Positron Annihilation throughout the Galaxy

Similar documents
Positron Annihilation in the Milky Way and beyond

Positron Annihilation in the Milky Way

Spectral analysis of the 511 kev Line

The INTEGRAL view of 511 kev annihilation line in our Galaxy

INTEGRAL Observations of the Galactic 511 kev Emission and MeV Gamma-ray Astrophysics

INTEGRAL Observations of the Galactic 511 kev Emission and MeV Gamma-ray Astrophysics K. Watanabe, NASA/Goddard Space Flight Center

arxiv: v1 [astro-ph.he] 1 Dec 2015

PoS(Extremesky 2011)064

What do we know after 6 years of Integral?

Prospects in space-based Gamma-Ray Astronomy

The Origin of the 511 kev Positron Annihilation Emission Morphology

HUNTING DOWN THE SOURCE OF GALACTIC ANTIMATTER

HEAO 3 Observations of the Galactic Center 511 kev Line

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab

The High-Energy Interstellar Medium

Possible high energy phenomena related to the stellar capture by the galactic supermassive black holes. K S Cheng University of Hong Kong China

II. Observations. PoS(NIC-IX)257. Observatoire de Genève INTEGRAL Science Data Center

Satellite Experiments for Gamma-Ray Astrophysics

GALACTIC Al 1.8 MeV GAMMA-RAY SURVEYS WITH INTEGRAL

arxiv: v1 [astro-ph.he] 23 Sep 2010

Galaxy Ecosystems Adam Leroy (OSU), Eric Murphy (NRAO/IPAC) on behalf of ngvla Working Group 2

stringent constraint on galactic positron production

arxiv: v1 [astro-ph.he] 25 Jan 2010

Interstellar gamma rays. New insights from Fermi. Andy Strong. on behalf of Fermi-LAT collaboration. COSPAR Scientific Assembly, Bremen, July 2010

A. Takada (Kyoto Univ.)

Astroparticle Anomalies

A NEW GENERATION OF GAMMA-RAY TELESCOPE

Astrophysical Quantities

arxiv:astro-ph/ v1 12 Sep 2005

Non-detection of the 3.55 kev line from M31/ Galactic center/limiting Window with Chandra

Laura Barragán. Universidad Complutense de Madrid

arxiv: v1 [astro-ph.he] 21 Oct 2009

Gamma-ray Astrophysics with VERITAS: Exploring the violent Universe

Soft X-ray Emission Lines in Active Galactic Nuclei. Mat Page

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy

Star systems like our Milky Way. Galaxies

Cosmic rays in the local interstellar medium

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts!

Explosive Events in the Universe and H-Burning

Gamma-Ray Astrophysics

Lecture 11: Ages and Metalicities from Observations A Quick Review

X-raying galactic feedback in nearby disk galaxies. Q. Daniel Wang University of Massachusetts

The sky distribution of positronium annihilation continuum emission measured with SPI/INTEGRAL ABSTRACT

The Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley)

The Hot Gaseous Halos of Spiral Galaxies. Joel Bregman, Matthew Miller, Edmund Hodges Kluck, Michael Anderson, XinyuDai

Lecture 11: Ages and Metalicities from Observations. A Quick Review. Multiple Ages of stars in Omega Cen. Star Formation History.

Fermi: Highlights of GeV Gamma-ray Astronomy

Distribution of X-ray binary stars in the Galaxy (RXTE) High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars

Gamma-ray nucleosynthesis. Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission

Supernova events and neutron stars


EXCESS OF VHE COSMIC RAYS IN THE CENTRAL 100 PC OF THE MILKY WAY. Léa Jouvin, A. Lemière and R. Terrier

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV

THE GALACTIC CORONA. In honor of. Jerry Ostriker. on his 80 th birthday. Chris McKee Princeton 5/13/2017. with Yakov Faerman Amiel Sternberg

Astrophysics of Gaseous Nebulae

Interstellar Medium and Star Birth

Emmanuel Moulin! on behalf of the CTA Consortium!!! Rencontres de Moriond 2013! Very High Energy Phenomena in the Universe! March 9-16, La Thuile,

Physics HW Set 3 Spring 2015

Chapter 15 The Milky Way Galaxy. The Milky Way

Particles in the Early Universe

arxiv:astro-ph/ v1 19 Feb 1999

Roland Diehl. MPE Garching

Gamma-Ray Astronomy. Astro 129: Chapter 1a

A focusing telescope for gamma-ray astronomy

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

Gamma-ray Astrophysics

Project Paper May 13, A Selection of Dark Matter Candidates

Stellar Populations in the Galaxy

Spectra of Cosmic Rays

Gas 1: Molecular clouds

An Introduction to Radio Astronomy

Low-Energy Cosmic Rays

Stellar Explosions (ch. 21)

99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park

Cosmic Rays & Magnetic Fields

arxiv: v1 [astro-ph] 17 Nov 2008

COSMIC RAYS DAY INTRODUCTION TO COSMIC RAYS WINDWARD COMMUNITY COLLEGE - SEPTEMBER 26, 2015 VERONICA BINDI - UNIVERSITY OH HAWAII

Search for exotic process with space experiments

Galactic Novae Simulations for the Cherenkov Telescope Array

3/1/18 LETTER. Instructors: Jim Cordes & Shami Chatterjee. Reading: as indicated in Syllabus on web

Time-domain astronomy with the Fermi Gamma-ray Burst Monitor

Lecture 20 High-Energy Astronomy. HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric

astro-ph/ Jun 1994

Study of Long-lived Radioactive Sources in the Galaxy with INTEGRAL/SPI

arxiv:astro-ph/ v1 14 Oct 2004

Chapter 18 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. The Bizarre Stellar Graveyard Pearson Education, Inc.

AS1001:Extra-Galactic Astronomy

Recent Searches for Dark Matter with the Fermi-LAT

The AGN Jet Model of the Fermi Bubbles

Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges

Xenon Compton Telescopes at Columbia: the post LXeGRIT phase. E.Aprile. Columbia University

Neutrino sources. Atmospheric neutrinos Solar neutrinos Supernova neutrinos High energy neutrino sources Cosmic neutrino background

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Distances & the Milky Way. The Curtis View. Our Galaxy. The Shapley View 3/27/18

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Dr. Joseph E. Pesce, Ph.D.

Special Topics in Nuclear and Particle Physics

Three Major Components

NuSTAR s Extreme Universe. Prof. Lynn Cominsky NASA Education and Public Outreach Sonoma State University

Dark Matter and Dark Energy components chapter 7

Simulations of Advanced Compton Telescopes in a Space Radiation Environment

Transcription:

Positron Annihilation throughout the Galaxy Thomas Siegert Max-Planck-Institute for extraterrestrial Physics Oct 18 th 2017, INTEGRAL Symposium, Venice, Italy

The Early Years Late 60s, early 70s: Balloon-borne experiments Collimator apertures with large FoVs First evidence of a spectral feature at 0.5 MeV with NaI scintillators in 1970 1973 Robert C. Haymes Donald D. Clayton 511 kev @ 2σ Johnson+1972 473±15 kev Haymes+1969 Johnson+1973 2

More Experiments More Confusion Sophistication with Ge detectors: Line definitely at 511 kev Positron annihilation from galactic centre direction! Leventhal+1978 Lingenfelter+198 9 Satellite missions HEAO-C ( 79-81, Ge), SMM ( 80-89, NaI), GRANAT ( 89-99, NaI) More balloon flights (GRIS 88-95, Ge) Variability in 511 kev flux from galactic centre? 3

Variability of the 511 kev Line? Transient sources? X-ray binaries with SIGMA: 1E1740.7-2942, GRS1124-68 Lingenfelter+1989: Different FoVs lead to different fluxes Diffuse and transient source(s)? OSSE solved the issue: first image! No variability! Purcell+1997 Nova Musca Lingenfelter+1989 Sunyaev+1992 GRS1124-68 Bouchet+1991 1E1740.7-2942 Great Annihilator 4

INTEGRAL/SPI 511 kev Measurements Knödlseder+2005: Image reconstruction (3 yrs) Churazov+2005, Jean+2006: Spectral analysis of GC region Weidenspointner+2008: Asymmetry in disk (5 yrs)? Bouchet+2010: No disk asymmetry, bulge shifted (7 yrs) Skinner+2014: Galactic centre source? Siegert+2016a: Component-wise spectra, faint thick disk (11 yrs) Knödlseder+2005 Weidenspointner+2008 Bouchet+2011 Skinner+2014 Jean+2006 Siegert+2016a 5

Siegert+2016a Positron Annihilation Sky Galactic positron picture after 10 years of INTEGRAL/SPI Slice through b=0 Galactic Centre Source Narrow Bulge Broad Bulge Disk 5σ 56σ 12σ Slice through l=0 6

Positron Annihilation: e + + e - = at least 2 γs Annihilation in Flight: Direct annihilation with E kin (e ± ) 0 E kin (e + ) = E kin (e - ) 0: 511 kev line E kin (e + ) /= E kin (e - ) > 0: continuous spectrum Formation of Positronium Atom (Ps): Singlet state (S=0): antiparallel spins Para-Positronium p-ps 2γ: monoenergetic γ-ray line (511 kev) Triplet state (S=1): parallel spins Ortho-Positronium o-ps 3γ: continuous spectrum 7

INTEGRAL/SPI 511 kev Spectroscopy Milky Way spectrum after 11 mission years Siegert+2017b in prep. 3σ binning! < 4%! < 18 km/s! < 47 km/s! Unprecedented accuracy! 8

Positron Annihilation Spectroscopy Annihilation spectroscopy: spatially resolved / component-wise Siegert+2016a Annihilation Continuum (Ortho-Positronium) Gaussian-shaped 511 kev Line (Para-Positronium) Galactic γ-continuum Total Significance: 56σ in 40 kev e + annihilation (=production?) rate: L e + (1.7±0.2) 10 43 e + s -1 511 kev line flux: (0.96±0.07) 10-3 ph cm -2 s -1 ; f ps 1.00 FWHM: 2.59±0.17 kev; Centroid: 511.09±0.08 kev 9

Churazov+2005, 2010; Siegert2017 What Can We Learn from Line Shapes? Guessoum+1991 Prantzos+2011 Guessoum+2005 Cold H 2 Cold H Warm neutral Warm ionised Hot plasma Line shapes trace warm and partly ionised gas: T 7000-40000 K x ion 5-20% 10

SPI 511 kev Portrayal No Disk flux asymmetry (p-ps, o-ps, ɣ-ps)! Disk scale height 1 kpc Annihilation budget: 3.1 10 43 e + s -1 Disk l<0 FWHM: 1.6 kev E 0 : 511.1 kev f Ps : 0.8-1.0 FWHM: 3.1 kev E 0 : 511.3 kev f Ps : 0.8-1.0 Disk l>0 Separate(?) annihilation site Annihilation budget: 0.1 10 43 e + s -1 GCS FWHM: 3.5 kev E 0 : 510.6 kev f Ps : 0.7-1.0 FWHM: 2.6 kev E 0 : 511.1 kev f Ps : 1.0 The Bulge Not axisymmetric Shifted to: (l/b)=(-1.25 /-0.25 ) Annihilation budget: 1.7 10 43 e + s -1 Spectral shapes similar throughout the Milky Way, but hardly represented by one! 11

Candidate Positron Sources Massive stars / Novae / SNe Ia&II Radioactivity from β + -decay XRBs / Microquasars Compact γ-ray source ; Jets; Corona Sgr A* Past AGN activity; Accretion disk Cosmic rays p-p collisions: Secondary positrons Pulsars Magnetic field interactions Dark Matter Decay; Annihilation; Excitation Where do they come from? DM µqs Cas A 12 44 Ti SN II Fermi Bubbles SN2014J Sgr A* 26 Al 56 Co SN Ia Pulsars

Secondary Positrons from Cosmic-Rays p + p π + X p + p K + X K ± µ ± + ν µ K ± e ± + ν e K ± π 0 + π ± π 0 γ + γ π 0 γ + e - + e + π + µ + + ν µ π + e + + ν e µ + തν μ + ν e + e + Sizun+2006 Collision products have large masses: K 0 (498), K ± (494), π 0 (135), π ± (140), µ(106) e + produced have large kinetic energies: MeV to GeV But no annihilation in flight excess in spectrum? e + originated at energies not greater than few MeV (well...) Cosmic-ray positrons cannot explain 511 kev flux (0% contribution?) 13

β + -Unstable Nuclei Astrophysically important isotopes that produce non-negligible amounts of positrons: p n + e + + ν e Isotope Decay chain Type %e + T 1/2 Sources 26 Al 26 Al 26 Mg β + 82 7.1 10 5 yr Massive Stars, CCSNe 44 Ti 44 Ti 44 Sc 44 Sc 44 Ca 56 Ni 56 Ni 56 Co 56 Co 56 Fe EC β + 94 EC β + 19 60 yr 3.9 h 6.1 d 77.2 d SNe SNe Ia 22 Na 22 Na 22 Ne β + 90 2.6 yr Novae 14

e + Origins Massive Star Nucleosynthesis Milky Way in 26 Al (1.809 MeV) 13 yr SPI Spectrum Full sky Siegert2017 Plüschke+2001 Positron! T 1/2 0.7 Myr 1.809 MeV 26 Al produced in massive stars Various stellar associations (foregrounds) 2.8 M Sun of 26 Al in the Galaxy 0.3 10 43 e + s -1 along Galactic plane (L e +(Disk) 3.1 10 43 e + s -1 ) 10% contribution 15

e + Origins Supernova Nucleosynthesis Core-collapse supernovae: Young remnants and 44 Ti Positron! SN1987A in LMC Seitenzahl+2014 About 10-5 -10-4 M Sun of 44 Ti per (young) CCSNR 0.3 10 43 e + s -1 along Galactic plane? (L e +(Disk) (3.1±1.0) 10 43 e + s -1 ) Only 10% contribution But: SN1991bg-like events (SN Ia) may explain B/D and total positron content (Crocker+2016)? 16

e + Origins Type Ia Nucleosynthesis Positron! White dwarf merger Binary mass transfer About 0.5 M Sun of 56 Ni per SN Ia 10 55 e + per SN Ia event! Supernova rate and positron escape very uncertain: 0.25 per century @ few % escape Potentially 2 10 43 e + s -1 in the whole Galaxy (L e +(Galaxy) 3.5-6.0 10 43 e + s -1 ) 40% contribution 17

Crocker+2016 e + Origins Type Ia Nucleosynthesis? Credits: Fiona H. Panther; http://auntiematter.space/ 18

Life of a Positron in the Galaxy MeV/ GeV Source distribution ev Sink distribution Positron propagation required! Energy 19

The Picture doesn t Fit? 430 MHz IR Visible CO X-ray Free-Free 1.809 MeV 511 kev Dust >100 MeV Hα 656 nm 21 cm > 1GeV 20

A Bulge Component: Dark Matter? Decay, Annihilation, De-excitation? F 511 ρ DM n? Siegert+2016a GCS Skinner+2014: Dark matter profile with n=2 can replace all three bulge components Test the dark matter scenario with SPI on dwarf satellite galaxies? offset peak Galactic centre DM main halo Dark matter simulation Kuhlen+2008 Dwarf galaxies DM sub-haloes ρ(nfw) 2 ρ(nfw) 21 Serpico & Hooper 2009

Testing the DM Scenario with SPI Dwarf galaxies are believed to be DM-dominated log M dyn /L V + (0. 22 ± 0. 02)M V DM in dwarf galaxies? Maybe yes. Siegert+2016c e + e - (511 kev) from DM? Probably not. log M dyn /L 511 (0. 25 ± 0. 11)M V 23

A Bulge Component: Microquasars Microquasars identified as galactic positron sources! γ + γ e + + e - e + annihilated: 10 42 s -1 Duty cycle: 10-3 Escape fraction: 20% Siegert+2016b V404 Cygni 10 3 10 8 µqs expected in the Milky Way: contribution tens of %! 24

One step further Kinematics Longitude-velocity diagram for 511 kev in the inner radian Siegert+2017b in prep. Orientation of Galactic rotation! Faster than rotation velocity Faster than 26 Al Sliding window method Another possibility? Velocity measurements 25

Open Questions e + Trace the WNM/WIM? Guessoum+2005 Cold H 2 Cold H Warm neutral Warm ionised Hot plasma HI (21 cm) and/or Hα (656 nm) should fit the 511 kev data well Line shapes agree with warm and partly ionised gas: T 7000-40000 K x ion 5-20% Annihilation only in WNM/WIM? HI 21 cm 511 kev but they don t! Hα 656 nm 26

Log(T) χ 2 Improvement Is it Really the ISM? Why should positrons choose this phase (T 7000-40000 K, x ion 5-20%)? Star maps (IR) provide a decent fit Is it stellar atmospheres? Is it stellar flares (Bisnovati-Kogan+2016)? 511 kev IR (1.25 4.9 µm) Siegert2017 Height above surface (km) Tracer Photon Energy (ev) 27

Summary Undoubtedly, the positrons giving rise to the observed feature come from a variety of processes. Marvin Leventhal, 1978 Plurality must never be posited without necessity. William of Ockham, 14 th century If two things do not suffice to verify a proposition, one must posit a third. Walter Chatton, 14 th century 28