Chapter 4. The dominated convergence theorem and applications

Similar documents
Chapter 6. Integration. 1. Integrals of Nonnegative Functions. a j µ(e j ) (ca j )µ(e j ) = c X. and ψ =

MATHS 730 FC Lecture Notes March 5, Introduction

Homework 11. Solutions

Solutions: Problem Set 4 Math 201B, Winter 2007

6.2 Fubini s Theorem. (µ ν)(c) = f C (x) dµ(x). (6.2) Proof. Note that (X Y, A B, µ ν) must be σ-finite as well, so that.

MATH MEASURE THEORY AND FOURIER ANALYSIS. Contents

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

Chapter 5. Measurable Functions

Notes on the Lebesgue Integral by Francis J. Narcowich November, 2013

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

Real Analysis Notes. Thomas Goller

Integration on Measure Spaces

Section Integration of Nonnegative Measurable Functions

2 Measure Theory. 2.1 Measures

(U) =, if 0 U, 1 U, (U) = X, if 0 U, and 1 U. (U) = E, if 0 U, but 1 U. (U) = X \ E if 0 U, but 1 U. n=1 A n, then A M.

Analysis Comprehensive Exam Questions Fall 2008

THEOREMS, ETC., FOR MATH 515

02. Measure and integral. 1. Borel-measurable functions and pointwise limits

Notes on the Lebesgue Integral by Francis J. Narcowich Septemmber, 2014

Exercise 1. Let f be a nonnegative measurable function. Show that. where ϕ is taken over all simple functions with ϕ f. k 1.

2 Lebesgue integration

FACULTY OF SCIENCE FINAL EXAMINATION MATHEMATICS MATH 355. Analysis 4. Examiner: Professor S. W. Drury Date: Tuesday, April 18, 2006 INSTRUCTIONS

Three hours THE UNIVERSITY OF MANCHESTER. 24th January

Riesz Representation Theorems

L p Spaces and Convexity

Chapter 8. General Countably Additive Set Functions. 8.1 Hahn Decomposition Theorem

LEBESGUE INTEGRATION. Introduction

(2) E M = E C = X\E M

ANALYSIS QUALIFYING EXAM FALL 2017: SOLUTIONS. 1 cos(nx) lim. n 2 x 2. g n (x) = 1 cos(nx) n 2 x 2. x 2.

Solutions to Tutorial 11 (Week 12)

REAL AND COMPLEX ANALYSIS

Exercise 1. Show that the Radon-Nikodym theorem for a finite measure implies the theorem for a σ-finite measure.

Lecture 6 Basic Probability

Lebesgue Integration: A non-rigorous introduction. What is wrong with Riemann integration?

Product measures, Tonelli s and Fubini s theorems For use in MAT4410, autumn 2017 Nadia S. Larsen. 17 November 2017.

Real Analysis Qualifying Exam May 14th 2016

3 Integration and Expectation

Lebesgue Integration on R n

3. (a) What is a simple function? What is an integrable function? How is f dµ defined? Define it first

Final Exam Practice Problems Math 428, Spring 2017

The Lebesgue Integral

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define

Review of measure theory

Real Analysis Problems

NOTES ON THE REGULARITY OF QUASICONFORMAL HOMEOMORPHISMS

Class Notes for Math 921/922: Real Analysis, Instructor Mikil Foss

The Lebesgue Integral

Measure and integration

A List of Problems in Real Analysis

2) Let X be a compact space. Prove that the space C(X) of continuous real-valued functions is a complete metric space.

For example, the real line is σ-finite with respect to Lebesgue measure, since

Math 5051 Measure Theory and Functional Analysis I Homework Assignment 3

Probability and Measure

Problem 3. Give an example of a sequence of continuous functions on a compact domain converging pointwise but not uniformly to a continuous function

1/12/05: sec 3.1 and my article: How good is the Lebesgue measure?, Math. Intelligencer 11(2) (1989),

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy

1.3.1 Definition and Basic Properties of Convolution

Problem Set. Problem Set #1. Math 5322, Fall March 4, 2002 ANSWERS

f(x)dx = lim f n (x)dx.

Probability and Random Processes

INTRODUCTION TO MEASURE THEORY AND LEBESGUE INTEGRATION

ABSTRACT INTEGRATION CHAPTER ONE

13. Examples of measure-preserving tranformations: rotations of a torus, the doubling map

It follows from the above inequalities that for c C 1

NAME: MATH 172: Lebesgue Integration and Fourier Analysis (winter 2012) Final exam. Wednesday, March 21, time: 2.5h

General Instructions

MTH 404: Measure and Integration

It follows from the above inequalities that for c C 1

Measure and Integration: Solutions of CW2

FACULTY OF SCIENCE FINAL EXAMINATION MATHEMATICS MATH 355. Analysis 4. Examiner: Professor S. W. Drury Date: Wednesday, April 18, 2007 INSTRUCTIONS

Measurable functions are approximately nice, even if look terrible.

Part II Probability and Measure

LECTURE NOTES FOR , FALL Contents. Introduction. 1. Continuous functions

x 0 + f(x), exist as extended real numbers. Show that f is upper semicontinuous This shows ( ɛ, ɛ) B α. Thus

Lebesgue s Differentiation Theorem via Maximal Functions

Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts. Tuesday, January 16th, 2018

Partial Solutions to Folland s Real Analysis: Part I

Functional Analysis, Stein-Shakarchi Chapter 1

SOME PROBLEMS IN REAL ANALYSIS.

+ 2x sin x. f(b i ) f(a i ) < ɛ. i=1. i=1

LEBESGUE MEASURE AND L2 SPACE. Contents 1. Measure Spaces 1 2. Lebesgue Integration 2 3. L 2 Space 4 Acknowledgments 9 References 9

MATH 650. THE RADON-NIKODYM THEOREM

Real Analysis, October 1977

REAL ANALYSIS I Spring 2016 Product Measures

Measure Theory & Integration

Lecture 21: Expectation of CRVs, Fatou s Lemma and DCT Integration of Continuous Random Variables

Tools from Lebesgue integration

Another Riesz Representation Theorem

CONTENTS. 4 Hausdorff Measure Introduction The Cantor Set Rectifiable Curves Cantor Set-Like Objects...

Overview of normed linear spaces

4. Product measure spaces and the Lebesgue integral in R n.

MAT 571 REAL ANALYSIS II LECTURE NOTES. Contents. 2. Product measures Iterated integrals Complete products Differentiation 17

A VERY BRIEF REVIEW OF MEASURE THEORY

Math 240 (Driver) Qual Exam (9/12/2017)

Lebesgue measure and integration

Math212a1413 The Lebesgue integral.

ANALYSIS QUALIFYING EXAM FALL 2016: SOLUTIONS. = lim. F n

Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts. Monday, August 26, 2013

LECTURE NOTES FOR , FALL 2004

Folland: Real Analysis, Chapter 7 Sébastien Picard

Transcription:

Chapter 4. The dominated convergence theorem and applications The Monotone Covergence theorem is one of a number of key theorems alllowing one to exchange limits and [Lebesgue] integrals (or derivatives and integrals, as derivatives are also a sort of limit). Fatou s lemma and the dominated convergence theorem are other theorems in this vein, where monotonicity is not required but something else is needed in its place. In Fatou s lemma we get only an inequality for lim inf s and non-negative integrands, while in the dominated convergence theorem we can manage integrands that change sign but we need a dominating integrable function as well as existence of pointwise limits of the sequence of inetgrands. Contents 4.1 Fatou s Lemma................................... 1 4.2 Almost everywhere................................. 2 4.3 Dominated convergence theorem.......................... 4 4.4 Applications of the dominated convergence theorem................ 5 4.5 What s missing?................................... 8 4.1 Fatou s Lemma This deals with non-negative functions only but we get away from monotone sequences. Theorem 4.1.1 (Fatou s Lemma). Let f n : [0, ] be (nonnegative) Lebesgue measurable functions. Then lim inf f n dµ lim inf f n dµ Proof. Let g n (x) inf k n f k (x) so that what we mean by lim inf f n is the function with value at x given by ( ) ( ) lim inf f n (x) lim inf f n(x) lim inf f k(x) lim g n (x) k n Notice that g n (x) inf k n f k (x) inf k n+1 f k (x) g n+1 (x) so that the sequence (g n (x)) n1 is monotone increasing for each x and so the Monotone convergence theorem says that lim g n dx lim g n dµ lim inf f n dµ But also g n (x) f k (x) for each k n and so g n dµ f k dµ (k n)

2 2017 18 Mathematics MA2224 or Hence lim inf g n dµ inf f k dµ k n ( ) f n dµ lim inf f k dµ lim g n dµ lim inf k n f n dµ Example 4.1.2. Fatou s lemma is not true with equals. For instance take, f n χ [n,2n] and notice that f n dµ n as n but for each x, lim f n (x) 0. So lim inf f n dµ > lim inf f n dµ 0 dµ 0 This also shows that the Monotone Convergence Theorem is not true without Monotone. 4.2 Almost everywhere Definition 4.2.1. We say that a property about real numbers x holds almost everywhere (with respect to Lebesgue measure µ) if the set of x where it fails to be true has µ measure 0. Proposition 4.2.2. If f : [, ] is integrable, then f(x) holds almost everywhere (or, equivalently, f(x) < almost everywhere). Proof. Let E {x : f(x) }. What we want to do is show that µ(e) 0. We know f dµ <. So, for any n N, the simple function nχ E satisfies nχ E (x) f(x) always, and so has nχ E dµ nµ(e) f dµ <. But this can t be true for all n N unless µ(e) 0. Proposition 4.2.3. If f : [, ] is measurable, then f satisfies f dµ 0 if and only if f(x) 0 almost everywhere. Proof. Suppose f dµ 0 first. Let E n {x : f(x) 1/n}. Then 1 n χ E n f

Lebesgue integral 3 and so 1 n χ E n dµ 1 n µ(e n) f dµ 0. Thus µ(e n ) 0 for each n. But E 1 E 2 and So E n {x : f(x) 0}. n1 µ({x : f(x) 0}) µ ( n1 E n ) lim µ(e n ) 0. Conversely, suppose now that µ({x : f(x) 0}) 0. We know f is a non-negative measurable function and so there is a monotone increasing sequence (f n ) n1 of measurable simple functions that converges pointwise to f. From 0 f n (x) f(x) we can see that {x : f n (x) 0} {x : f(x) 0} and so µ({x : f n (x) 0}) µ({x : f(x) 0}) 0. Being a simple function f n has a largest value y n (which is finite) and so if we put E n {x : f n (x) 0} we have f n y n χ En f n dµ y n χ En dµ y n χ En dµ y n µ(e n ) 0. From the Monotone Convergence Theorem ( ) f dµ lim f n dµ lim f n dµ lim 0 0. The above result is one way of saying that integration ignores what happens to the integrand on any chosen set of measure 0. Here is a result that says that in way that is often used. Proposition 4.2.4. Let f : [, ] be an integrable function and g : [, ] a Lebesgue measurable function with f(x) g(x) almost everywhere. Then g must also be integrable and g dµ f dµ. Proof. Let E {x : f(x) g(x)} (think of E as standing for exceptional ) and note that f(x) g(x) almost everywhere means µ(e) 0. Write f (1 χ E )f + χ E f. Note that both (1 χ E )f and χ E f are integrable because they are measurable and satisfy (1 χ E )f f and χ E f f. Also χ E f dµ χ E f dµ 0 as χ E f 0 almost everywhere. Similarly χ Eg dµ 0.

4 2017 18 Mathematics MA2224 So f dµ ((1 χ E )f + χ E f) dµ (1 χ E )f dµ + χ E f dµ (1 χ E )f dµ + 0 (1 χ E )g dµ The same calculation (with f in place of f) shows (1 χ E) g dµ f dµ <, so that (1 χ E )g must be integrable. Thus g (1 χ E )g + χ E g is also integrable (because χ Eg dµ 0 and so χ E g is integrable and g is then the sum of two integrable functions). Thus we have g dµ (1 χ E)g dµ + χ Eg dµ f dµ + 0. emark 4.2.5. It follows that we should be able to manage without allowing integrable functions to have the values ±. The idea is that, if f is integrable, it must be almost everywhere finite. If we change all the values where f(x) to 0 (say) we are only changing f on a set of x s of measure zero. This is exactly changing f to the (1 χ E )f in the above proof. The changed function will be almost everywhere the same as the original f, but have finite values everywhere. So from the point of view of the integral of f, this change is not significant. However, it can be awkward to have to do this all the time, and it is better to allow f(x) ±. 4.3 Dominated convergence theorem Theorem 4.3.1 (Lebesgue dominated convergence theorem). Suppose f n : [, ] are (Lebesgue) measurable functions such that the pointwise limit f(x) lim f n (x) exists. Assume there is an integrable g : [0, ] with f n (x) g(x) for each x. Then f is integrable as is f n for each n, and lim f n dµ lim f n dµ f dµ Proof. Since f n (x) g(x) and g is integrable, f n dµ g dµ <. So f n is integrable. We know f is measurable (as a pointwise limit of measurable functions) and then, similarly, f(x) lim f n (x) g(x) implies that f is integrable too. The proof does not work properly if g(x) for some x. We know that g(x) < almost everywhere. So we can take E {x : g(x) } and multiply g and each of the functions f n and f by 1 χ E to make sure all the functions have finite values. As we are changing them all only on the set E of measure 0, this change does not affect the integrals or the conclusions. We assume then all have finite values.

Lebesgue integral 5 Let h n g f n, so that h n 0. By Fatou s lemma lim inf (g f n ) dµ lim inf (g f n) dµ (g f) dµ and that gives ( lim inf g dµ or ) f n dµ g dµ lim sup f n dµ g dµ f dµ lim sup f n dµ f dµ (1) epeat this Fatou s lemma argument with g + f n rather than g f n. We get lim inf (g + f n ) dµ lim inf (g + f n) dµ (g + f) dµ and that gives ( lim inf g dµ + or Combining (1) and (2) we get f dµ lim inf which forces ) f n dµ g dµ + lim inf f n dµ g dµ + f dµ lim inf f n dµ f dµ (2) f dµ lim inf f n dµ lim sup f n dµ f dµ f n dµ lim sup f n dµ and that gives the result because if lim sup a n lim inf a n (for a sequence (a n ) n1), it implies that lim a n exists and lim a n lim sup a n lim inf a n. emark 4.3.2. The example following Fatou s lemma also shows that the assumption about the existence of the dominating function g can t be dispensed with. 4.4 Applications of the dominated convergence theorem Theorem 4.4.1 (Continuity of integrals). Assume f : is such that x f [t] (x) f(x, t) is measurable for each t and t f(x, t) is continuous for each x. Assume also that there is an integrable g : with f(x, t) g(x) for each x, t. Then the function f [t] is integrable for each t and the function F : defined by F (t) f [t] dµ f(x, t) dµ(x) is continuous.

6 2017 18 Mathematics MA2224 Proof. Since f [t] is measurable and f [t] g we have f [t] dµ g dµ < and so f [t] is integrable (for each t ). This F (t) makes sense. To show that F is continuous at t 0 it is enough to show that for each sequence (t n ) n1 with lim t n t 0 we have lim F (t n ) F (t 0 ). But that follows from the dominated convergence theorem applied to f n (t) f(x, t n ), since we have lim f n(t) lim f(x, t n ) f(x, t 0 ) by continuity of t f(x, t). We also have f n (t) f(x, t n ) g(x) for each n and each x. Example 4.4.2. Show that is continuous. F (t) [0, ) e x cos(πt) dµ(x) Proof. The idea is to apply the theorem with dominating function g(x) given by { g(x) χ [0, ) (x)e x e x for x 0 0 for x < 0 We need to know that g dµ < (and that g is measurable and that x χ [0, )(x)e x cos(πt) is measurable for each t but we do know that these are measurable because e x is continuous and χ [0, ) is measurable). By the Monotone Convergence Theorem, n g dµ lim χ [ n,n] g dµ lim χ [0,n] e x dµ(x) lim e x dµ(x) 0 You can work this out easily using ordinary iemann integral ideas and the limit is 1. So g dµ <. Now the theorem applies because χ [0, ) (x)e x cos(πt) g(x) for each (x, t) 2 (and certainly t χ [0, ) (x)e x cos(πt) is continuous for each x). Theorem 4.4.3 (Differentiating under the integral sign). Assume f : is such that x f [t] (x) f(x, t) is measurable for each t, that f [t0] (x) f(x, t 0 ) is integrable for some t 0 and f(x,t) exists for each (x, t). Assume also that there is an integrable g : t with f t (x,t) g(x) for each x, t. Then the function x f(x, t) is integrable for each t and the function F : defined by F (t) f [t] dµ f(x, t) dµ(x) is differentiable with derivative F (t) d dt f(x, t) dµ(x) f(x, t) dµ(x). t

Lebesgue integral 7 Proof. Applying the Mean Value theorem to the function t f(x, t), for each t t 0 we have to have some c between t 0 and t so that f(x, t) f(x, t 0 ) f t (x,c)(t t 0 ) It follows that and so f(x, t) f(x, t 0 ) g(x) t t 0 f(x, t) f(x, t 0 ) + g(x) t t 0. Thus f(x, t) dµ(x) ( f(x, t 0 ) + g(x) t t 0 ) dµ(x) f(x, t 0 ) dµ(x) + t t 0 g dµ <, which establishes that the function x f(x, t) is integrable for each t. To prove the formula for F (t) consider any sequence (t n ) n1 so that lim t n t but t n t for each t. We claim that We have where F (t n ) F (t) t n t Notice that, for each x we know F (t n ) F (t) lim t n t f(x, t n ) f(x, t) t n t f(x, t) dµ(x). (3) t dµ(x) f n (x) f(x, t n) f(x, t). t n t lim f n(x) f t (x,t) f n (x) dµ(x) and so (3) will follow from the dominated convergence theorem once we show that f n (x) g(x) for each x. That follows from the Mean Value theorem again because there is c between t and t n (with c depending on x) so that f n (x) f(x, t n) f(x, t) t n t f t (x,c). So f n (x) g(x) for each x.

8 2017 18 Mathematics MA2224 4.5 What s missing? There are quite a few topics that are very useful and that we have not covered at all. Some of the things we have covered are simplified from the way they are often stated and used. An example in the latter category is that the Monotone Convergence Theorem and the Dominated Convergence Theorem are true if we only assume the hypotheses are valid almost everywhere. The Monotone Convergence Theorem is still true if we assume that the sequence (f n ) n1 of measurable functions satisfies f n 0 almost everywhere and f n f n+1 almost everywhere (for each n). Then the pointwise limit f(x) lim f n (x) may exist only almost everywhere. Something similar for the Dominated Convergence Theorem. We stuck to integrals of functions f(x) defined for x (or for x X L which is more or less the same because we can extend them to be zero on \ X) and we used only Lebesgue measure µ on the Lebesgue σ-algebra L. What we need abstractly is just a measure space (X, Σ, λ) and Σ-measurable integrands f : X [, ]. By definition f is Σ- measurable if f 1 ([, a]) {x X : f(x) a} Σ ( a ), and it follows from that condition that f 1 (B) Σ for all Borel subsets B. We can then talk about simple functions on X (f : X with finite range f(x) {y!, y 2,..., y n }), their standard form (f n j1 y jχ Fj where F j f 1 ({y j })), integrals of non-negative Σ- measurable simple functions ( f dλ n X j1 y jλ(f j )), integrals of non-negative measurable f : X [0, ], (generalised) Monotone convergence theorem, λ-integrable Σ-measurable f : X [, ], (generalised) Dominated Convergence Theorem. To make this applicable, we would need some more examples of measures, other that just Lebesgue measure µ: L [0, ]. We did touch on some examples of measures that don t correspond so obviously to total length as µ does. For instance if f : [0, ] is a nonnegative (Lebesgue) measurable function, there is an associated measure λ f : L [0, ] given by λ f (E) f dµ. (We discussed λ E f when f was simple but the fact that λ f is a measure even when f is not simple follows easily from the Monotone Convergence Theorem.) If we choose f so that f dµ 1, then we get a probability measure from λ f (and f is called a probability density function). The standard normal distribution is the name given to λ f when f(x) (1/ 2π)e x2 /2. That s just one example. The adon Nikodym theorem gives a way to recognise measures λ: L [0, ] that are of the form λ λ f for some non-negative (Lebesgue) measurable function f. The key thing is that µ(e) 0 λ(e) 0. The full version of the adon Nikodym theorem applies not just to measures on (, L ) with respect to µ, but to many more general measure spaces. And then we could have explained area measure on 2, volume measure on 3, n-dimensional volume measure on n, Fubini s theorem relating integrals on product spaces to iterated integrals, the change of variables formula for integrals on n, and quite a few more topics. One place where measure theory comes up is in defining so-called Lebesgue spaces, which are Banach spaces defined using (Lebesgue) integration. For example L 1 () is the space of integrable functions f : with norm f 1 f dµ. Or to be more precise it is the space of almost everywhere equivalence classes of such functions. (That is so that f 1 0 only for the zero element of the space, a property that norms should have.) To make L 1 () complete we need

Lebesgue integral 9 the Lebesgue integral. Hilbert spaces like L 2 () come into Fourier analysis, for instance. By definition L 2 () is the space of almost everywhere equivalence classes of measurable f : that satisfy f 2 dµ < with norm given by f 2 ( f 2 dµ ) 1/2. In short then, there is quite a range of things that the Lebesgue theory is used for (probability theory, Fourier analysis, differential equations and partial differential equations, functional analysis, stochastic processes,... ). My aim was to lay the basis for studying these topics later.. Timoney March 28, 2018