State Complexity of Union and Intersection of Binary Suffix-Free Languages

Similar documents
Regular languages refresher

Regular expressions, Finite Automata, transition graphs are all the same!!

Nondeterministic Biautomata and Their Descriptional Complexity

Non-Deterministic Finite Automata. Fall 2018 Costas Busch - RPI 1

Theory of Computation Regular Languages. (NTU EE) Regular Languages Fall / 38

Nondeterministic Automata vs Deterministic Automata

Worked out examples Finite Automata

Theory of Computation Regular Languages

Non Deterministic Automata. Linz: Nondeterministic Finite Accepters, page 51

AUTOMATA AND LANGUAGES. Definition 1.5: Finite Automaton

NFA and regex. the Boolean algebra of languages. non-deterministic machines. regular expressions

Nondeterministic Finite Automata

Deterministic Finite Automata

Synchronizing Automata with Random Inputs

Finite-State Automata: Recap

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

NON-DETERMINISTIC FSA

Hybrid Systems Modeling, Analysis and Control

Anatomy of a Deterministic Finite Automaton. Deterministic Finite Automata. A machine so simple that you can understand it in less than one minute

Fundamentals of Computer Science

CHAPTER 1 Regular Languages. Contents. definitions, examples, designing, regular operations. Non-deterministic Finite Automata (NFA)

1. For each of the following theorems, give a two or three sentence sketch of how the proof goes or why it is not true.

Running an NFA & the subset algorithm (NFA->DFA) CS 350 Fall 2018 gilray.org/classes/fall2018/cs350/

Prefix-Free Regular-Expression Matching

a,b a 1 a 2 a 3 a,b 1 a,b a,b 2 3 a,b a,b a 2 a,b CS Determinisitic Finite Automata 1

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution

Let's start with an example:

Lecture 08: Feb. 08, 2019

CISC 4090 Theory of Computation

Finite State Automata and Determinisation

Minimal DFA. minimal DFA for L starting from any other

Lecture 6 Regular Grammars

Converting Regular Expressions to Discrete Finite Automata: A Tutorial

Deterministic Finite-State Automata

Petri Nets. Rebecca Albrecht. Seminar: Automata Theory Chair of Software Engeneering

CONTROLLABILITY and observability are the central

CS 573 Automata Theory and Formal Languages

CHAPTER 1 Regular Languages. Contents

Myhill-Nerode Theorem

Chapter 2 Finite Automata

Operations on Unambiguous Finite Automata

Formal Language and Automata Theory (CS21004)

Quotient Complexity of Ideal Languages

Speech Recognition Lecture 2: Finite Automata and Finite-State Transducers. Mehryar Mohri Courant Institute and Google Research

Regular Expressions (RE) Regular Expressions (RE) Regular Expressions (RE) Regular Expressions (RE) Kleene-*

CS 301. Lecture 04 Regular Expressions. Stephen Checkoway. January 29, 2018

CMPSCI 250: Introduction to Computation. Lecture #31: What DFA s Can and Can t Do David Mix Barrington 9 April 2014

Descriptional Complexity of Non-Unary Self-Verifying Symmetric Difference Automata

CMSC 330: Organization of Programming Languages

Java II Finite Automata I

Chapter 1, Part 1. Regular Languages. CSC527, Chapter 1, Part 1 c 2012 Mitsunori Ogihara 1

Harvard University Computer Science 121 Midterm October 23, 2012

Non-deterministic Finite Automata

Chapter Five: Nondeterministic Finite Automata. Formal Language, chapter 5, slide 1

Homework 3 Solutions

On Determinisation of History-Deterministic Automata.

NFAs continued, Closure Properties of Regular Languages

Finite Automata-cont d

Nondeterminism. Nondeterministic Finite Automata. Example: Moves on a Chessboard. Nondeterminism (2) Example: Chessboard (2) Formal NFA

Prefix-Free Subsets of Regular Languages and Descriptional Complexity

Non-Deterministic Finite Automata

Assignment 1 Automata, Languages, and Computability. 1 Finite State Automata and Regular Languages

Regular Languages and Applications

Lecture 09: Myhill-Nerode Theorem

Speech Recognition Lecture 2: Finite Automata and Finite-State Transducers

Automata Theory 101. Introduction. Outline. Introduction Finite Automata Regular Expressions ω-automata. Ralf Huuck.

Formal Languages and Automata

NFAs and Regular Expressions. NFA-ε, continued. Recall. Last class: Today: Fun:

Designing finite automata II

= state, a = reading and q j

Grammar. Languages. Content 5/10/16. Automata and Languages. Regular Languages. Regular Languages

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER MACHINES AND THEIR LANGUAGES ANSWERS

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. NFA for (a b)*abb.

Non Deterministic Automata. Formal Languages and Automata - Yonsei CS 1

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. Comparing DFAs and NFAs (cont.) Finite Automata 2

CMSC 330: Organization of Programming Languages. DFAs, and NFAs, and Regexps (Oh my!)

Today s Topics Automata and Languages

Automata and Languages

CSCI565 - Compiler Design

CSCI 340: Computational Models. Kleene s Theorem. Department of Computer Science

NFA DFA Example 3 CMSC 330: Organization of Programming Languages. Equivalence of DFAs and NFAs. Equivalence of DFAs and NFAs (cont.

Non-deterministic Finite Automata

Exercises Chapter 1. Exercise 1.1. Let Σ be an alphabet. Prove wv = w + v for all strings w and v.

Nondeterminism and Nodeterministic Automata

In-depth introduction to main models, concepts of theory of computation:

First Midterm Examination

CS415 Compilers. Lexical Analysis and. These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University

First Midterm Examination

Automata and Languages

DFA Minimization and Applications

CS:4330 Theory of Computation Spring Regular Languages. Equivalences between Finite automata and REs. Haniel Barbosa

CS375: Logic and Theory of Computing

1 From NFA to regular expression

NFAs continued, Closure Properties of Regular Languages

CSC 311 Theory of Computation

Finite Automata. Informatics 2A: Lecture 3. Mary Cryan. 21 September School of Informatics University of Edinburgh

Finite Automata. Informatics 2A: Lecture 3. John Longley. 22 September School of Informatics University of Edinburgh

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Compression of Palindromes and Regularity.

Closure Properties of Regular Languages

Transcription:

Stte Complexity of Union nd Intersetion of Binry Suffix-Free Lnguges Glin Jirásková nd Pvol Olejár Slovk Ademy of Sienes nd Šfárik University, Košie 0000 1111 0000 1111 Glin Jirásková nd Pvol Olejár Binry Suffix-Free Lnguges

Outline DFAs nd NFAs Miniml Automt Suffix Free Lnguges Desriptionl Complexity of Intersetion nd Union Summry nd Open Prolems Glin Jirásková nd Pvol Olejár Binry Suffix-Free Lnguges

Deterministi nd Nondeterministi Finite Automt Exmple (DFA A = (Q,Σ,δ,s,F)) A 0 1 2 Q = {0,1,2} Σ = {,} δ : Q Σ Q s = 0 F = {0,2} (omplete) L(A) = {w {,} the numer of s in w is even} Exmple (NFA M 3 = (Q,Σ,δ,s,F)) M 3, 0 Q = {0,1,2,3} Σ = {,} δ : Q Σ 2 Q s = 0, 1 2, F = {3} (ε-free, single initil stte) L 3 = {w {,} w ontins n in the third position from the end} 3 Glin Jirásková nd Pvol Olejár Binry Suffix-Free Lnguges

Miniml Deterministi Finite Automt Automt A nd B re equivlent if L(A) = L(B). A df A is miniml if every equivlent df hs t lest s mny sttes s A. Exmple A 0 1 2 L(A) = {w {,} # (w) is even} B 0 1 2 L(A) = L(B) 3, Glin Jirásková nd Pvol Olejár Binry Suffix-Free Lnguges

Miniml Deterministi Finite Automt Automt A nd B re equivlent if L(A) = L(B). A df A is miniml if every equivlent df hs t lest s mny sttes s A. Exmple A 0 1 2 L(A) = {w {,} # (w) is even} B 0 1 2 L(A) = L(B) 3, Glin Jirásková nd Pvol Olejár Binry Suffix-Free Lnguges

Miniml Deterministi Finite Automt Automt A nd B re equivlent if L(A) = L(B). A df A is miniml if every equivlent df hs t lest s mny sttes s A. Exmple A 0 1 2 L(A) = {w {,} # (w) is even} Theorem A df is miniml if (1) eh stte is rehle, (2) no two sttes re equivlent. 0 1 The miniml df epting L(A). Glin Jirásková nd Pvol Olejár Binry Suffix-Free Lnguges

Miniml Deterministi Finite Automt Automt A nd B re equivlent if L(A) = L(B). A df A is miniml if every equivlent df hs t lest s mny sttes s A. Exmple A 0 1 2 L(A) = {w {,} # (w) is even} The stte omplexity of L is the numer of sttes in the miniml DFA for L. 0 1 The stte omplexity of L(A) is 2. Glin Jirásková nd Pvol Olejár Binry Suffix-Free Lnguges

Fooling-Set Lower-Bound Method A set of pirs of strings {(x 1,y 1 ),(x 2,y 2 ),...,(x n,y n )} is fooling set for L, if (F1) x i y i L for ll i, (F2) if i j, then x i y j / L or x j y i / L. Glin Jirásková nd Pvol Olejár Binry Suffix-Free Lnguges

Fooling-Set Lower-Bound Method A set of pirs of strings {(x 1,y 1 ),(x 2,y 2 ),...,(x n,y n )} is fooling set for L, if (F1) x i y i L for ll i, (F2) if i j, then x i y j / L or x j y i / L. Exmple Σ = {,,m,n} L = n(m+) A = {( ε,nm), ( n, m ), ( n, m )} is fooling set for L. Glin Jirásková nd Pvol Olejár Binry Suffix-Free Lnguges

Fooling-Set Lower-Bound Method A set of pirs of strings {(x 1,y 1 ),(x 2,y 2 ),...,(x n,y n )} is fooling set for L, if (F1) x i y i L for ll i, (F2) if i j, then x i y j / L or x j y i / L. Lemm (Aho 83, Birget 92) If A is fooling set for L, then every NFA epting L hs t lest A sttes. Exmple Σ = {,,m,n} L = n(m+) A = {( ε,nm), ( n, m ), ( n, m )} is fooling set for L. The nondeterministi stte omplexity of L is 3. Glin Jirásková nd Pvol Olejár Binry Suffix-Free Lnguges

Cross-Produt Automton for Intersetion nd Union Given DFAs A = (Q A,Σ,δ A,s A,F A ) B = (Q B,Σ,δ B,s B,F B ) their ross-produt utomton is (Q,Σ,δ,s,F) with Q = Q A Q B δ((p,q),) = (δ A (p,),δ B (q,)) s = (s A,s B ) F = F A F B for intersetion F = (F A Q B ) (Q A F B ) for union Exmple (Σ = {,,m,n}) A B n m q, 1 q 2 q 3 q 4 m,n L(A) L(B) = { nm } ded p 1 q 2 p 1 q 3 p 1 q 4 p 1 d p 2 q 1 p 2 q 2 p 2 q 3 p 2 q 4 p 2 d m,m p p 3 p 3 q 3 q q m 1 3 p 3 q,m 2 4 p 3 d m,n d q 1 m,,,m,n p n n, 1 p 2 p 3 ded,,m,n p q 1 1 n m q q q, d 2 d 3 d 4 d d m,n,,m,n Glin Jirásková nd Pvol Olejár Binry Suffix-Free Lnguges

Cross-Produt Automton for Intersetion nd Union Given DFAs A = (Q A,Σ,δ A,s A,F A ) B = (Q B,Σ,δ B,s B,F B ) their ross-produt utomton is (Q,Σ,δ,s,F) with Q = Q A Q B δ((p,q),) = (δ A (p,),δ B (q,)) s = (s A,s B ) F = F A F B for intersetion F = (F A Q B ) (Q A F B ) for union Exmple (Σ = {,,m,n}) A B L(A) n m q, 1 q 2 q 3 q 4 m,n ded = n(m+)* n*m p 1 q 2 p 1 q 3 p 1 q 4 p 1 d p 2 q 1 p 2 q 2 p 2 q 3 p 2 q 4 p 2 d m,m p 3 q 1 p 3 q m 2 p 3 q 3 p 3 q,m 4 p 3 d m,n d q 1 m,,,m,n p n n, 1 p 2 p 3 ded,,m,n p q 1 1 n L(B) m q 2 q, d d 3 d q 4 d d m,n,,m,n Glin Jirásková nd Pvol Olejár Binry Suffix-Free Lnguges

Outline Suffix Free Lnguges Desriptionl Complexity of Intersetion nd Union Summry nd Open Prolems Glin Jirásková nd Pvol Olejár Binry Suffix-Free Lnguges

Suffix-Free Regulr Lnguges A regulr lnguge L is suffix-free if there re no two different strings u nd v in L suh tht u= wv. Exmple m,,,m,n n n, A p 1 p 2 p 3 ded,,m,n L(A) = n(m+)* B n m q, 1 q 2 q 3 q 4 m,n ded L(B) = n*m Theorem (Hn, Slom 2008) In the miniml (omplete) DFA for suffix free lnguge, there is ded stte; no trnsition goes to the initil stte. Glin Jirásková nd Pvol Olejár Binry Suffix-Free Lnguges

Stte Complexity of Opertions on Suffix-Free Lnguges (Hn, Slom 2008) Opertion Suffix-Free Σ Regulr Σ L 2 n 2 + 1 4 2 n 1 + 2 n 2 2 L R 2 n 2 + 1 3 2 n 2 K L (m 1)2 n 2 + 1 4 (m 1)2 n + 2 n 1 2 K L mn 2(m + n) + 6 3 mn 2 K L mn (m + n) + 2 5 mn 2 Glin Jirásková nd Pvol Olejár Binry Suffix-Free Lnguges

Binry Worst-Cse Exmples Exmple (Str, Mslov 1970) 1 2 3... n 1 n 2 n 1 + 2 n 2 Exmple (Reversl, Leiss 1981) 1 2 3... n 1 n 2 n Exmple (Contention) 1 2 3... m 1 m 1 2 3... n 1 n (m 1)2 n + 2 n 1 Exmple (Union, Mslov 1970) 1 2 3... m 1 m 1 2 3... n 1 n mn Glin Jirásková nd Pvol Olejár Binry Suffix-Free Lnguges

Stte Complexity of Opertions on Suffix-Free Lnguges Opertion Suffix-Free Σ Regulr Σ L 2 n 2 + 1 4 2 n 1 + 2 n 2 2 L R 2 n 2 + 1 3 2 n 2 K L (m 1)2 n 2 + 1 4 (m 1)2 n + 2 n 1 2 K L mn 2(m + n) + 6 3 mn 2 K L mn (m + n) + 2 5 mn 2 A B m,,,m,n p n n, 1 p 2 p 3 ded,,m,n n m q, 1 q 2 q 3 q 4 m,n Upper ounds on ded L(A) L(B) nd L(A) L(B) p q p 1 q 2 p 1 q 3 p 1 q 1 1 4 p 1 d n p 2 q 1 p 2 q 2 p 2 q 3 p 2 q 4 p 2 d m,m p p 3 p 3 q 3 q q m 1 2 3 p 3 q,m 4 p 3 d m,n m d q q q q, 1 d 2 d 3 d 4 d d m,n,,m,n Glin Jirásková nd Pvol Olejár Binry Suffix-Free Lnguges

Our Results on Binry Suffix-Free Regulr Lnguges Theorem (Stte omplexity of intersetion) The upper ound mn 2(m + n) + 6 on the stte omplexity of intersetion of suffix-free lnguges is tight in the inry se. Theorem (Stte omplexity of union) The upper ound mn (m + n) + 2 on the stte omplexity of union of suffix-free lnguges is tight in the inry se. Proof. Witness lnguges for oth opertions:, 1 2 3 4... m 1 m 1 2, 3, 4,,... n 1 n, Glin Jirásková nd Pvol Olejár Binry Suffix-Free Lnguges

Our Results on Binry Suffix-Free Regulr Lnguges II Theorem (Nondeterministi stte omplexity of intersetion) The nondeterministi stte omplexity of intersetion of inry suffix-free lnguges is mn (m + n) + 2. 1 2 3... m 1 m 1 2, 3,,..., n 1 n Theorem (Nondeterministi stte omplexity of union) The nondeterministi stte omplexity of union of inry suffix-free lnguges is m + n 1. 1 2... m 1 m 1 2... n 1 n Glin Jirásková nd Pvol Olejár Binry Suffix-Free Lnguges

Intersetion nd Union of Suffix-Free Lnguges: Not Only Worst Cses Miniml suffix free Miniml suffix free m stte DFA for K n stte DFA for L Miniml DFA for K L ( for K L )??? sttes Glin Jirásková nd Pvol Olejár Binry Suffix-Free Lnguges

Intersetion nd Union of Suffix-Free Lnguges: Not Only Worst Cses Miniml suffix free Miniml suffix free Miniml suffix free Miniml suffix free m stte DFA for K n stte DFA for L m stte NFA for K n stte NFA for L Miniml DFA for K L ( for K L )??? sttes Miniml NFAs for K L ( for K L )??? sttes Glin Jirásková nd Pvol Olejár Binry Suffix-Free Lnguges

Intersetion nd Union of Suffix-Free Lnguges: Not Only Worst Cses Miniml suffix free Miniml suffix free Miniml suffix free Miniml suffix free m stte DFA for K n stte DFA for L m stte NFA for K n stte NFA for L Miniml DFA for K L ( for K L )??? sttes Theorem (Deterministi se) The size of miniml DFA for K L my e 1,2,...,mn 2(m + n) + 6 for ternry lphet. The size of miniml DFA for K L my e 1,2,...,mn 2(m + n) + 6 for ternry lphet. Miniml NFAs for K L ( for K L )??? sttes Theorem (Nondeterministi se) The size of miniml NFA for K L my e 1,2,...,mn (m + n) + 2 for four-letter lphet. The size of miniml NFA for K L my e 2,3,...,m + n 1 for ternry lphet. Glin Jirásková nd Pvol Olejár Binry Suffix-Free Lnguges

Outline Summry nd Open Prolems Glin Jirásková nd Pvol Olejár Binry Suffix-Free Lnguges

Summry nd Open Prolems Our Results on Binry Suffix-Free Lnguges: Binry Suffix-Free Binry Regulr s(intersetion) mn 2(m + n) + 6 mn s(union) mn (m + n) + 2 mn ns(intersetion) mn (m + n) + 2 mn ns(union) m + n 1 m + n + 1 Are There Any Holes? s Σ ns Σ K L 1..mn 2(m + n) + 6 3 1..mn (m + n) + 2 4 K L 1..mn 2(m + n) + 6 3 2..m + n 1 3 Glin Jirásková nd Pvol Olejár Binry Suffix-Free Lnguges

Thnk You for Your Attention Glin Jirásková nd Pvol Olejár Binry Suffix-Free Lnguges