Why ultracold molecules?

Similar documents
Ultracold molecules - a new frontier for quantum & chemical physics

POLAR MOLECULES NEAR QUANTUM DEGENERACY *

P R L HYSICAL EVIEW ETTERS. Articles published week ending 22 JUNE Volume 98, Number 25. Published by The American Physical Society

Cold Molecules and Controlled Ultracold Chemistry. Jeremy Hutson, Durham University

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

Lecture 3. Bose-Einstein condensation Ultracold molecules

Confining ultracold atoms on a ring in reduced dimensions

Probing the Variation of Fundamental Constants with Polar Molecule Microwave Spectroscopy

Lecture 4. Feshbach resonances Ultracold molecules

YbRb A Candidate for an Ultracold Paramagnetic Molecule

Optical Atomic Clock & Absolute-Zero Chemistry Probing Quantum Matter with Precision Light

Cold fermions, Feshbach resonance, and molecular condensates (II)

arxiv:physics/ v1 [physics.atom-ph] 7 Jun 2003

The Search for the Electron Electric Dipole Moment at JILA

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

NanoKelvin Quantum Engineering

COPYRIGHTED MATERIAL. Index

1. Cold Collision Basics

Experiments with Stark decelerated and trapped OH radicals

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Deceleration and trapping of heavy diatomic molecules for precision tests of fundamental symmetries. Steven Hoekstra

A study of the BEC-BCS crossover region with Lithium 6

Experiments with an Ultracold Three-Component Fermi Gas

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks

Fluids with dipolar coupling

Probing P & T-violation Beyond the Standard Model. Aaron E. Leanhardt

Raman-Induced Oscillation Between an Atomic and Molecular Gas

Studies of Ultracold. Ytterbium and Lithium. Anders H. Hansen University of Washington Dept of Physics

Ytterbium quantum gases in Florence

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

DECELERATION OF MOLECULES

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11

An optical frequency comb is generated by use. Internal State Cooling With a Femtosecond Optical Frequency Comb S. MALINOVSKAYA, V. PATEL, T.

Ultracold atoms and molecules

NanoKelvin Quantum Engineering. Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Ultracold Molecules and Cold Controlled Chemistry. Roman Krems University of British Columbia

Evidence for Efimov Quantum states

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

A few issues on molecular condensates

Direct Cooling of Molecules

Quantum superpositions and correlations in coupled atomic-molecular BECs

Cold Polar Molecules and their Applications for Quantum Information H.P. Büchler

Observation of Feshbach resonances in ultracold

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti

From laser cooling to BEC First experiments of superfluid hydrodynamics

Quantum Computation with Neutral Atoms Lectures 14-15

Microwave and optical spectroscopy in r.f. traps Application to atomic clocks

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

Workshop on Topics in Quantum Turbulence March Experiments on Bose Condensates

Cold molecule studies of OH, NH, and metastable CO

Lecture 11, May 11, 2017

Quantum Computing with neutral atoms and artificial ions

Ion trap quantum processor

Production of cold formaldehyde molecules for study and control of chemical reaction dynamics with hydroxyl radicals

Laser Cooling of Thulium Atoms

Universal Aspects of Dipolar Scattering Christopher Ticknor. May 15 at INT UNCLASSIFIED

Quantum Computation with Neutral Atoms

Quantum computation with trapped ions

Optical Lattice Clock with Spin-1/2 Ytterbium Atoms. Nathan D. Lemke

Quantum Mechanica. Peter van der Straten Universiteit Utrecht. Peter van der Straten (Atom Optics) Quantum Mechanica January 15, / 22

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality

Laser induced manipulation of atom pair interaction

Titelmasterformat durch Klicken bearbeiten

Manipulating Rydberg atoms and molecules in the gas phase and near chip surfaces

Dipolar Fermi gases. Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam. Outline

arxiv: v1 [quant-ph] 21 Apr 2009

Prospects for application of ultracold Sr 2 molecules in precision measurements

1. Introduction. 2. New approaches

Quantum Logic Spectroscopy and Precision Measurements

A Mixture of Bose and Fermi Superfluids. C. Salomon

spectroscopy of cold molecular ions

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Generation of a synthetic vector potential in ultracold neutral Rubidium

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Bose-Bose mixtures in confined dimensions

Physics and Chemistry with Diatomic Molecules Near Absolute Zero. Tanya Zelevinsky & ZLab Columbia University, New York

Physics with Cold Molecules Using Buffer Gas Cooling

Dipolar Interactions and Rotons in Atomic Quantum Gases. Falk Wächtler. Workshop of the RTG March 13., 2014

(Noise) correlations in optical lattices

Design and realization of exotic quantum phases in atomic gases

A pulsed, low-temperature beam of supersonically cooled free radical OH molecules

PROGRESS TOWARDS CONSTRUCTION OF A FERMION ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

Bose-condensed and BCS fermion superfluid states T ~ nano to microkelvin (coldest in the universe)

A Mixture of Bose and Fermi Superfluids. C. Salomon

K two systems. fermionic species mixture of two spin states. K 6 Li mass imbalance! cold atoms: superfluidity in Fermi gases

arxiv: v1 [physics.atom-ph] 30 Jul 2018

Introduction to cold atoms and Bose-Einstein condensation (II)

Development of a compact Yb optical lattice clock

Decelerating and Trapping Large Polar Molecules

From Optical Pumping to Quantum Gases

arxiv: v1 [physics.atom-ph] 20 Oct 2011

Effects of electric static and laser fields on cold collisions of polar molecules. Roman Krems University of British Columbia

Cold Atoms, Cold Molecules and Optics On Chips (AMO Chips) N. P. Bigelow University of Rochester

Cold and Slow Molecular Beam

Hyperfine structure in photoassociative spectra of 6 Li 2 and 7 Li 2

Mitigation of loss within a molecular Stark decelerator

Durham Research Online

Cold SO 2 molecules by Stark deceleration

Les Houches 2009: Metastable Helium Atom Laser

Numerical Simulations of Faraday Waves in Binary Bose-Einstein Condensates

Transcription:

Cold & ultracold molecules new frontiers J. Ye, JILA Michigan Quantum Summer School, Ann Arbor, June 18, 2008 Quantum dipolar gas Precision test QED ee- eehco OH H2O H2CO Quantum measurement Chemical reactions

Why ultracold molecules? J. Doyle et al., Eur. Phys. J. D 31, 149 (2004). Electric dipole moments: Orientation is a big deal! E + - + A. Avdeenkov and J. L. Bohn, Phys. Rev. Lett. 90, 043006 (2003). + - R - Manifested at or below µk temperatures

Ultracold molecules a hard challenge A diatomic molecule is a molecule with one atom too many! Nobel Laureate Arthur Schawlow, co-inventor of laser and co-founder of laser spectroscopy Atoms Basketball 2> 1> Molecules American football

Ways to make cold polar molecules Pairing ultracold atoms (Magneto-Photo-association) Direct cooling of ground-state molecules Buffer gas cooling Stark or magnetic slowing

Ultracold molecules: quantum physics Quantum information (strong dipolar interactions, long coherence time) Quantum degeneracy (e.g. BEC) (anisotropic interactions) Dipolar phase transition (Condensed matter system) DeMille, Phys. Rev. Lett. 88, 067901 (2002). H.P. Buchler et al., PRL 98, 060404 (2007). T. Koch et al., Nature Phys. 4, 218 (2008). Micheli, Brennen, Zoller, Nature Physics 2, 341 (2006).

Dipolar quantum gas Long range Orientation-specific interactions - + + - + - + - + - - + Cigar BEC Pancake BEC

Ultracold molecules: Test fundamental principles Excited electronic state Ultrahigh resolution spectroscopy Standards One system, in wide spectral ranges Molecular interferometry Precision measurement two different fundamental forces! Ground electronic state Electronic ~ α QED e- e- e- e- Vibration ~ m e /m p (mass on a spring) Strong interactions

Ultracold molecules: Precision Chemistry OH + HBr H 2 O + Br Reaction rate vs. temp. Controlled molecular collisions Ultracold chemical reactions Molecules in single quantum states, under precise control, for internal & external motions OH Stereo-Chemistry Electric field HCO Unprecedented study of fundamentally important reactions (Dial the rates): OH + HBr, OH + H 2 CO, CN + O 2, OH + NO, OH + OH, CN + NH 3, OH + H H 2 CO H 2 O Higher reaction rate at lower temperature (10 K, importance for interstellar chemistry)

Quantum gas of polar molecules

Towards quantum gas of polar molecules Feshbach molecule creation + Coherent two-photon state transfer Single initial quantum state Weakly bound, non-polar Single final quantum state Deeply bound, polar Dense ultracold deeply bound molecules (T ~ 100nK, n ~ 10 12 /cm 3 )

Magnetic-field Feshbach resonance Field-tunable scattering resonance Bound state in channel 2 B Colliding atoms (continuum states) in channel 1 Channels coupled by hyperfine interaction

KRb Feshbach molecules Near-degenerate mixture of 40 K & 87 Rb (T ~100 nk) RF association of molecules Binding energy (MHz) -10-15 -20-25 0 Universal binding energy Experiment K 9/2,-7/2> Coupled channel -5 RF photon ~80MHz K 9/2,-9/2> h E b = 2µ a -30 536 538 540 542 544 546 Magnetic Field (G) 2 2 Number (10 3 ) 40 30 20 10 K 9/2,-7/2>+Rb 1,1> K 9/2,-9/2>+Rb 1,1> -E B /h E/h 0-200 -100 0 100 200 ν (khz)

Ultracold trapped KRb position (µm) 40 20 0-20 -40-60 f radial = 174(3) Hz Oscillations inside trap 0 5 10 15 20 time (ms) 0 ms 1 ms 3 ms rms cloud size (µm) Confined in an optical trap 60 50 40 30 20 10 3 x 10 4 molecules Density ~10 12 /cm 3 Expansion from the optical trap T=200(80)nK 6 ms 0 0 2 4 6 8 10 12 expansion time (ms)

Fermionic molecule collisional properties Zirbel et al., Phys. Rev. Lett. 100, 143201 (2008). Collisional processes: Fermionic 40 K Molecule-molecule collisions Atom-molecule collisions Bosonic 87 Rb Suppressed at ultralow temperatures (fermionic character) Bosonic enhancement Ferminoic suppression Distinguishable particles

KRb photoassociation efficiency single quantum state vs. continuum atom / molecule number (10 4 ) 16 14 12 10 8 6 4 2 0 mol. number x2 time x100 atom photoassociation τ Α =2.5(1.1)ms molecule photoassociation τ Μ =3.9(7)µs 0 2 4 6 8 10 time(ms)

Two photon spectroscopy a 3 Σ + (v= 3) Feshbach molecules E B /h=-270khz EIT/Townes doublet

Coherent Transfer - STIRAP Ospelkaus et al., Nature Physics, in press (2008). -10.49238 GHz 84% transfer efficiency

KRb potentials

Frequency comb-assisted transfer Sr2 ν 1 Julienne Kotochigova ν 2 ν 2 ν 1 ν Reaching Reached A 1 Σ a 3 (v=0) Σ + (v=0) Stwalley, Eur. Phys. J. D 31, 221-225 (2004)

Where are we? Efficient coherent transfer, > 7 THz in a single step v = 0 (J = 0) in 3 Σ, N = 2 x 10 4, n = 10 12 /cm 3, No heating, 300 nk, T/T F = 3 Experimentally observed dipole moment ~0.1 Debye Expect to reach v = 0 in 1 Σ, (120 THz), ~ 1 Debye Introduce anisotropic & long-range interactions

Frequency comb spectroscopy Thorpe et al., Science 311, 1595 (2006); Opt. Exp. 16, 2387 (2008). Absorption (x10-6 cm -1 ) 4 3 2 1 0 1.50 H 2 O CO 2 CH 4 H 2 O 1.55 1.60 1.65 Wavelength (µm) 1.70

Tomography of all degrees of freedom Thorpe and Ye, Appl. Phys. B 91, 397 (2008). Ro-vibration distribution & Translational temp. Pulsed valve Molecules + Kr

Cold ground-state molecules (from precision measurement to cold molecular collisions)

Test of fundamental constants α: fine structure constant Modern epoch Blatt et al., Phys. Rev. Lett. 100, 140801 (2008). Paris Clock measurements are consistent with zero α/α = -3.3 (3.0) x 10-16 /yr Early universe Not so clear Webb et al., PRL 87, 091301 (2001). Astron. Astrophys. 415, L7 (2004). Conflicting results

Cold OH molecules to constrain α / α F = 2 F = 1 Hyperfine interactions ~ α 4 OH megamasers 2 Π 3/2 Lambda doubling ~ α 0.4 F= 2 F= 1 High redshift z > 1 Darling, Phys. Rev. Lett 91, 011301 (2003). Chengalur et al., Phys. Rev. Lett. 91, 241302 (2003). Kanekar et al., Phys. Rev. Lett. 93, 051302 (2004). Multiple transitions from the same gas cloud (Self check on systematics)

Molecular electronic state labeling Heteronuclear diatomic molecules possess only axial symmetry - different good quantum numbers than for atoms J L Ω Λ S Σ N Ω = Λ + Σ J = Ω + N Electronic potentials are labeled as 2Σ+1 Λ Ω - Σ, Π,,... states for Λ = 0, 1, 2,... (i.e., 2 Π 3/2 state has Λ=1, Σ=1/2, Ω=3/2) Good quantum # s are Λ, Σ, Ω, J, m J (or just Ω, J, m J )

Basic energy structure of OH F = 2 2 Σ 1/2Pump: 282 nm F = v = 11 Basics: 2 Π 3/2 Frank-Condon ~ 72% -Ground State 2 Π 3/2 2 Π 1/2 F= 2 F= 1 v = 0 Detect: 313 nm v = 1 2 Π 3/2 v = 0 -λ doublet spacing ~1 GHz - Electric dipole (1.67 D) - magnetic moment (µ B )

Stark deceleration Direct manipulation of ground state molecules v v + Electrode Cooling by supersonic expansion (~ 1 K in a moving frame) F net p + - p + - Phase space selection (~ 10 mk) Applicable to a large variety of molecules Energy - Position Electrode Bethlem, Berden, Meijer, Phys. Rev. Lett. 83 1558 (1999).

Stark Decelerator Slower electrodes Stark energy Position

Experiment & Theory φ o = 0 o OH LIF Signal [arb.u.] data simulations 2.0 2.5 3.0 Time from discharge [ms]

Slowed molecular packet 3500 3000 φ o = 0 o, 380 m/s φ o = 10 o, 312 m/s 2500 OH LIF signal 2000 1500 1000 500 0 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 Time from Discharge (ms)

Slowed molecular packet 3500 3000 2500 φ o = 0 o, 380 m/s φ o = 10 o, 312 m/s φ o = 20 o, 224 m/s OH LIF signal 2000 1500 1000 500 0 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 Time from Discharge [ms]

Cold ground-state molecules Bochinski, Hudson, Lewandowski, Meijer, Ye, Phys. Rev. Lett. 91, 243001 (2003). Hudson et al., Phys. Rev. A 73, 063404 (2006). 1.00 370 m/s v OH OH density (arb.) 0.75 0.50 0.25 0.00 336 m/s 300 m/s 259 m/s 211 m/s φ 0 = 0 0 20 0 30 0 40 0 80 0 148 m/s 33 m/s Density: 10 5 10 7 /cm 3 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 Time (ms) φ H 2 CO 550 m/s to rest 1 K to 10 mk 10 4 10 6 molecules

Cold molecule based precision spectroscopy Hudson, Lewandowski, Sawyer, Ye, PRL 96, 143004 (2006). Lev, Meyer, Hudson, Sawyer, Bohn, Ye, PRA 74, 061402 (2006). Decelerator High resolution and precision Systematic evaluations Hexapole PMT Detection can Microwave Interrogation cavity Excitation laser

Magnetic trapping of OH Sawyer, Lev, Hudson, Stuhl, Lara, Bohn, & Ye, Phys. Rev. Lett. 98, 253002 (2007). decelerator Electric quadrupole Imaging Magnetic trap coil Electrodes can be used as quadrupole lens

End view Trapping Scheme 20 m/s 0 A Side view 2000 A Magnetic Quadrupole Electric Quadrupole z

Trapping Scheme ~30 mk, 5x10 3 cm -3 Magnetic Quadrupole + Electric Quadrupole -1500 A 1500 A z

Permanent-Magnet Trap 10mm NdFeB (N42SH) T op = 120 o C B res = 1.24 T

Trap Loading 0 V +12 kv -12 kv

Trap Loading 0 V 0 V 0 V

Permanent magnetic trap of OH ~ 2 x 10 6 cm -3 70 mk Loading Lifetime

Collision inside a trap OH molecules E cm ~ 60 cm -1 230 cm -1

Trap Scattering OH He or OH D 2 colliding beam arrival

Absolute collision cross sections OH 2 Π 3/2 D 2 : (1) J = 1 quadrupole moment (2) J = 1 J =3 (300 cm -1 ) J = 5/2 84 cm -1 J = 3/2 E cm (cm -1 )

External electric field tunes reaction barrier Hudson, Ticknor, Sawyer, Taatjes, Lewandowski, Bochinski, Bohn, Ye, Phys. Rev. A 73, 063404 (2006). IP only 8.1 ev External electric field adds: E 1.8µ Control of cold chemical reactions; Unique dipolar interaction dynamics OH r E Maximum experimentally attainable shift around 10 K

Special thanks OH and H 2 CO KRb B. Sawyer B. Stuhl M. Yeo D. Wang E. Hudson (Yale) B. Lev (Illinois) H. Lewandowski (JILA) J. Bochinski (NC State) S. Ospelkaus A. Pe er K.-K. Ni J. Zirbel B. Neyenhuis M. Miranda D. S. Jin D. Jin, J. Bohn (JILA) P. Julienne (NIST), S. Kotochigova (Temple) H. Ritsch (Innsbruck)