The Mechanism of Pd-Catalyzed Amination Controversy.. And Conclusion?

Similar documents
Sonogashira: in situ, metal assisted deprotonation

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0

Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides

An Efficient Process for Pd-Catalyzed CN Cross-Coupling Reactions of Aryl Iodides: Insight Into Controlling Factors

Arylhalide-Tolerated Electrophilic Amination of Arylboronic Acids with N-Chloroamides Catalyzed by CuCl at Room Temperature

Intramolecular Ene Reactions Utilizing Oxazolones and Enol Ethers Fisk, J.S. and Tepe, J..J J. Am. Chem. Soc., 2007, 129,

Iron Catalysed Coupling Reactions

Wilkinson s other (ruthenium) catalyst

Copper-Catalyzed Reaction of Alkyl Halides with Cyclopentadienylmagnesium Reagent

Asymmetric Palladium Catalyzed Cross-Coupling Reactions. Topic Talk September 4 th, 2014 Morken Lab Emma Edelstein 1

Direct Catalytic Cross-Coupling of Organolithium

Lecture 6: Transition-Metal Catalysed C-C Bond Formation

Development of Chiral Phosphine Olefin Ligands and Their Use in Asymmetric Catalysis

Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group.

Microwave-promoted synthesis in water

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July

Molybdenum-Catalyzed Asymmetric Allylic Alkylation

Basics of Catalysis and Kinetics

Catellani Reaction (Pd-Catalyzed Sequential Reaction) Todd Luo

Additions to Metal-Alkene and -Alkyne Complexes

Direct Oxidative Heck Cyclizations: Intramolecular Fujiwara-Moritani Arylations for the Synthesis of Functionalized Benzofurans and Dihydrobenzofurans

A Simple Introduction of the Mizoroki-Heck Reaction

A Stille or Suzuki reaction is a good choice for this coupling O O because they are functional group tolerant, no radical chemistry F

Iron Catalyzed Cross Coupling: Mechanism and Application. Matthew Burk Denmark Group Meeting

C H activation of aliphatic amines without unnecessary mask M2 Takaya Togo

Department of Chemistry, University of Saskatchewan Saskatoon SK S7N 4C9, Canada. Wipf Group. Tyler E. Benedum Current Literature February 26, 2005

Palladium-catalyzed sp 3 C H activation. Yan Xu Dong Group Meeting Apr. 2, 2014

Catalytic Conjunctive Cross-Coupling enabled by Metal-Induced Metallate Rearrangement

Metalloporphyrin. ~as efficient Lewis acid catalysts with a unique reaction-field~ and. ~Synthetic study toward complex metalloporphyrins~

Recent Advances of Alkyne Metathesis. Group Meeting Timothy Chang

Ligand Effects in Nickel Catalysis. Anthony S. Grillo Chem 535 Seminar October 22, 2012

A Highly Active Palladium(I) Dimer for Pharmaceutical Applications

Chiral Bronsted Acids as Catalysts

PhD research with Prof. Lutz H. Gade at the Univ. of Strasbourg. Postdoc in 2003 with Andreas Pfaltz (Basel Switzerland)

Asymmetric Catalysis by Lewis Acids and Amines

Non-Linear Effects in Asymmetric Catalysis: A Useful Tool in Understanding Reaction Mechanisms. Group Meeting Aaron Bailey 12 May 2009

Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid

Hybridization of Nickel Catalysis and Photoredox Catalysis. Literature seminar#1 B4 Hiromu Fuse 2017/02/04(Sat)

Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides

Short Literature Presentation 10/4/2010 Erika A. Crane

Some Hartwig Chemistry Experimental Approaches and Detailed Mechanistic Analysis

Asymmetric Nucleophilic Catalysis

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines

Reaction Progress Kinetic Analysis to Probe Catalytic Reactions. Grant Sherborne 2/12/2013

Pd-Catalyzed Conversion of Aryl Chlorides, Triflates, and Nonaflates to Nitroaromatics

Bifunctional Asymmetric Catalysts: Design and Applications. Junqi Li CHEM Sep 2010

sp 3 C-H Alkylation with Olefins Yan Xu Dec. 3, 2014

Chiral Supramolecular Catalyst for Asymmetric Reaction

Transition Metal-Catalyzed Carbon-Carbon Bond Cleavage (C-C Activation) Group Meeting Timothy Chang

Carbon-Carbon Bond Formation Driven by the Water-Gas Shift Reaction

Spiro Monophosphite and Monophosphoramidite Ligand Kit

CHEM 153 PRACTICE TEST #1 ANSWER KEY

Nickel-Catalyzed Reductive Cross-Electrophile-Coupling Between Aryl and Alkyl Halides

A catalytic and mechanistic investigation of a PCP pincer palladium complex in the Stille reaction

Zr-Catalyzed Carbometallation

Enantioselective Borylations. David Kornfilt Denmark Group Meeting Sept. 14 th 2010

Mild Cobalt-Catalyzed Hydrocyanation of Olefins with Tosyl Cyanide

Pd-Catalyzed Cross-Coupling Reactions of Amides and Aryl Mesylates

Construction of Chiral Tetrahydro-β-Carbolines: Asymmetric Pictet Spengler Reaction of Indolyl Dihydropyridines

22.7 Reactions of Amines: A Review and a Preview

Reactivity within Confined Nano-spaces

Enantioselective Protonations

Mechanistic Studies in Copper Catalysis

Modern Synthetic Methods

Chem 634. Introduction to Transition Metal Catalysis. Reading: Heg Ch 1 2 CS-B 7.1, , 11.3 Grossman Ch 6

Planar-Chiral Phosphine-Olefin Ligands Exploiting a (Cyclopentadienyl)manganese(I) Scaffold to Achieve High Robustness and High Enantioselectivity

VI. Metal alkyls from oxidative addition / insertion

Nucleophilic Fluorination. Souvik Rakshit Burke group Literature Seminar July 13, 2013

Dual role of nucleophiles in palladium-catalyzed Heck, Stille, and Sonogashira reactions*

C H Activated Trifluoromethylation

Aza-Wacker-Type Cyclization. Group Meeting Tuesday, April 19, 2011 William Kuester

Air-stable phosphine oxides as preligands for catalytic activation reactions of C Cl, C F, and C H bonds*

Palladium-Mediated Functionalization of Heteroaromatic Cations: Comparative Study on Quinolizinium Cations

Palladium-Catalyzed Alkylation of sp2 and sp3 C-H Bonds with Methylboroxine and Alkylboronic Acids: Two Distinct C-H Activation Pathways

Journal Club Presentation by Remond Moningka 04/17/2006

Asymmetric Copper-Catalyzed Synthesis of α-amino Boronate Esters from N-tert- Butanesulfinyl Aldimines

The aza-baylis-hillman Reaction: Mechanism, Asymmetric Catalysis, & Abnormal Adducts. Larry Wolf SED Group Meeting

Deactivation Pathways in Transition Metal Catalysis

Chiral Brønsted Acid Catalysis

Sonogashira Couplings of Aryl Bromides: Room Temperature, Water Only, No Copper

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group

A Brief Survey on Synthesis and Catalytic Reactivity of Metal-Metal Bond Complexes

Use of Cp 2 TiCl in Synthesis

Homogeneous Catalysis Without Precious Metals: Cheap Metals for Noble Tasks

H Organometallic Catalysis in Industry

Initials: 1. Chem 633: Advanced Organic Chemistry 2011 Final Exam

"-Amino Acids: Function and Synthesis

Strategies for Catalytic Asymmetric Electrophilic a Halogenation of Carbonyl Compounds

CHEM 251 (4 credits): Description

Mechanism of the oxidative addition of aryl halides to bis-carbene palladium(0) complexes*

Shi Asymmetric Epoxidation

Chiral Amplification. Literature Talk Fabian Schneider Konstanz, Universität Konstanz

1. Theoretical Investigation of Mechanisms and Stereoselectivities of Synthetic Organic Reactions

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc

A Multi-Ligand Based Pd Catalyst for C N Cross-Coupling Reactions

Organometallic Compounds of Magnesium *

Organocopper Chemistry

Metal Hydrides, Alkyls, Aryls, and their Reactions

Tautomerism and Keto Enol Equilibrium

Transcription:

The chanism of d-catalyzed Amination Controversy.. And Conclusion? R H R1 R 2 d(dba) 2 BIA, h R R1 R 2 Steve Tymonko SED Group eting 5/9/06

d-catalyzed Amination- Tin Initial Report- Kosugi, 1983 n-bu 3 SnEt 2 dcl 2 (o-tolyl 3 ) 2 h, 100 0 C Et 2 87 % Hartwig, 1994 d(o-tolyl 3 ) 2 h, rt 87 % (o-tolyl) 3 d d (o-tolyl) 3 n-bu 3 SnEt 2 Et 2 or LiEt 2 60-90 % Tin mediated cross-couplings were rarely used due to poor substrate scope and toxicity Kosugi, M. et al. Chem. Lett. 1983, 927 Hartwig, J. et al. J. Am. Chem. Soc. 1994, 116, 5969

Moving Beyond Tin d(dba) 2 / (o-tolyl) 3 d(o-tolyl 3 ) 2 Aryl HRR' or dcl 2 (o-tolyl 3 ) 2 aot-bu h, 65-100 0 C ArylRR' Aryl HRR' or dcl 2 (o-tolyl 3 ) 2 Li(Si 3 ) 2 or aot-bu h, 100 0 C, 2h ArylRR' h 86 % h h 86 % O 2 71 % h O C 4 H 9 C 4 H 9 84 % 94 % 72 % Bn 92 % HBn reparatively simple reactions with no need for Sn Limited to secondary amines Buchwald, S. et al. Angew. Chem. Int. Ed. 1995, 34, 1348 Hartwig, J. et al. Tetrahedron Lett. 1995, 36, 3609

ew Ligands, Better Generality Aryl HRR' d 2 (dba) 3 / BIA aot-bu h, 80 0 C ArylRR' Aryl HRR' (DF)dCl 2 aot-bu THF, 100 0 C ArylRR' h H C 6 H 13 H h H C4 H 9 O H h h 94 % 88 % 79 % C 93 % 96 % 87 % O Bidentate ligands prevent!-hydride elimination Buchwald, S. et al. J. Am. Chem. Soc. 1996, 118, 7215 Hartwig, J. et al. J. Am. Chem. Soc. 1996, 118, 7217

Other Early Observations and Advances Fe d t-bu aot-bu THF, rt Fe t-bu hh 2 d Ot-Bu THF, rt Fe d Hh t-bu H 92 % t-bu ArylOTf HRR' (DF)dCl 2 aot-bu THF, 100 0 C ArylRR' ArylCl HRR' d(dba) 2 / t-bu 3 aot-bu h, rt ArylRR' Aryl HRR' d(dba) 2 / BIA Cs 2 CO 3 h, 100 0 C compatible with esters, ketones, nitriles, etc Greatly expanded substrate scope for both amine and halide coupling partners Hartwig, J. et al. J. Am. Chem. Soc. 1996, 118, 13109 Hartwig, J. et al. Angew. Chem. Int. Ed. 1198, 37, 2407 Hartwig, J. et al. J. Org. Chem. 1999, 64, 5575 Buchwald, S. el al. J. Org. Chem. 2000, 65, 1144

Hartwig- d(0) Catalyst reparation d[(o-tolyl 3 )] 2 BIA hh (BIA) 2 d (racemic or resolved) 87 % d[(o-tolyl 3 )] 2 hh DF (DF) 2 d d 2 (DF) 3 -d- angles: in BIA complexes 90-91 o in DF complexes 98-101 o Ligated d(0) complexes will simplify kinetic analysis Hartwig, J. et al. J. Am. Chem. Soc. 2000, 122, 4618

Oxidative Addition (BIA) 2 d h, 40 0 C 2h d h, 40 0 C 12h h 2 d h 3 faster in THF (DF) 2 d h, 40 0 C 2h Fe d 89 % xylenes, 130 0 C 18h Fe d h 3 Oxidative addition products can decompose under the reaction conditions Hartwig, J. et al. J. Am. Chem. Soc. 2000, 122, 4618

Oxidative Addition (BIA) 2 d 2.26 x 10-5 M BIA solvent d solvent rate (x10-5 s -1 ) hh 9.9 THF 7.3 h 8.1 1 st order in bromide under 1.78 x 10-3 M 0 th order at high bromide concentration -1 st order in ligand bromide rate (x10-4 s -1 ) 2-O 3.9 2-4.4 H 4.3 taken in saturation range With DF all data matches except always 1 st order in bromide Hartwig, J. et al. J. Am. Chem. Soc. 2000, 122, 4618

Oxidative Addition chanism Given the previous data, which of the following mechanisms is operative? Hartwig, J. et al. J. Am. Chem. Soc. 2000, 122, 4618

Reductive Elimination h 3 d h 3 h 3 h, 110 0 C 0.23 mm 22 to 68mM Rate between 0 and -1 st order in ligand 1 st order in d aths C and E both operate Hartwig, J. et al. J. Am. Chem. Soc. 1997, 119, 8232

Reductive Elimination R R Fe d (p-tolyl) 2 h 3 h, 75 0 C Fe d I LiHi-Bu 0 0 C Fe d Hi-Bu rt hhi-bu 64 % 0 th order in added ligand Rate= 4-Cl > H > 4- > 4 2 > 4O -d- 100 0 Direct reductive elimination from 4-coordinate d Hartwig, J. et al. J. Am. Chem. Soc. 1997, 119, 8232

Catalyst Resting State Fe d t-bu t-bu C 6 H 13 H 2 aot-bu h, 100 0 C (DF) 2 d 10 mol % (BIA) 2 d t-bu C 6 H 13 H 2 aot-bu h, 100 0 C (BIA) 2 d d(oac) 2 BIA t-bu C 6 H 13 H 2 aot-bu h, 100 0 C (BIA) 2 d d(oac) 2 DF t-bu C 6 H 13 H 2 aot-bu h, 100 0 C (DF) 2 d >85 % in all cases, no monooxide seen 31 MR shows only L 2 d regardless of precatalyst or stoichiometry Hartwig, J. et al. J. Am. Chem. Soc. 2000, 122, 4618

Catalytic Conditions- rimary Amines (BIA) 2 d aoc(et) 3 HC BIA C 6 H 13 H 6 H 13 2 C 6 D 6, 60 0 C Reaction was zero order in BIA, bromide, base, and amine By 31 MR >85% catalyst remains after complete reaction Hartwig, J. et al. J. Am. Chem. Soc. 2000, 122, 4618

Catalytic Conditions- Secondary Amines (BIA) 2 d BIA H aoc(et) 3 C 6 D 6, 60 0 C d Li O C 6 D 6, 0 0 C >95 % O fast Zero order in BIA, bromide, and base, appears 1 st order in amine 31 MR monitoring of catalytic reactions shows loss of (BIA) 2 d onlinear behavior due to catalyst decomposition Hartwig, J. et al. J. Am. Chem. Soc. 2000, 122, 4618

Catalytic Conditions- DF Fe d t-bu DF t-bu H 2 aoc(et) 3 C 6 D 6, 60 0 C H t-bu 1 st order in bromide, -1 st order in DF Zero order in base, amine order complex 2 mm DF 21.6 mm DF roduct inhibition gives apparent first-order behavior in amine Hartwig, J. et al. J. Am. Chem. Soc. 2000, 122, 4618

roposed chanism For BIA For DF L 2 d lies directly on the catalytic cycle; ligand dissociation/oxidative addition is rate determining Hartwig, J. et al. J. Am. Chem. Soc. 2000, 122, 4618

Reaction Calorimetry Kinetics d 2 (dba) 3 BIA 1 1 mol % 2 mol % 2b 0.71 M H aot-bu h, 60 0 C Hashes- 0.35 M in bromide Induction period suggests changing d species: positive order in amine and bromide Blackmond, D.; Buchwald, S. et al. J. Am. Chem. Soc. 2002, 124, 14104

Catalyst remixing d 2 (dba) 3 BIA 1 mol % 2 mol % 2b 1 0.86 M 0.71 M H aot-bu h, 60 0 C remixing of all components except bromide gives greatly increased initial rates Blackmond, D.; Buchwald, S. et al. J. Am. Chem. Soc. 2002, 124, 14104

Sequential Injections d 2 (dba) 3 BIA HR 2 1 mol % 2 mol % 2 1 0.86 M 0.13 M injections aot-bu (1 M) h, 60 0 C rimary amines have much shorter induction periods Blackmond, D.; Buchwald, S. et al. J. Am. Chem. Soc. 2002, 124, 14104

Sequential Injections H d(bia) 2 2b 1 2 mol % 0.86 M 0.13 M injections aot-bu (1 M) h, 60 0 C Apparent zero order due to increasing d linked with decreasing bromide Most catalyst is inactive throughout the reaction: reaction never reaches full catalyst loading Blackmond, D.; Buchwald, S. et al. J. Am. Chem. Soc. 2002, 124, 14104

Catalyst Activation chanism Amine displacement of dba during premixing gives higher initial rate Easier displacement with primary amines explains reduced induction period Blackmond, D.; Buchwald, S. et al. J. Am. Chem. Soc. 2002, 124, 14104

Steady-State chanism Two possibilities for zero order in base, positive order in amine and bromide Data suggests amine binding prior to oxidative addition Blackmond, D.; Buchwald, S. et al. J. Am. Chem. Soc. 2002, 124, 14104

Competing roposals Hartwig Blackmond and Buchwald

First Order in Amine Reconsidered h d(bia) 2 BIA 5.7 mm 34 µm h h (BIA)d O.5 M -methylpiperazine h d(bia) 2 BIA, h 5.7 mm 34 µm h (BIA)d 0-1.0 M -methylpiperazine h d(bia) 2 BIA, h 5.7 mm 34 µm h (BIA)d h d(bia) 2 BIA, h 5.7 mm 34 µm 0-1.0 M octylamine h (BIA)d Hartwig, J. et al. Org. Lett. 2006, 8, 851

First Order in Amine Reconsidered d(bia) 2 tol-bia 45 0 C d(tol-bia) 2 d(bia)(tol-bia) BIA 5.3 mm 43 mm Amine has no effect on oxidative addition or catalyst composition Hartwig, J. et al. Org. Lett. 2006, 8, 851

Toward A Revised chanism HR 2, aot-am d 2 (dba) 3 BIA d(bia)(dba) [d(bia)] C 6 H 6, 60 0 2 (dba) C 85 % d 2 (dba) 3 d 2 (dba) 3 BIA BIA H 2 C 8 H 17 H aot-am C 6 H 6, 60 0 C aot-am C 6 H 6, 60 0 C [d(bia)] 2 (dba) 1h 3h [d(bia)] 2 (dba) 0.2 : 1.0 0.3 : 1.0 d(bia) 2 d(bia) 2 1h 3h 0.7 : 1.0 1.0 : 1.0 Identical observations during catalytic reactions, catalyst decomposes over time Catalyst mixture is different for primary and secondary amines Hartwig, J.; Blackmond, D.; Buchwald, S. et al. J. Am. Chem. Soc. 2006, 128, 3584

Catalyst Composition Effects catalyst O H 0.96 M aot-am C 6 D 6, 60 0 C O 10 mm 0.13 M 0.96 M d 2 (dba) 3 BIA O amine 0.96 M aot-am C 6 D 6, 60 0 C O 0.13 M 0.96 M Effects of incubation time ink, blue = -methylpiperazine Green = octylamine Differences between primary and secondary amines in 2002 paper due to sensitive incubation Hartwig, J.; Blackmond, D.; Buchwald, S. et al. J. Am. Chem. Soc. 2006, 128, 3584

Amine and Catalyst Roles catalyst amine O 10 mm 0.13 M 0.96 M 0.96 M aot-am C 6 D 6 O With [d(bia)] 2 (dba), 50 0 C With d(bia) 2, 70 0 C [d(bia)] 2 (dba) is more active: amine is zero order Hartwig, J.; Blackmond, D.; Buchwald, S. et al. J. Am. Chem. Soc. 2006, 128, 3584

omide and Ligand d(bia) 2 H 2 C 6 H 13 0.96 M aot-am BIA hhc 6 H 13 h, 50 0 C 1 st order in bromide, -1 st order in ligand Error was made in 2000 paper when determining order Hartwig, J.; Blackmond, D.; Buchwald, S. et al. J. Am. Chem. Soc. 2006, 128, 3584

Current chanism rior to 2000 d(bia) 2 lies off the catalytic cycle: amine is not involved in oxidative addition Hartwig, J.; Blackmond, D.; Buchwald, S. et al. J. Am. Chem. Soc. 2006, 128, 3584

Conclusions A combination of techniques was required to determine the mechanism of d-catalyzed amination including: -stoichiometric analysis of individual steps of the catalytic cycle -MR analysis of catalyst composition under the reaction conditions -in situ monitoring under preparative conditions -classical (initial rates) kinetics of both stoichiometric and catalytic systems The amination proceeds through rate-limiting oxidative addition following dissociation of ligand from d(0) Both stoichiometric and catalytic systems must be explored to identify the active mechanism under preparative conditions

roposed chanisms Early roposal Hartwig, 2000 Buchwald, Blackmond 2002 Revised, 2006

References Core References: Hartwig, J. et al. J. Am. Chem. Soc. 2000, 122, 4618 Blackmond, D.; Buchwald, S. et al. J. Am. Chem. Soc. 2002, 124, 14104 Hartwig, J. et al. Org. Lett. 2006, 8, 851 Hartwig, J.; Blackmond, D.; Buchwald, S. et al. J. Am. Chem. Soc. 2006, 128, 3584 Amination, General: Kosugi, M. et al. Chem. Lett. 1983, 927 Hartwig, J. et al. J. Am. Chem. Soc. 1994, 116, 5969 Buchwald, S. et al. Angew. Chem. Int. Ed. 1995, 34, 1348 Hartwig, J. et al. Tetrahedron Lett. 1995, 36, 3609 Buchwald, S. et al. J. Am. Chem. Soc. 1996, 118, 7215 Hartwig, J. et al. J. Am. Chem. Soc. 1996, 118, 7217 Hartwig, J. et al. J. Am. Chem. Soc. 1996, 118, 13109 Hartwig, J. Acc. Chem. Res. 1998, 31, 852 Hartwig, J. et al. Angew. Chem. Int. Ed. 1198, 37, 2407 Hartwig, J. et al. J. Org. Chem. 1999, 64, 5575 Buchwald, S. el al. J. Org. Chem. 2000, 65, 1144 Oxidative Addition: Hartwig, J. et al. Organometallics, 2002, 21, 491 Amatore, C. et al. Organometallics, 1990, 9, 2276 Milstein, D. et al. Organometallics, 1993, 12, 1665 Amatore, C.; Jutand, A. et al. J. Am. Chem. Soc. 1993, 115, 9531 Hartwig, J. et al. J. Am. Chem. Soc. 1995, 117, 5373 Jutand, A. et al. Organometallics, 1999, 18, 5367 d Complexes; Reductive Elimination: Stille, J. et al. J. Am. Chem. Soc. 1980, 102, 4933 Jutand, A. el al. Organometallics, 1992, 11, 3009 Hayashi, T. et al.organometallics, 1993, 4188 Amatore, C.; Jutand, A. et al. J. Am. Chem. Soc. 1997, 119, 5176 Hartwig, J. et al. J. Am. Chem. Soc. 1997, 119, 8232 Amatore, C.; Jutand, A. Coord. Chem. Rev. 1998, 178-180, 511 Hartwig, J. et al. J. Am. Chem. Soc. 2001, 123, 1232 Reaction Calorimetry: Blackmond, D. Angew. Chem. Int. Ed. 2005, 44, 4302 faltz, A.; Blackmond, D. et al. J. Am. Chem. Soc. 2001, 123, 1848 faltz, A.; Blackmond, D. et al. J. Am. Chem. Soc. 2001, 123, 4621 Other: Yamamoto, A. et al. Organometallics, 1989, 8, 180 Hayashi, T. et al. J. Am. Chem. Soc. 1984, 106, 158 Whitesides, G. et al. J. Am. Chem. Soc. 1972, 4, 5258