Tomoi Koide (IF,UFRJ)

Similar documents
An Axiomatic Approach to Quantum Mechanics

Physics 451/551 Theoretical Mechanics. G. A. Krafft Old Dominion University Jefferson Lab Lecture 18

Stochastic Mechanics of Particles and Fields

Stochastic equations for thermodynamics

Homogenization with stochastic differential equations

Is Bohm s interpretation of quantum mechanics consistent?

Gaussian Process Approximations of Stochastic Differential Equations

REVIEW. Hamilton s principle. based on FW-18. Variational statement of mechanics: (for conservative forces) action Equivalent to Newton s laws!

A Hydrodynamic Interpretation of Quantum Mechanics via Turbulence

Physics 451/551 Theoretical Mechanics. G. A. Krafft Old Dominion University Jefferson Lab Lecture 18

Regularization by noise in infinite dimensions

A path integral approach to the Langevin equation

Einstein-Podolsky-Rosen-like correlation on a coherent-state basis and Continuous-Variable entanglement

The Smoluchowski-Kramers Approximation: What model describes a Brownian particle?

Langevin Methods. Burkhard Dünweg Max Planck Institute for Polymer Research Ackermannweg 10 D Mainz Germany

Particle-Simulation Methods for Fluid Dynamics

Section 2: Lecture 1 Integral Form of the Conservation Equations for Compressible Flow

A stochastic particle system for the Burgers equation.

Introduction Statistical Thermodynamics. Monday, January 6, 14

List of Comprehensive Exams Topics

1 Brownian Local Time

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

A STOCHASTIC LAGRANGIAN REPRESENTATION OF THE 3-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

Hydrodynamics, Thermodynamics, and Mathematics

VISCOUS HYDRODYNAMICS THROUGH STOCHASTIC PERTURBATIONS OF FLOWS OF PERFECT FLUIDS ON GROUPS OF DIFFEOMORPHISMS *

2 Equations of Motion

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

Numerical methods for solving stochastic differential equations

SPDEs, criticality, and renormalisation

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or

Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism

WHITE NOISE APPROACH TO FEYNMAN INTEGRALS. Takeyuki Hida

Statistical Mechanics

Outline for Fundamentals of Statistical Physics Leo P. Kadanoff

Hamiltonian aspects of fluid dynamics

Stochastic Shear Thickening Fluids: Strong Convergence of the Galerkin Approximation and the Energy Equality 1

Numerical Integration of SDEs: A Short Tutorial

EULER MARUYAMA APPROXIMATION FOR SDES WITH JUMPS AND NON-LIPSCHITZ COEFFICIENTS

Brownian motion and the Central Limit Theorem

The dynamics of small particles whose size is roughly 1 µmt or. smaller, in a fluid at room temperature, is extremely erratic, and is

Stochastic Particle Methods for Rarefied Gases

Controlled Diffusions and Hamilton-Jacobi Bellman Equations

arxiv: v1 [hep-th] 24 Jun 2014

The Klein-Gordon equation

Lagrangian Description for Particle Interpretations of Quantum Mechanics Single-Particle Case

Modeling of Micro-Fluidics by a Dissipative Particle Dynamics Method. Justyna Czerwinska

Neoclassical Theory of Electromagnetic Interactions II

Module 2 : Convection. Lecture 12 : Derivation of conservation of energy

Stochastic Modelling in Climate Science

Anomalous hydrodynamics and gravity. Dam T. Son (INT, University of Washington)

1. Introduction Systems evolving on widely separated time-scales represent a challenge for numerical simulations. A generic example is

Gaussian processes for inference in stochastic differential equations

Brownian Motion. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Brownian Motion

Electrical Transport in Nanoscale Systems

Analytical Mechanics for Relativity and Quantum Mechanics

Continuum Limit of Forward Kolmogorov Equation Friday, March 06, :04 PM

4.1 LAWS OF MECHANICS - Review

1 The Quantum Anharmonic Oscillator

2 Canonical quantization

Finite Temperature Field Theory

Chemistry. Lecture 10 Maxwell Relations. NC State University

Derivation of SPDEs for Correlated Random Walk Transport Models in One and Two Dimensions

Introduction. Statistical physics: microscopic foundation of thermodynamics degrees of freedom 2 3 state variables!

Heat bath models for nonlinear partial differential equations Controlling statistical properties in extended dynamical systems

Waves in plasma. Denis Gialis

arxiv: v1 [quant-ph] 15 Jun 2017

Quantum mechanics. Effects on the equations of motion of the fractal structures of the geodesics of a nondifferentiable space

Least action principle and stochastic motion : a generic derivation of path probability

Chapter 4: Partial differentiation

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

Non-Differentiable Embedding of Lagrangian structures

Kolmogorov equations in Hilbert spaces IV

FORCE ENERGY. only if F = F(r). 1 Nano-scale (10 9 m) 2 Nano to Micro-scale (10 6 m) 3 Nano to Meso-scale (10 3 m)

LANGEVIN EQUATION AND THERMODYNAMICS

Relationships between WORK, HEAT, and ENERGY. Consider a force, F, acting on a block sliding on a frictionless surface

arxiv:quant-ph/ v2 21 Apr 2004

On the martingales obtained by an extension due to Saisho, Tanemura and Yor of Pitman s theorem

Regularization Physics 230A, Spring 2007, Hitoshi Murayama

Lecture 12: Detailed balance and Eigenfunction methods

A scaling limit from Euler to Navier-Stokes equations with random perturbation

Physics 351 Wednesday, April 22, 2015

Langevin Dynamics of a Single Particle

Interest Rate Models:

Simulation methods for stochastic models in chemistry

A RECURRENCE THEOREM ON THE SOLUTIONS TO THE 2D EULER EQUATION

Wilson and Polyakov loops of gravitational gauge fields in Rindler space

FRACTAL SPACE-TIME THEORY AND SUPERCONDUCTIVITY

Control Theory in Physics and other Fields of Science

Rapporto di ricerca Research report

Noether s Theorem. 4.1 Ignorable Coordinates

Physics 351 Monday, April 23, 2018

Gillespie s Algorithm and its Approximations. Des Higham Department of Mathematics and Statistics University of Strathclyde

arxiv: v7 [quant-ph] 22 Aug 2017

Emergent Fluctuation Theorem for Pure Quantum States

Stochastic Variational Integrators

AME 513. " Lecture 7 Conservation equations

Nested Uncertain Differential Equations and Its Application to Multi-factor Term Structure Model

B8.3 Mathematical Models for Financial Derivatives. Hilary Term Solution Sheet 2

Introduction. Stochastic Processes. Will Penny. Stochastic Differential Equations. Stochastic Chain Rule. Expectations.

arxiv:quant-ph/ v2 25 Aug 2004

Transcription:

International Conference of Physics (2016) Tomoi Koide (IF,UFRJ) Pedagogical introduction, Koide et. al., J. Phys. Conf. 626, 012055 (`15)

Variational Principle in Class. Mech. b a 2 t F m dx() t I( x) dt V ( x( t)) t I 2 dt OPTIMIZATION Newton equation

Variational Principle in Quan. Mech. b a V * F 4 * I(, ) d x i H V I t OPTIMIZATION Schrödinger equation Note that Variation of WF, not trajectory * (, ) I T V

Path Integral Approach b a b [ Dx]expiI a All paths contribute! b a

For this, we need to extend the formulation of the variational method.

A Optimized path? B

A Optimized path? B

A Optimized path! B

We cannot follow the optimized path!! 1. Zig-zag by fluctuation 2. Each times, different paths A B

Optimal control Effect of variables which we cannot control. b a 2 t F m dx() t I( x) dt V ( x( t)) t I 2 dt Newton equation

Yasue, J. Funct. Anal. 41 327 (1981) Nelson, Quantum Fluctuations (Princeton, NJ: Princeton University Press, 1985) Guerra&Morato, Phys. Rev. D27 1774 (1983) Pavon, J. Math. Phys. 36 6774 (1995) Nagasawa, Stochastic Process in Quantum Physics (Bassel:Birkhaeuser, 2000) Cresson and Darses, J. Math. Phys. 48 072703 (2007) Holm, arxiv:1410.8311 [math-ph] Chen,Cruzeiro&Ratiu, arxiv:1506.05024 [math-ph] Stochastic Variational method is one approach to calculate optimization including such a fluctuation.

KEY POINT 5 important steps

CLASSICAL TRAJECTORY Velocioty dr ( t) r( t dt) r( t) udt Zig-zag motion?

Zig-zag in Brownian motion molecure Brownian particle

Zig-zag in Brownian motion molecure Brownian particle dr ( t) 2 dw ( t)

Zig-zag in Brownian motion molecure Brownian particle Noise intensity Gaussian white noise (Wiener process) dr ( t) 2 dw ( t) E[ dw ] 0 E dw 2 [( i) ] dt Direction is random Mean magnitude is dt

CLASSICAL TRAJECTORY Velocioty dr ( t) r( t dt) r( t) udt Zig-zag motion?

CLASSICAL TRAJECTORY Velocioty dr ( t) r( t dt) r( t) udt STOCHASTIC TRAJECTORY dr ( t) u( r( t), t) dt 2 dw ( t) 0 E[ dw ] 0 E dw 2 [( i) ] dt

How define the velocity at A? r x C A B t dt t t dt

How define the velocity at A? r x C A B t dt t t dt lim dt0 r( t dt) r( t) dt lim dt0 r( t dt) r( t) dt

Bernstein Process Forward stochastic differential equation dr ( t) u( r( t), t) dt 2 dw ( t) dt 0 2 E ( dwi ( t)) d t We employ the variational procedure to determine these unknown functions.

Bernstein Process Forward stochastic differential equation dr ( t) u( r( t), t) dt 2 dw ( t) dt 0 2 E ( dwi ( t)) d t Backward stochastic differential equation dr ( t) u( r( t), t) dt 2 dw ( t) dt 0 2 E ( dwi ( t)) dt We employ the variational procedure to determine these unknown functions.

Consistency Condition Probability density ( x, t) E ( x r( t)) The Fokker-Plank equation (forward) u The Fokker-Plank equation (backward) t t u These two should be equivalent u u 2 ln Also related to Bayesian statistics Caticha, JPA44, 225303(`11)

Time Drivative Operations Because of the two different definitions of velocities, we can introduce the two different time derivatives. (Nelson) Mean forward derivative Mean backward derivative Dr Dr lim dt0 lim dt0 dr dt dr dt u u See, Koide, Kodama&Tsushima, JP Conf. 626, 012055 (`15)

Zheng&Meyer, S`eminarie de Probabilit`es XVIII, Lecture Notes in Mathematics Vol 1059, P223, (Springer-Verlag, Berlin, 1984). Partial Integration Formula CLASSICAL b a dx b dt Y X ( b) Y( b) X ( a) Y( a) dtx dt a dy dt STOCHASTIC b a dte ( DX ) Y EX ( b) Y( b) X ( a) Y( a) dte X ( DY ) b a See, Koide, Kodama&Tsushima, JP Conf. 626, 012055 (`15)

Ito Formula (Ito s lemma) This is a kind of Tayler expansion for stochastic variables. Taylor dr udt 2 df ( r( t), t) dt u f ( r( t), t) O( dt ) t Ito dr udt 2 dw 2 df ( r( t), t) dt t u f ( r( t), t) 2 f dw 2 O( dt )

Let s apply!!

Stochastic Representation of Action Classical action We consider 3) b 2 m dr () t Icla dt V ( r ( t)) 2 dt a For example 1) Dr Dr 2 dr 2) Dr Dr dt Dr Dr Dr Dr 3) 2 Stochastic action I sto b a dte m ( Dr ) ( Dr ) 2 2 2 2 V ( r)

Stochastic Variation for Kinetic Term r r r r( a) r( b) 0 b a m dt E r r mdt r 2 b ( D ) ( D ) E( D ) ( Dr) a b m dte a b a u( D r) m dte Du r Ito formula du( r, t) Du( r, t) lim t u u dt0 dt

Variation of Action I 0 2 t um um V ( r) m 2 1/ 2 2 1 um ( u u) / 2

Variation of Action I 0 2 t um um V ( r) m 2 1/ 2 2 1 um ( u u) / 2 when 0

Variation of Action I 0 2 t um um V ( r) m 2 1/ 2 2 1 um ( u u) / 2 u t m d dt when 0 The Newton equation d 1 u m ( r ( t ), t ) V ( r ( t )) dt m

Variation of Action I 0 2 t um um V ( r) m 2 1/ 2 2 1 um ( u u) / 2 u t m d dt when 0 The Newton equation d 1 u m ( r ( t ), t ) V ( r ( t )) dt m The dynamics of t is given by the FP equation. u u m

Derivation of Schrödinger Equation Introduction of phase u m /(2 ) Eq. of variation 2 1/ 2 2 1 t V m 0

Derivation of Schrödinger Equation Introduction of phase u m /(2 ) Eq. of variation 2 1/ 2 2 1 t V m 0 Introduction of wave function i e Yasue, JFA 41, 327 (`81) 1 it V 2 m 2 2 m i V t The Schrödinger equation 2m

Optimization in macro. scale Optimization in micro. scale Newton equation NOISE Schrödinger equation GLASSES

Canonical Quantization and SVM L( r, r) optimization d L L dt r r 0 LEGENDRE TRANSFORM H( r, p) p L / r optimization r p r, H p, H PB PB

Canonical Quantization and SVM L( r, r) optimization d L L dt r r 0 LEGENDRE TRANSFORM H( r, p) p L / r optimization canonical quantization r p r, H PB 1 [ rh ˆ, ˆ ] i p, HPB 1 [ ph ˆ, ˆ ] i

Canonical Quantization and SVM SVM L( r, r) optimization d L L 0 dt r r D L D L L ( Dr) ( Dr) r 0 LEGENDRE TRANSFORM H( r, p) p L / r optimization canonical quantization r p r, H PB 1 [ rh ˆ, ˆ ] i p, HPB 1 [ ph ˆ, ˆ ] i

Invariance for spatial translation The change of the action t rt () r() t f f I dte L ( r A, Dr, Dr ) dte L ( r, Dr, Dr ) t t i t i f d m m dt E Dr Dr A dt 2 2 Misawa, J. Math. Phys. 29 2178 (`88) t t i A

Invariance for spatial translation The change of the action t rt () r() t f f I dte L ( r A, Dr, Dr ) dte L ( r, Dr, Dr ) t t i t i f d m m dt E Dr Dr A dt 2 2 If the action is invariant for the spatial translation, Misawa, J. Math. Phys. 29 2178 (`88) t t i A conserved momentum operator! m E 3 Dr Dr d x * ( x, t )( i x) ( x, t ) 2 Comment : we do not need the normal ordering product. Koide&Kodama, PTEP 093A03 ( 15)

Classical Many-Body Dynamics Positions and velocities of all particles Mass density and velocity of fluid classical variation SVM classical variation SVM N-body Newton s eq. Ideal fluid eq. (Euler) Loffredo&Morato, JPA40,8709(`07), Koide, PLA379,2007(`15)

Classical Many-Body Dynamics Positions and velocities of all particles Mass density and velocity of fluid classical variation SVM classical variation SVM N-body Newton s eq. N-body Scrödinger eq. Ideal fluid eq. (Euler) Loffredo&Morato, JPA40,8709(`07), Koide, PLA379,2007(`15) Gross -Ptaevskii eq.

SVM is a useful method of for quantization of nonrelativistic particles and bosonic fileds. SVM is applicable as a method for coase-grainings of micro. dynamics (Navier-Stokes-Fourier, Gross-Pitaevskii). The stochastic Noether theorem The uncertainty relations Quantum-Classical hybrids

SVM Analytical Mechanics stochastic particle classical field classical particle curved space-time Noether theorem stochasic field dissipative systems rigid body fermion field brachistochrone curve canonical transform anomaly

Stochastic Analytical Mechanics SVM Analytical Mechanics stochastic particle classical field classical particle curved space-time Noether theorem stochasic field dissipative systems rigid body fermion field brachistochrone curve canonical transform anomaly

Pedagogical introduction, Koide et. al., J. Phys. Conf. 626, 012055 (`15)

Classical Many-Body Dynamics Positions and velocities of all particles Mass density and velocity of fluid

Classical Many-Body Dynamics classical variation Positions and velocities of all particles N-body Newton s eq. classical variation Mass density and velocity of fluid Ideal fluid eq. (Euler)

Classical Many-Body Dynamics Positions and velocities of all particles Mass density and velocity of fluid classical variation SVM classical variation SVM N-body Newton s eq. N-body Scrödinger eq. Loffredo&Morato, JPA40,8709(`07), Koide, PLA379,2007(`15) Ideal fluid eq. (Euler)?

Classical variation of fluid Action of (ideal) fluid ( xt, ) I v dtd x v x t I 2 tf 3 M 2 ( M, ) (, ) t M Classical variation Internal energy density

Classical variation of fluid Action of (ideal) fluid Fluid velocity ( xt, ) I v dtd x v x t I 2 tf 3 M 2 ( M, ) (, ) t M Mass density Classical variation Internal energy density

Classical variation of fluid Action of (ideal) fluid Fluid velocity ( xt, ) I v dtd x v x t I 2 tf 3 M 2 ( M, ) (, ) t M Mass density Classical variation Internal energy density Euler equation 1 t v v P M P d d 1/ M M Pressure TdS de PdV P de dv / adiabatic ( ds 0) S

Application of SVM Applying SVM to the same action of (ideal) fluid, i When we choose 1 d 2 dm t Noise intensity Koide&Kodama, JPA45, 255204 (`12) 1 2 um i e 2M 1 ( M ) V ( x) U M 2 M M M 0 2 quantum fluctuation external force two-body interaction

Application of SVM Koide&Kodama, JPA45, 255204 (`12) 2 2 i t V U0 2M Gross-Pitaevskii equation BEC Nucleation

Stochastic Representation of Action Classical action We consider 3) b 2 m dr () t Icla dt V ( r ( t)) 2 dt a For example 1) Dr Dr 2 dr 2) Dr Dr dt Dr Dr Dr Dr 3) 2 Stochastic action I sto b a dte m ( Dr ) ( Dr ) 2 2 2 2 V ( r)

Koide, JP Conf. 410, 012025 (`13) Replacement of kinetic terms The general expression of dr ( R, t) / dt 2 is given by 2 2 A Dr B Dr C Dr Dr For noise=0, the classical kinetic term should be reproduced. dr ( R, t) / dt 2 1 1 1 1 2 1 2 2 2 2 2 2 Dr 1 Dr 2 Dr Dr The calculation so far corresponds to ( 1, 2) ( 0,1/ 2).

Koide, JP Conf. 410, 012025 (`13) Replacement of kinetic terms The general expression of dr ( R, t) / dt 2 is given by 2 2 A Dr B Dr C Dr Dr For noise=0, the classical kinetic term should be reproduced. dr ( R, t) / dt 2 1 1 1 1 2 1 2 2 2 2 2 2 Dr 1 Dr 2 Dr Dr The calculation so far corresponds to ( 1, 2) ( 0,1/ 2). If 1 is not zero, the time-reversal sym. is violated (NSF eq.).

Forward B A Direction of time

backward B A Direction of time

B A Direction of time See also the Bernstein process.

Quantum-Classical hybrids

Zurek, Physics Today 44, 36 (`91) Near the boundary, we can expect a coexistence of Class. and Quan. degrees of freedom.

Quantum measurement Quantum-to-classical transition in early universe Einstein gravity interacting with quantum objects Simplification of complex simulation of quantum chemistry Models of quantum-classical hybrids should satisfy, Energy conservation Positivity of probability Newton equation + Schrödinger equation in no int. V=0. Most of proposed models cannot satisfy these conditions.

Quantum Two Particles Lagrangian 2 2 2 2 M ( Drq) ( Drq) m ( Drq ) ( Drq ) L E V ( rq, rq ) 2 2 2 2 drq vdt dw M Stochastic variables drq udt dw m '

Hybrid Lagrangian L 2 2 2 2 M ( ) ( ) ( ) ( ) c Drc Dr mq Dr c q Dr q E V( rc, rq ) 2 2 2 2 Classical variable Stochastic variable dr v dt c c dr q udt dw m

Classical Variation d 1 q( rc, xq, t) q vc ( rc, xq, t) cv ( rc, xq ) dt m M t r ( x, t) x ds v ( r ( x, s), x, s) c q c0 c c q q t 0 Stochastic Variation d M i t V t dt 2m 2 2 2 q( rc, xq, ) q ( rc, xq ) vc ( rc, xq, t) q( rc, xq, ) i ( r, x, t) c q ( r, x, t) ( x, t) e q c q q Koide, PLA379 2007 (2015)

It was confirmed Check list by Caro, Diósi, Elze et al. O.K. Energy conservation Stochastic Noether theorem O.K. Positivity of probability O.K. Newton equation + Schrödinger equation in no int. V=0. O.K. Generalized Ehrenfest theorem Other successful models, Hall&Reginatto, PRA72, 062109 (`05) Elze, PRA85, 052109 (`12);Lampo et al., PRA90, 042120 (`14), Radonji et al., PRA85, 064101 (`12)

Local, realism Non-local, realism Takabayasi Hydrodynamic Representation EPR paradox Madelung de Broglie Bohm Vigier Nelson-Newton Equation SVM Schödinger Eddington Nelson Yasue Stochastic Quantization Parisi Wu Namiki AdS/CFT Micro-canonical Quantization Chaotic Quantization

Nelson s Stochastic Quantization SVM is the reformulation of Nelson s approach in the framework of a variational principle. In the original Nelson s approach, quantization indicates m 2 d x ( ) 2 xv x dt REPLACE m Nelson-Newton equation DDx DDx 2 x V ( x)

Nelson s Stochastic Quantization SVM is the reformulation of Nelson s approach in the framework of a variational principle. In the original Nelson s approach, quantization indicates m 2 d x ( ) 2 xv x dt REPLACE m Nelson-Newton equation DDx DDx 2 x V ( x) In SVM, this is obtained by the optimization of action.

Svaiter, Menezes, Alcalde, Tópicos em teoria quântica dos campos Parisi-Wu s Stochastic Quan.(I) Wick rotation S[ ] Damgaard&Hueffel, PR. 152, 227 (`87) Krein et al., IJMP A29, 1450030 (`14) S [ ] E Intro. of a virtual time 4 D 4+1 D ( x ) E ( x, ) E We consider the stochastic motion in this virtual time, SDE SE[ ] d( xe, ) d 2 dw ( xe, ) ( x, ) E Wiener Process

Parisi-Wu s Stochastic Qua.(II) For the free case, 1 S d k k k m k 2 4 2 2 E[ ] E( E, ) E ( E, ) we can solve the SDE as 2 2 2 kem kem 2 ( s) E 0 ( k, ) e ( k,0) ds 2e E dw ( ke, s) ds Propagator G( k, p ) lim E ( k, ) ( p, ') E E E E ' 4 (4) (2 ) ( ke pe) k 1 m 2 2 E

These successes are just accidental? As a pedagogical review, Koide, Kodama&Tsushima, JP Conf. 626, 012055 (`15) http://iopscience.iop.org/1742-6596/626/1