M2 EEA Systèmes Microélectroniques Polytech montpellier MEA 4. Analog Integrated Circuits Design

Similar documents
Polytech Montpellier MEA4 M2 EEA Systèmes Microélectroniques. Analog IC Design

Lecture 37: Frequency response. Context

ECE315 / ECE515 Lecture 11 Date:

CMOS Analog Circuits

Lecture 18. Common Source Stage

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

ECE 523/421 - Analog Electronics University of New Mexico Solutions Homework 3

EE105 - Fall 2005 Microelectronic Devices and Circuits

Practice 3: Semiconductors

Circle the one best answer for each question. Five points per question.

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

At point G V = = = = = = RB B B. IN RB f

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

MOS Transistor Theory

University of Toronto. Final Exam

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

Lecture 12: MOSFET Devices

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN

MOS Transistor Properties Review

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers

Lecture 12 Circuits numériques (II)

EE105 - Fall 2006 Microelectronic Devices and Circuits. Some Administrative Issues

ECE 6412, Spring Final Exam Page 1

Biasing the CE Amplifier

Chapter 13 Small-Signal Modeling and Linear Amplification

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

EE105 - Fall 2006 Microelectronic Devices and Circuits

Lecture 4: CMOS Transistor Theory

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Digital Integrated Circuits

NMOS (N-Channel Metal Oxide Semiconductor) Transistor. NMOS Transistor in Equilibrium

Microelectronics Main CMOS design rules & basic circuits

Microelectronics Part 1: Main CMOS circuits design rules

Chapter 4 Field-Effect Transistors

Chapter 20. Current Mirrors. Basics. Cascoding. Biasing Circuits. Baker Ch. 20 Current Mirrors. Introduction to VLSI

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

6.012 Electronic Devices and Circuits Spring 2005

EECS 105: FALL 06 FINAL

V in (min) and V in (min) = (V OH -V OL ) dv out (0) dt = A p 1 V in = = 10 6 = 1V/µs

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

MOS Transistor Theory

Lecture 28 Field-Effect Transistors

DC and Transient Responses (i.e. delay) (some comments on power too!)

MOS Transistor I-V Characteristics and Parasitics

EE40 Lec 20. MOS Circuits

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences PROBLEM SET #3 (SOLUTION)

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

Lecture 050 Followers (1/11/04) Page ECE Analog Integrated Circuits and Systems II P.E. Allen

BJT Biasing Cont. & Small Signal Model

Bipolar junction transistors

EE105 Fall 2014 Microelectronic Devices and Circuits

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.

MICROELECTRONIC CIRCUIT DESIGN Second Edition

Lecture 3: CMOS Transistor Theory

CMOS Inverter (static view)

Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1

Random Offset in CMOS IC Design

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University

EECS 141: FALL 05 MIDTERM 1

Integrated Circuits & Systems

Lecture #27. The Short Channel Effect (SCE)

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

Amplifiers, Source followers & Cascodes

Quantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current.

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

LECTURE 380 TWO-STAGE OPEN-LOOP COMPARATORS - II (READING: AH ) Trip Point of an Inverter

Electronics II. Midterm #2

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 20, 2003

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET)

V = = A = ln V

RIB. ELECTRICAL ENGINEERING Analog Electronics. 8 Electrical Engineering RIB-R T7. Detailed Explanations. Rank Improvement Batch ANSWERS.

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

ECE 342 Electronic Circuits. Lecture 25 Frequency Response of CG, CB,SF and EF

Studio 3 Review MOSFET as current source Small V DS : Resistor (value controlled by V GS ) Large V DS : Current source (value controlled by V GS )

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

P-MOS Device and CMOS Inverters

Using MOS Models. C.K. Ken Yang UCLA Courtesy of MAH EE 215B

ECE-305: Fall 2017 MOS Capacitors and Transistors

Design of Analog Integrated Circuits

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

Lecture 7: Transistors and Amplifiers

Digital Microelectronic Circuits ( ) Ratioed Logic. Lecture 8: Presented by: Mr. Adam Teman

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

Transcription:

M EEA Systèmes Microélectroniques Polytech montpellier MEA 4 Analog ntegrated Circuits Design Chapter Basic and Advanced Current Sources Pascal Nouet / 04-05 nouet@lirmm.fr http://www.lirmm.fr/~nouet/homepage/lecture_ressources.html ecture material download http://www.lirmm.fr/~nouet/homepage/lecture_ressources.html

ntroduction Analog ntegrated Circuits are based on elementary stages oltage references Current mirrors Current sources Amplifier stages Main characteristics of a current mirror Current flow to ss (ground) or from Coicient of recopy Quality of recopy High put resistance ange of put voltages (put dynamic) Outline Elementary current mirror Principle Output resistance Elementary stages for increased put resistance Other elementary current mirrors Elementary current sources Overview of advanced current sources PMOS current sources

Current mirroring principle i S in s Biasing (arge Signal Analysis): is saturated è in ds f( gs ) f( ) T must be saturated to deliver a constant current à Output dynamic: ds Small-Signal Analysis à Output resistance S /g m g m.v gs r ds v T s s dsat µ nc ox in v gs v s r ds i s λ dsat Elementary current mirror: put resistance ds (A) mpact of dsat 5,00E- 0 4,50E- 0 4,00E- 0 g ds (µa /) r ds (MΩ) λ( ) dsat (µa) y 0,0044x in S T s 3,50E- 0 3,00E- 0,50E- 0,00E- 0,50E- 0,00E- 0 gds (µa/) inéaire (gds (µa/)) 5,00E- 0 0,00E+00 ds (µa) 0,00E+00,00E+0 4,00E+0 6,00E+0 8,00E+0,00E+0 ds () 3

Elementary current mirror: put resistance ds (A) mpact of transistor length,40e+0,0e+0 rds (Mohms) y 0,093x +,78 in S T s,00e+0 8,00E+00 6,00E+00 4,00E+00,00E+00 0,00E+00 r ds e ( / µm) (µm) + r 0 dsat (A) (µm) 0,00E+00,00E+0 4,00E+0 6,00E+0 8,00E+0,00E+0 ds () Elementary current mirror: put resistance ds (A) mpact of transistor size (/) 4,5 in S 4,0 rds (Mohms) T s 3,5 3,0,5,0,5,0 0,5 0,0 0 0 0 30 40 50 / ds () 4

Elementary current mirror: summary mpact of dsat Output resistance is divided by two when current is multiplied by two mpact of transistor size Output resistance doubled when transistor length is multiplied by two (constant /) in T S s Useful equations orking with constant and transistor length General case à r ds α i s v s r ds ds ds λ( ) dsat (A) r ds e( / µm) (µm) + r 0 dsat (A) Outline Elementary current mirror Elementary stages for increased put resistance Degenerated source current mirror Cascode current mirror Other elementary current mirrors Elementary current sources Overview of advanced current sources PMOS current sources 5

Degenerated source current mirror i S in S /g m v g g m.v gs r ds T v s v s s s s s arge-signal Analysis T always saturated Output dynamic à saturation of T Small-Signal Analysis Output resistance v i S s dsat µ C n ox > + s S S in rds + in ( g ) m s Degenerated source current mirror mpact of s 5,0 r (MOhms) 0,0 5,0 y 0,994x + 3,467 50µA T S 0,0 s s 5,0 0,0 r r ds + + g m r ds ( ) s g m r ds λ n λ n 000 0 5 0 5 0 s(kω) 5 6

Outline Elementary current mirror Elementary stages for increased put resistance Degenerated source current mirror Cascode current mirror Other elementary current mirrors Elementary current sources Overview of advanced current sources PMOS current sources Cascode current mirror i S in S S /g m3 g m4.v gs4 r ds4 T 3 T 4 vs v g4 v s4 v g T /g m g m.v gs r ds v s d d d3 d 4 in arge-signal Analysis T and T 3 are saturated, T also Output dynamic à saturation of T 4 Small-Signal Analysis Output resistance s dsat µ n C ox S v i S S > + tn g in r r m4 ds ds4 7

Cascode current mirror ds (A) mpact of / 800 700 600 500 400 300 00 00 0 r (MOhms) / 0 00 00µA S T 3 T 4 T ds () Outline Elementary current mirror Elementary stages for increased put resistance Other elementary current mirrors Elementary current sources Overview of advanced current sources PMOS current sources 8

ilson current mirror i x in S /g m3 v gs4 g m4.v gs4 r ds4 T 3 T 4 vx T g m.v gs r ds v gs /g m d d d 3 d 4 Similar performance to cascode mirror s dsat µ n C ox Substrate ect: in v in S > tn + S i s vs ( gm4 + gs4 ) rds rds4 i s g m4 r ds r ds4 PMOS Current Mirrors Every NMOS current mirror has a PMOS dual Caracteristics are identical and easy to transpose: smin à smax, r T S S T T T S T T 3 T 4 T 3 T 4 in S S S r r ds in in in r g m r ds r ds 9

Non-symetrical mirrors Different ratio / may be used in the put branch (generally X> à put current higher than reference current) Same for all transistors means current proportionnal to /: in S in S in S T 3 T 4 s T 3 T 4 s T s T T : X : X : X Multiple puts current mirrors r S S One reference branch may be connected to as many put branches as recessary for the application Each put may deliver a different ratio of current Each put may have a different put resistance in > λ S X ; n in S nx S S ; r > n λ n in X. in S S n S nx nx S n n in S S n n r r S S S S in X >. + >. λ λ n n tn + tn in X. in 0

Overview of put resistance of elementary current mirors,00e+0 (Ω),00E+09,00E+08 Miroir simple SD SD Cascode ilson,00e+07,00e+06,00e+05,00e+04,00e+03 0,00 0,50,00,50,00,50 3,00 S 3,50 ( ) Outline Elementary current mirror Elementary stages for increased put resistance Other elementary current mirrors Elementary current sources esistance ing Transistor ing mpact of and T C Overview of advanced current sources PMOS current sources

From current mirrors towards current sources Analog ntegrated Circuits are based on elementary stages oltage references Current mirrors Current sources Amplifier stages f() Current flowing through ground or from in S T T s deal versus actual current sources S ö OUT 0 Smin ø Output esistance and dynamics S Sensitivity to and T C s0 Power consumption S min

esistance ing NMOS current sources > T T 3 T 4 > tn + T 3 T 4 > tn + : X T : X T : X Sizing Output dynamics à Output current ( ) à / of T (T 4 ) X à eference current ( in ) à / of (T 3 ), Output resistance calculation (e.g. ilson Current Source ) i x /g m3 v gs4 g m4.v gs4 r ds4 T 3 T 4 > tn + g m.v gs r ds v gs /g m v x T ( ) r i ds p g mv gs p + rds + gm3 gmrds p vg4 p. i( p) p + rds + gm3 vgs4 : X i ( + A) v ( + A) x ( + g ) gs gm vgs Avgs m ix p gm ix vx + rds4 gm ( vx & + rds4 + ' gm r + gm ( i g v ) x m4 gs4 ( + A) gm4 % rds4 # ix g m $ ( + A) rds ( + gm p ) rds 3

Transistor ing NMOS Current Sources T p T p T p > T T 3 T 4 > tn + T 3 T 4 > tn + T T : X : X : X Output dynamics à Output current ( ) à / of T (T 4 ) X à eference current ( in ) à / of (T 3 ), T p Outline Elementary current mirror Elementary stages for increased put resistance Other elementary current mirrors Elementary current sources esistance ing Transistor ing mpact of and T C Overview of advanced current sources PMOS current sources 4

mpact of S ö OUT 0 ø OUT min fixe esistance ing v (> ) i T /g m v g m.v r ds p µ ncox + ( T tn T ) i Δ Δ g m i. v g g m m ( + g ) v + g g m m m ( + gm p ) p p Δ v 5

Transistor ing v T 3 (> ) /g m3 i T /g m v g m.v r ds µ nc µ pc + ox ox ( T tn 3 3 T ) ( ) tp i g g m m Δ Δ g g + g m3 m3 i. v g m m + 3 g g m3 m + 3 + v + g Δ 3 m3 v mpact of on Current Sources (A) Δ Δ, T T 3 Δ Δ,77 T () 6

mpact of on Current Sources (A) Δ Δ, T Δ Δ,55 T 4 T 3 T () esistance ing and temperature An increase in temperature reduces the saturation current of a transistor,06e+0 (µa),04e+0,0e+0 Polarisation par résistance (> ) T,00E+0 9,80E+0 9,60E+0-0,08 %/ C 9,40E+0 9,0E+0 Temp.( C ) - 40,00-0,00 0,00 0,00 40,00 60,00 80,00 7

esistance ing and temperature esistance may also change with temperature ( TCT. ),5E+0 (µa) p p0 + ésistance fixe,0e+0 TCe- 3 / C,05E+0 (> ) T,00E+0 9,50E+0 9,00E+0 8,50E+0-0,08 %/ C -0,08%/ C -0,57 %/ C 8,00E+0 Temp.( C ) - 40,00-0,00 0,00 0,00 40,00 60,00 80,00 Transistor ing and temperature,0e+0 NMOS et PMOS exhibits same phenomenon (µa),5e+0-0, %/ C Polarisation par constante Polarisation par avec TCe- 3 / C Polarisation par PMOS T 3 (> ) T,0E+0,05E+0,00E+0 9,50E+0 9,00E+0-0,08 %/ C 8,50E+0-0,57 %/ C 8,00E+0 Temp.( C ) - 40,00-0,00 0,00 0,00 40,00 60,00 80,00 8

Cascode Source and temperature Feedback may improve results,5e+0 (µa),0e+0,05e+0 Cascode avec et TCe- 3 / C Polarisation par avec TCe- 3 / C Cascode pplarisé par PMOS 0,036 %/ C T 4 T 3 T,00E+0 9,50E+0 9,00E+0 8,50E+0-0,036 %/ C -0,57 %/ C Temp.( C ) - 40,00-0,00 0,00 0,00 40,00 60,00 80,00 T 3 T 4 T 3 T Outline Elementary current mirror Elementary stages for increased put resistance Other elementary current mirrors Elementary current sources Overview of advanced current sources -independent current sources -independent and increased put resistance ncreasing put dynamic range PMOS current sources 9

-independent current sources Principle: a resistor implement a feedback that tends to reduce current variations Sizing methods Choice of and α (generally, 4, 9 or 6) is not sensitive to variations Assuming identical currents in and T leads to an expression of depending of T 4, T 5 et T 4 T 5 5 5 α 4 4 4 µ pcox 4 & α # $! % α + α " B T A T 3 -independent current sources Other configurations Dual circuit in PMOS (current from ) T 4 ncreased stability by reduction of ds and ds5 Power consumption à asymmetrical current mirror T 3 T 8 5 5 α 4 4 T 4 B T 5 D T α T 3 T 6 C T A 0. T 7 0

- independent and increased put resistance -independent à, T 4 and T 5 to set value of independently of educed power consumption à asymmetrical current mirror High-voltage operation à T 3 and T 6 are optional T 4 B T T 5 D T 3 T 6 C A 0. T 7 ncreased à Cascode put à Problem à put range of operation T c c T 7c Outline Elementary current mirror Elementary stages for increased put resistance Other elementary current mirrors Elementary current sources Overview of advanced current sources -independent current sources -independent and increased put resistance ncreasing put dynamic range PMOS current sources

ncreasing put dynamic range Principle S T 3 s T ds gs3 ds d3 gs gs ds s3. tn +. +. tn s3 + tn Trade-off between put range of operation and put resistance ncreasing put dynamic range mplementation: large-swing cascode current source with -independent reference current T 6 T 7 T 8 7 7 6 α 6 7 6 ( α > ) + avec B 6 α 7 A T 9 T 5 T 3 T C 3 5 4 4 3 5 9 9

ncreasing put dynamic range: alternative configurations 5 T 6 T 7 T 8 T 6 T 7 T 8 B A C T 4 T 6 T 7 B T 8 T 9 T 5 A 0. C T 4 T 3 T T 9 T 5 T 3 T Current sources Elementary current mirror Elementary stages for increased put resistance Other elementary current mirrors Elementary current sources Overview of advanced current sources PMOS current sources 3

Current sources Overview of main characteristics mpact of Output resistance Output range of operation Basic current source ±5% 65kΩ > 0,8 -independent current source ±,3% 500kΩ > 0,9 -independent current source with cascoded put ±0,0% 80MΩ > arge-swing - independent cascoded current source ±9% ±,5% 3,54MΩ 4,88MΩ > 0,3 > 0,3 Contrôle des connaissances 4 Novembre : 3 heures Analyse de ay Source de tension Dimensionnement théorique Ajustement fin Schéma petit-signal Sensibilité à Source de courant Dimensionnement théorique Ajustement fin Schéma petit-signal ésistance de sortie 4