Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

Similar documents
Electrical Quantum Engineering with Superconducting Circuits

Distributing Quantum Information with Microwave Resonators in Circuit QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Electrical quantum engineering with superconducting circuits

Superconducting Qubits

Circuit Quantum Electrodynamics

arxiv: v2 [cond-mat.mes-hall] 19 Oct 2010

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit

Cavity Quantum Electrodynamics with Superconducting Circuits

arxiv: v1 [quant-ph] 31 May 2010

Dynamical Casimir effect in superconducting circuits

Quantum computation and quantum optics with circuit QED

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Quantum Optics with Electrical Circuits: Circuit QED

Metastable states in an RF driven Josephson oscillator

10.5 Circuit quantum electrodynamics

arxiv: v3 [cond-mat.mes-hall] 25 Feb 2011

Condensed Matter Without Matter Quantum Simulation with Photons

Superconducting Qubits Lecture 4

Superconducting quantum bits. Péter Makk

Introduction to Circuit QED

Driving Qubit Transitions in J-C Hamiltonian

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus

Remote entanglement of transmon qubits

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

Quantum non-demolition measurement of a superconducting two-level system

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

Superconducting Resonators and Their Applications in Quantum Engineering

Nonlinear Oscillators and Vacuum Squeezing

Controlling the Interaction of Light and Matter...

Circuit QED with electrons on helium:

REALIZING QUANTUM MEASUREMENTS WITH SUPERCONDUCTING NANOCIRCUITS

Circuit quantum electrodynamics : beyond the linear dispersive regime

Synthesizing arbitrary photon states in a superconducting resonator

Advances in Josephson Quantum Circuits

QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments

John Stewart Bell Prize. Part 1: Michel Devoret, Yale University

10.5 Circuit quantum electrodynamics

Circuit QED: A promising advance towards quantum computing

Routes towards quantum information processing with superconducting circuits

Quantum computation with superconducting qubits

Superconducting Qubits. Nathan Kurz PHYS January 2007

SUPPLEMENTARY INFORMATION

Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi

Strong tunable coupling between a charge and a phase qubit

Single Microwave-Photon Detector based on Superconducting Quantum Circuits

Topologicaly protected abelian Josephson qubits: theory and experiment.

Exploring parasitic Material Defects with superconducting Qubits

Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system

Measuring the decoherence of a quantronium qubit with the cavity bifurcation amplifier

Coherent oscillations in a charge qubit

Non-linear driving and Entanglement of a quantum bit with a quantum readout

PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS

Microwaves for quantum simulation in superconducting circuits and semiconductor quantum dots

Entanglement Control of Superconducting Qubit Single Photon System

SUPERCONDUCTING QUBITS

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Feb 2007

Quantum-information processing with circuit quantum electrodynamics

Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation

Tunable Resonators for Quantum Circuits

Lecture 2 Version: 14/08/29. Frontiers of Condensed Matter San Sebastian, Aug , Dr. Leo DiCarlo dicarlolab.tudelft.

Quantum simulation with superconducting circuits

QUANTUM COHERENCE OF JOSEPHSON RADIO-FREQUENCY CIRCUITS OUTLINE

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition

Supercondcting Qubits

Quantum Limits on Measurement

Parity-Protected Josephson Qubits

Optomechanics and spin dynamics of cold atoms in a cavity

Quantum Reservoir Engineering

Quantum Spectrometers of Electrical Noise

Theory for investigating the dynamical Casimir effect in superconducting circuits

Superconducting Flux Qubits: The state of the field

Let's Build a Quantum Computer!

Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Λ 0 : intended

Lecture 2, March 2, 2017

Ultrafast quantum nondemolition measurements based on a diamond-shaped artificial atom

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Dissipation in Transmon

Lecture 2, March 1, 2018

Solid State Physics IV -Part II : Macroscopic Quantum Phenomena

Quantum optics and quantum information processing with superconducting circuits

Coherent Coupling between 4300 Superconducting Flux Qubits and a Microwave Resonator

State tomography of capacitively shunted phase qubits with high fidelity. Abstract

Introduction to Quantum Mechanics of Superconducting Electrical Circuits

Microwave Photon Counter Based on Josephson Junctions

Strongly Driven Semiconductor Double Quantum Dots. Jason Petta Physics Department, Princeton University

Quantum computing : principles and practical implementations

Quantum computation and quantum information

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

SUPERCONDUCTING QUANTUM BITS

Lecture 8, April 12, 2017

Superconducting quantum circuit research -building blocks for quantum matter- status update from the Karlsruhe lab

The SQUID-tunable resonator as a microwave parametric oscillator

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008).

Transcription:

Josephson qubits P. Bertet SPEC, CEA Saclay (France), Quantronics group

Outline Lecture 1: Basics of superconducting qubits Lecture 2: Qubit readout and circuit quantum electrodynamics 1) 2) 3) Readout by a linear resonator Nonlinear resonators for high-fidelity readout Resonant qubit-resonator coupling: quantum state engineering and tomography Lecture 3: 2-qubit gates and quantum processor architectures

Fabrication techniques small junctions 1) e-beam patterning 2) development 3) first evaporation 4) oxidation 5) second evap. 6) lift-off 7) electrical test e-beam lithography e- Al/Al2O3/Al junctions O2 PMMA PMMA-MAA SiO2 I.3) Decoherence small junctions Multi angle shadow evaporation

QUANTRONIUM (Saclay group) gate I.3) Decoherence 160 x160 nm

FLUX-QUBIT (Delft group) I.3) Decoherence

TRANSMON QUBIT (Saclay group) 40µm 2µµ I.3) Decoherence

The ideal qubit readout relax. 2 β = p α 0>+β 1> 1 0 a + b 0? 1 1 0 a + b 0? 1 a + b 0? 1 1111100 tmeas << T1 p= α 2 1 0 Hi-Fi 0000000 Quantum Non Demolishing (QND) BUT.HOW??? SURPRISING DIFFICULT AND INTERESTING QUESTION FOR SUPERCONDUCTING QUBITS

The readout problem 1) Readout should be FAST : t meas << T1 : 1µ s for high fidelity ( F ᆪ 1 t meas / T1 ) Ideally, t meas : 10ns 2) Readout should be NON-INVASIVE Unwanted transition caused by readout process (but full dephasing can t be avoided!!!) errors 3) Readout should be COMPLETELY OFF during quantum state preparation (avoid backaction)

Readout by a linear resonator 1D CPW resonator Superconducting artificial atom R. Schoelkopf, 2004 A. Blais et al., Phys. Rev. A 69, 062320 (2004) A. Walraff et al., Nature 431, 162 (2004) I. Chiorescu et al., Nature 431, 159 (2004) Modern readout methods by coupling to a resonator (CIRCUIT QUANTUM ELECTRODYNAMICS)

Physical realization L=3.2cm, fn=n 1.8GHz 3mm 50µm Coupling capacitor Cc 10mm 20µm Typical lateral dimensions : 10µm - 1-dimensional mode - Very confined : Vcav ᆪ 10 5 λ3 - Large voltage quantum fluctuations δ V0 : µv - Quality factor easily tuned by designing Cc

CPB coupled to a CPW resonator A. Blais et al., PRA 69, 062320 (2004) ( ) Vˆg = δv0 aˆ + aˆ + + Vgext Cg Vext ωc θˆ n 2 ˆ ˆ ˆ ˆ Htot = EJ cosθ + 4EC ( n ng ) + hωc aˆ + aˆ 2 ˆ ˆ Htot = EJ cos θ + 4EC ( nˆ ngext ) + hωc aˆ +aˆ + 8(Cg δv0ec / 2e )nˆ(a + a + ) Hˆ q Hˆ cav H int 2-level approximation + Rotating Wave Approximation Htot ωge ; σ z + ωc (a + a + 1/ 2) + g (σ + a + σ a + ) 2 Jaynes-Cummings Hamiltonian g = 2eδV0 (Cg / C ) 0 nˆ 1

Strong coupling regime with superconducting qubits g = 2eδV0 (Cg / C ) 0 nˆ 1 GEOMETRICAL dependence of g Easily tuned by circuit design Can be made very large! (Typically : 0 200MHz) g ᆪ 200MHz >> γ,κ ᆪ 100 500kHz Strong coupling condition naturally fulfilled with superconducting circuits (Q=100 enough for strong coupling!!)

The Jaynes-Cummings model g,3> d e,3> d e,2> g,2> e,1> g,1> e,0> HJ C = HJ C ωge σ z + ωc (a + a + 1/ 2) + g (σ + a + σ a + ) 2 couples only level doublets g,n+1>, e,n> Exact diagonalization possible g,0> Restriction of HJ-C to g,n+1>, e,n> g, n + 1 g, n + 1 e, n e, n (δ =ω (n + 1)ωc δ / 2 g n +1 g n +1 ( n + 1) ω + δ / 2 c Note : g,0> state is left unchanged by HJ-C with Eg,0=-δ/2 ge ωc )

The Jaynes-Cummings model g,3> d e,3> d e,2> g,2> e,1> g,1> e,0> HJ C = ωge σ z + ωc (a + a + 1/ 2) + g (σ + a + σ a + ) 2 HJ C couples only level doublets g,n+1>, e,n> Exact diagonalization possible g,0> Coupled states +, n = cos θ n e, n + sinθ n g, n + 1 E +,n, n = sinθ n e, n + cosθ n g, n + 1 E,n θn = h = (n + 1)hωc + 4g 2 ( n + 1) + δ 2 2 h = (n + 1)hωc 4g 2 (n + 1) + δ 2 2 2g n + 1 1 tan 1 2 δ

The Jaynes-Cummings model 1.08 e, n E/(hν c) 1.04 1.00 0.96 0.92 g, n + 1 g, n + 1 e, n -5 0 δ/g 5

The Jaynes-Cummings model 1.08 +,n e, n E/(hν c) 1.04 g, n + 1 1.00 g, n + 1 2g n + 1,n 0.96 e, n 0.92-5 0 δ/g 5

Two interesting limits 1.08 +,n e, n E/(hν c) 1.04 g, n + 1 1.00 g, n + 1 2g n + 1,n 0.96 RESONANT REGIME (δ=0) e, n 0.92-5 0 δ/g 5

Two interesting limits 1.08 +,n e, n E/(hν c) 1.04 g, n + 1 1.00 g, n + 1 2g n + 1,n 0.96 RESONANT REGIME (δ=0) e, n 0.92-5 DISPERSIVE REGIME ( δ >>g) 0 δ/g 5 DISPERSIVE REGIME ( δ >>g)

Two interesting limits 1.08 +,n e, n E/(hν c) 1.04 g, n + 1 QUANTUM STATE ENGINEERING 1.00 2g n + 1 g, n + 1,n 0.96 QUBIT STATE e,readout n 0.92-5 DISPERSIVE REGIME ( δ >>g) RESONANT REGIME (δ=0) 0 δ/g QUBIT STATE READOUT 5 DISPERSIVE REGIME ( δ >>g)

The Jaynes-Cummings model : dispersive interaction δ >> g + ωge + χ ω + 2 χ ( a a + 1/ 2) ge + H J C / h ᆪ σ z + (ωc + χσ z )a a = σ z + ωc a +a 2 2 g2 with χ = the dispersive coupling constant δ 1) Qubit state-dependent shift of the cavity frequency ω% c = ωc + χσ z Cavity can probe the qubit state non-destructively 2) Light shift of the qubit transition in the presence of n photons δωge = 2 χ n Field in the resonator causes qubit frequency shift and decoherence

Dispersive readout of a transmon: principle ωc + χσ z 0> or 1>??

Dispersive readout of a transmon: principle Veiωc t Veiωc t ωc + χσ z 0> or 1>?? ω=ωc

Dispersive readout of a transmon: principle Veiωc t Veiωc t ωc + χσ z α1> α0> ω=ωc 0> or 1>??

Dispersive readout of a transmon: principle Veiωc t Veiωc t Ve iωc t + ωc + χσ z φ α1> α0> ω=ωc π 2χ 0> φ π 1> 0,96 1,00 ωd/ωc 1,04 0> or 1>??

Dispersive readout of a transmon: principle Veiωc t Veiωc t Ve iωc t + ωc + χσ z φ α1> α0> L.O ω=ωc φ0 π or φ1??? 2χ 0> φ π 1> 0,96 1,00 ωd/ωc 1,04 0> or 1>??

Typical implementation (Saclay) 5 mm (f0=6.5ghz) Q=700 80µµ g = 45MHz 40µµ 2µµ (optical+e-beam lithography)

Typical setup (Saclay) MW meas MW drive COIL Vc LO db 20dB 20dB 50MHz I Fast Digitizer Q G=56dB A(t) φ(t) 300K G=40dB TN=2.5K 50Ω 4K DC-8 GHz 30dB 600mK 1.4-20 GHz 20dB 4-8 GHz 50Ω 18mK

Observation of the vacuum Rabi splitting with electrical circuits (courtesy of S. Girvin) Signature for strong coupling: Placing a single resonant atom inside the cavity leads to splitting of transmission peak 2008 vacuum Rabi splitting atom off-resonance observed in: cavity QED R.J. Thompson et al., PRL 68, 1132 (1992) I. Schuster et al. Nature Physics 4, 382-385 (2008) on resonance circuit QED A. Wallraff et al., Nature 431, 162 (2004) quantum dot systems J.P. Reithmaier et al., Nature 432, 197 (2004) T. Yoshie et al., Nature 432, 200 (2004) 28 A. Wallraff et al., Nature 431, 162 (2004)

Qubit spectroscopy with dispersive readout -120 Probe resonator phase MW meas g Pump TLS -122 φ ( ) MW drv -124-126 Some e 5,25 Drive freq (GHz) π e ϕ g π ω/ωc 5,30 5,35

Typical spectroscopy of a transmon + cavity circuit ν01 ν12 νχ

Rabi oscillations measured with dispersive readout Δt MW drv Variable-length drive MW meas Projective measurement x 10000 Ensemble averaging -108 0-111 X ϕ ( ) Y T2R=316 ns -114 1-117 0 200 400 600 t (ns) 800 1000

Dispersive readout : the signal-to-noise issue Veiωc t Veiωc t Ve iωc t + ωc + χσ z φ α1> α0> Ideal amplifier L.O ω=ωc φ0 π or φ1??? 2χ 0> φ π 1> 0,96 1,00 ωd/ωc 1,04 0> or 1>??

Dispersive readout : the signal-to-noise issue Veiωc t Veiωc t Ve iωc t + Real amplifier TN=5K ωc + χσ z φ L.O ω=ωc φ0 π or α0> φ1??? 2χ 1> 0,96 No discrimination in 1 shot 0> φ π α1> 0> or 1>?? 1,00 ωd/ωc 1,04

Dispersive readout : the signal-to-noise issue Veiωc t Veiωc t QUANTUMLIMITED AMPLIFIER?? Ve iωc t + ωc + χσ z φ α1> 0> or 1>?? α0> Real amplifier TN=5K L.O ω=ωc φ0 π or φ1 2χ 0> φ π 1> 0,96 in one single-shot?? 1,00 ωd/ωc 1,04

How to build an amplifier with minimal noise??? pump signal in signal out Nonlinear resonator λ/4 λ/4 Junction causes Kerr non-linearity K + 2 2 Hc =ω h ac a + h (a ) a 2 + Resonator can behave as parametric amplifier K. Lehnert group M. Devoret group I. Siddiqi group II.2) Nonlinear resonator

A nonlinear resonator as quantum-limited amplifier δmax II.2) Nonlinear resonator M. J. Hatridge, R. Vijay, D. H. Slichter, J. Clarke and I. Siddiqi, Phys. Rev. B 83, 134501 (2011) (courtesy I. Siddiqi)

A nonlinear resonator as quantum-limited amplifier Small Saturated signal II.2) Nonlinear resonator (courtesy I. Siddiqi)

Signal-to-noise enhancement by a paramp M. Castellanos-Beltran, K. Lehnert, APL (2007) (quantum limit on how good an amplifier can be : Caves theorem) Actually reached in several experiments : quantum limited measurement II.2) Nonlinear resonator

Qubit and amplifier at 30 mk OUTPUT INPUT II.2) Nonlinear resonator DRIVE (courtesy I. Siddiqi)

Individual measurement traces readout off readout on R. Vijay, D.H. Slichter, and I. Siddiqi, PRL 106, 110502 (2011) II.2) Nonlinear resonator (courtesy I. Siddiqi)

Bivalued histograms Single-shot discrimination of qubit state II.2) Nonlinear resonator (courtesy I. Siddiqi)

Other strategy : sample-and-hold detector integrated with qubit pump λ/4 λ/4 Nonlinear resonator used as threshold detector II.2) Nonlinear resonator

Other strategy : sample-and-hold detector integrated with qubit Kerr-nonlinear resonator λ/4 λ/4 pump H Pd /Pc = 0.2 0.5 1.0 1.8 I Ic 0.2 0.1 0 L 2 0 II.2) Nonlinear resonator 2 - BISTABILITY FOR Ω > Ωc = 3 Ω

The Cavity Josephson Bifurcation Amplifier (CJBA) M. Devoret group, Yale MW drive : Pd(t), ω d ϕ in JBA: I. Siddiqi et al., PRL (2004) CJBA: M. Metcalfe et al, PRB (2007) Non linear resonator ϕout H Pd Pd H state Bistable region L Switching from L to H : BIFURCATION ωd L state ωc II.2) Nonlinear resonator Stochastic process governed by thermal or quantum noise. M.I. Dykman and M.A. Krivoglaz, JETP 77, 60 (1979) M.I. Dykman and V.N. Smelyanskiy, JETP 67, 1769 (1988)

The Cavity Josephson Bifurcation Amplifier (CJBA) M. Devoret group, Yale MW drive : Pd(t), ω d ϕ in JBA: I. Siddiqi et al., PRL (2004) CJBA: M. Metcalfe et al, PRB (2007) Non linear resonator ϕout H Pd Pd H state Bistable region ωd L state ωc II.2) Nonlinear resonator Switching probability L 1,0 0,8 0,6 0,4 0,2 0,0-36 -35-34 Power Pd (db) -33

Readout of transmon with CJBA MW drive : Pd(t), ω d ϕ in Non linear resonator ϕout qubit in 0> or 1> Pd H state L state 2χ ω c 1>ω c 0> II.2) Nonlinear resonator ωd Switching Porbability Pd 1,0 0,8 1> 0,6 0,4 0,2 0,0 0> -38-37 -36-35 -34-33 SINGLE-SHOT QUBIT READOUT Power Pd (db)

Rabi oscillations visibility hν12 0 t tπ,12 250ns 400ns Pswitch (%) hν01 2 TRabi=500ns Mallet et al., Nature Physics (2009) t (µs) Single-shot 93% contrast Rabi oscillations II.2) Nonlinear resonator See also A. Lupascu et al., Nature Phys. (2007)