a) Carbonyl complex of SHEs Synthesis of the first organometal SHE compound, Sg(CO) 6 J. Even et al., Science 345, 1491 (2014). O C Metal carbon bond stability in Sg(CO) 6 O C Decomposition studies First Bond Dissociation Enthalpy Mo(CO) 6, W(CO) 6 and Sg(CO) 6 at GARIS Usoltsev et al., Radiochim. Acta 104, 141 (2016). Eichler et al. Basic studies on syntheses of carbonyl complexes of Bh, Hs, and Mt Adsorption enthalpy on Teflon/quartz and chemical yields Tc(CO) 5 with a 252 Cf SF source at IMP Wang et al., Phys. Chem. Chem. Phys. 17, 13228 (2015). Ru(CO) 5 and Rh(CO) 4 with a 252 Cf SF source at IMP Cao et al., Phys. Chem. Chem. Phys. 18, 119 (2016). Re(CO) 5 with GARIS Wang et al. RIKEN Accel. Prog. Rep. 50 (in press). (b) Aqueous chemistry of the heaviest elements 6 7 8 9 5 Mo Tc Ru Rh 6 W Re Os Ir 7 Sg Bh Hs Mt Development of a rapid solvent extraction apparatus for the heaviest SHEs Komori et al. RIKEN Accel. Prog. Rep. 50 (in press). O C Sg C O O C C O

4. Summary and perspectives The gas jet transport system was installed in GARIS. Production and decay properties of 261 Rf, 262 Db, 265 Sg, and 266 Bh were investigated using the GARIS gas jet MANON system. Pre separated 261 Rf, 262 Db, 265 Sg, and 266 Bh are ready for chemistry experiments. Synthesis of the first organometal compounds of SHE, Sg(CO) 6, is successful. Syntheses of carbonyl complexes of Tc, Ru, Rh, and Re are under study for Bh, Hs, and Mt carbonyls. A rapid solvent extraction apparatus is under development for the aqueous chemistry of 265 Sg and 266 Bh. RILAC will be upgraded in 2019. 28 GHz SC ECR and SC QWR Beam intensity: x 5 10 Developments of actinide targets: 248 Cm, 243 Am, 244 Pu Rf, Db, Sg, and Bh chemistry with larger production yields: x 3 5 Chemistry of 283 Cn, 284 Nh, and 288,289 Fl