Paper 1 Physical Core UNIT 3 Rocks and weathering

Similar documents
Plates Moving Apart Types of Boundaries

8 th Grade Science Plate Tectonics and Topography Review

Earth Movement and Resultant Landforms

Plate Boundaries & Resulting Landforms

1. What is Wegener s theory of continental drift? 2. What were the 4 evidences supporting his theory? 3. Why wasn t Wegener s theory excepted?

OBJECTIVE: For each boundary type, give an example of where they occur on Earth.

Convergent plate boundaries. Objective to be able to explain the formation and key features of these zones.

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE

12. The diagram below shows the collision of an oceanic plate and a continental plate.

Practice Questions: Plate Tectonics

What type of land feature is located at Point A? A Cliff B Delta C Mountain D Valley

Continental Drift. & Plate Tectonics

Evidence from the Surface. Chapter 02. Continental Drift. Fossil Evidence for Pangaea. Seafloor Spreading. Seafloor Spreading 1/31/2012

UNIT 11 PLATE TECTONICS

New A-Level Physical Geography

Layer Composition Thickness State of Matter

Chapter. Graphics by Tasa Graphic Arts. Inc.

Notepack # 9 AIM: Why are the continents drifting apart? Do Now: Watch the video clip and write down what you observe.

The Structure of the Earth and Plate Tectonics

A) B) C) D) 4. Which diagram below best represents the pattern of magnetic orientation in the seafloor on the west (left) side of the ocean ridge?

Geology Topics. Unit 6 Notes

Plate Tectonics. Earth has distinctive layers - Like an onion

Directed Reading. Section: The Theory of Plate Tectonics. to the development of plate tectonics, developed? HOW CONTINENTS MOVE

Unit 11: Plate Tectonics

1. List the 3 main layers of Earth from the most dense to the least dense.

Crustal Boundaries. As they move across the asthenosphere and form plate boundaries they interact in various ways. Convergent Transform Divergent

SAC Geography Form 2 Chapter 3: Plate Tectonics Topic 3: Plate Movement

Plate Tectonics. I. The Discovery of Plate Tectonics II. A Mosaic of Plates III. Types of Plate Boundaries IV. How Plates Move

Refer to the map on page 173 to answer the following questions.

PLATE TECTONICS 11/13/ Investigations of glaciers also indicated that the land masses on Earth were once a supercontinent.

1. I can describe evidence for continental drift theory (e.g., fossil evidence, mountain belts, paleoglaciation)

Distribution of Continents Mid-ocean Ridges Trenches. Deformation Metamorphism Volcanism Earthquakes

FORCES ON EARTH. An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth.

PLATE TECTONICS REVIEW GAME!!!!

Plate Tectonics. How do the plates move?

ANOTHER MEXICAN EARTHQUAKE! Magnitude 7.1, Tuesday Sept. 19, 2017

Plate Tectonics: The New Paradigm

8 th Grade Campus Assessment- NSMS Plate Tectonics

Science 10 PROVINCIAL EXAM STUDY BOOKLET. Unit 4. Earth Science

Lecture 4.1 Continental Drift

Features of Tectonic Plates

Ch. 9 Review. Pgs #1-31 Write Questions and Answers

SUBSURFACE CHANGES TO EARTH. Ms. Winkle

6. In the diagram below, letters A and B represent locations near the edge of a continent.

Plate Tectonics. Continental Drift Sea Floor Spreading Plate Boundaries

Earth s Tectonic Plates

Dynamic Earth Quiz. 4. The accompanying diagram shows some features of Earth s crust and upper mantle.

Section 2: How Mountains Form

Crustal Activity. Plate Tectonics - Plates - Lithosphere - Asthenosphere - Earth s surface consists of a major plates and some minor ones

Plate Tectonics. entirely rock both and rock

Plate Boundaries. Presented by Kesler Science

Plate Tectonics. The Theory of Plate Tectonics. The Plate Tectonics Theory. 62 Plate Tectonics Reading Essentials

Lab 1: Plate Tectonics April 2, 2009

Plate Tectonics. Theory of Plate Tectonics. What is Plate Tectonics. Plate Tectonics Plate Boundaries Causes of Plate Tectonics

Unit 1: Earth as a System. Section 1: Plate Tectonics and the Rock Cycle

GLG101: What-To-Know List

PLATE TECTONICS. SECTION 17.1 Drifting Continents

12/3/2014. Plate Tectonics: A Scientific Revolution Unfolds Earth Science, 13e Chapter 7. Continental drift: an idea before its time

Alfred Wegener: continental drift theory Continents move around 200 mya Pangaea (pan = all, gaea= earth) fg 12.8 p. 508

water erosion lithosphere Describe the process of erosion and deposition. chemical weathering Dissolving limestone is an example of.

September 14, SWBAT explain how divergent boundaries shape Earth s surface.

FORCES ON EARTH UNIT 3.2. An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth.

Plate Tectonic Vocabulary Chapter 10 Pages

Earth s Interior. Theory of Tectonics. Tectonics & Landforms. Vocabulary

Dynamic Crust Practice

The Structure of the Earth and Plate Tectonics

I. Earth s Layers a. Crust: Earth s outside layer. Made of mostly rock. i. Continental: er; made of mostly granite, forms the continents and shallow

Sir Francis Bacon, 1620, noted that the continental coasts on opposites sides of the Atlantic fit together like puzzle pieces.

What Are Tectonic Plates?

Continental Drift and Plate Tectonics

SOCIAL STUDIES GENERAL

Beneath our Feet: The 4 Layers of the Earty by Kelly Hashway

Finding Fault with Food or Modeling Plate Movement

Earth s Geological Cycle

Alfred Wegener gave us Continental Drift. Fifty years later...

Geosphere Final Exam Study Guide

Plate Tectonics Practice Test

Core. Crust. Mesosphere. Asthenosphere. Mantle. Inner core. Lithosphere. Outer core

PHYSICAL GEOLOGY AND THE ENVIRONMENT (2 ND CANADIAN EDITION)

Module 7: Plate Tectonics and Earth's Structure Topic 2 Content: Plates of the World Presentation Notes

Continental Drift. Wegener theory that the crustal plates are moving and once were a super continent called Pangaea.

Changing Earth: Plate Tectonics

Unit 4 Lesson 6 Plate Tectonics

The Four Layers The Earth is composed of four different layers. The crust is the layer that you live on, and it is the most widely studied and

Tectonic Plates Test Study Guide Answers

* If occurs, fossils that formed in shallow water may be found in water. Subsidence mean the crust is.

Essentials of Oceanography Eleventh Edition

Inside Earth Review Packet

USU 1360 TECTONICS / PROCESSES

Unit 4 Lesson 2 Plate Tectonics. Copyright Houghton Mifflin Harcourt Publishing Company

UNIT 3 GEOLOGY VOCABULARY FLASHCARDS THESE KEY VOCABULARY WORDS AND PHRASES APPEAR ON THE UNIT 3 CBA

Chapter 2 Plate Tectonics and the Ocean Floor

Important information from Chapter 1

Introduction To Plate Tectonics Evolution. (Continents, Ocean Basins, Mountains and Continental Margins)

Grand Unifying Theory of everything... for the Geosciences, at least!

CONTINENTAL DRIFT THEORY

Plate Tectonics. Essentials of Geology, 11 th edition Chapter 15

Directed Reading. Section: How Mountains Form MOUNTAIN RANGES AND SYSTEMS. Skills Worksheet

UNIT 6 PLATE TECTONICS

Transcription:

Paper 1 Physical Core UNIT 3 Rocks and Recommended Prior Knowledge The fundamental principles of tectonics and may have been introduced at IGSCE. However no previous knowledge is essential to this unit. Context Weathering are influenced by climatic factors and there is a close relationship between fluvial and slope. Therefore there are clear links between all three units within the Physical Core. Outline This unit covers basic principles of tectonic activity and and slope. Although the human impact is designated as a sub-unit, it seems advisable to include human activities as a factor influencing and slope rather than teaching it separately. Content Objectives Terminology Teaching Strategies (TS) and Activities (A) Resources 3.1 Elementary plate tectonics Knowledge of global distribution of lithospheric plates Knowledge of different types of plate boundary Crust, mantle, core Lithosphere Asthenosphere Divergent/ constructive margins Convergent/ destructive margins TS Begin with basic structure of the earth. Then a map of global distribution of plates describe - linear on continental margins/coastal, i.e. not random or scattered. The map could be annotated. Emphasise the idea of pattern globally. Define a tectonic plate - two key points - it is a slab of lithosphere and it moves. Maps Waugh p.10 fig.1.2 Guinness and Nagle p.93 Fig. 4.1 and 4.2 Nagle p.8 Fig 1.7 Prosser pp.10-11 Fig 1.5 Hart p.86 fig. 4.2 Ross p.29 fig.2.4 Guinness and Nagle p.95 Fig 4.5 www.xtremepapers.com Convection currents Ridge push Slab pull Sea floor spreading Explain reasons for movement - convection currents in the mantle. Brief reference to evidence that plate movement has occurred in the past use of atlas maps, especially the S. America /Africa fit. (Be careful not to launch into a long discussion about continental drift ). Ross p.30 fig.2.9 Geofile 554 Plate boundaries Himalayas and Pacific USA. June 2008 Q. 8(b) Sea floor spreading.

Knowledge and the and landforms associated with each type of boundary Island arcs Subduction zones Ocean trenches Benioff zones Transform faults Seismic activity Volcanic activity Shallow/deep focus earthquakes Fold mountains Mid-ocean ridges TS Consider each plate boundary. Describe and explain. Consider landforms associated with each type of boundary/margin. Diagrams are the best way of keeping the material manageable and easy to understand. Students should see how the two major types of margin are complementary, i.e. ridge push and slab pull balance each other out, so that the crust does not become progressively larger. Idea of a system once more. Rates of movement equivalent to the growth of a finger nail. This part of the unit could, and probably should, be illustrated by reference to specific plate boundaries. e.g. Nazca-South American plate, mid-atlantic ridge, Pacific-Eurasian-Philippine (island arcs/trenches) Nagle pp.9-10 Prosser pp.12-3 Hart pp.88-94 Ross pp.31-37, pp.38-48 Case Study of East African Rift Prosser p.17 June 2006 Q. 8(b) Fold mountains June 2004 Q. 3 Ocean ridges. Useful map good teaching tool. Conservative margins Collision zones San Andreas Fault. Although not specified, conservative margins and collision zones can be useful additions to this section, but will not be examined. (Content will be useful for Hazardous environments in Paper 2.) Guinness and Nagle p.311, fig 9.12 Geofile 526 Sept 2006 Hot spots in Plate Tectonics Prosser p.15 Himalayas p.16 San Andreas Fault Ross p.37 Fig 2.18 Nagle p.22 Nov 2006 Q. 8(c) Relationships between plate boundaries and landforms June 2007 Q. 8(c)

3.2 Weathering and rocks Knowledge and major physical and chemical Freeze-thaw action/frost shattering Exfoliation Wetting/drying Spheroidal Dilatation Salt crystallisation Hydration Hydrolysis Carbonation Solution Oxidation TS Introduce the classification of. Define - breakdown of rocks in situ (where they are). Emphasise the idea that no transport is involved. Also the importance of moisture being present. Can go on to develop the idea of erosion and then denudation so that students see the in context. Use annotated diagrams where possible. Photographs can help hugely in explaining how the operate. Photographs from past question papers can be a useful tool. A Can be reinforced by a matching exercise process and description a simple but often effective means of generating discussion and encouraging thought about the, especially when produced on slips of paper which can be physically rearranged and classified into sets representing physical/chemical//erosion. Ross pp.49-52 Waugh pp.40-43 Hart pp.95-98 Prosser p.26 Nagle pp.30-32 See regolith.com for photographs of landforms Appreciation of the role of biological agents in Related end products of the Chelation Humic acid Effects of acid rain Granular disintegration Block disintegration Discuss whether biological agents justify a separate category of or whether these agents carry out physical/chemical, e.g. tree roots, humic acids, organisms, etc. Can introduce the human impact here and discuss increased carbonation - solution on buildings, etc. to cover part of 3.4 End products should be linked. (This is important because it is often forgotten by candidates). Therefore physical tends to produce block disintegration, and chemical, granular disintegration. Ross p.49 Fig 2.37 Prosser - Very good on rates pp.29-30

Knowledge and the factors which influence A detailed appreciation of the role of climate as a factor TS Introduce the ways in which factors such as climate, vegetation, soils, rock lithology, relief and time may influence. Fundamentally, climate and rock lithology are the two key factors. Climate plays an overarching role because it influences other factors like vegetation and soils. A Peltier diagram should form the basis for class discussion and then questions can be set on it. Can be annotated with. This diagram often forms the basis of examination questions. Candidates are not required to be able to draw it from memory. Latitudinal variation of regolith depth illustrates role of climate in and can be related to the areas on the Peltier diagram. Ross p.53 Fig.2.42 Ross p.55 Fig.2.44* Hart pp.98-100 Waugh p.44 Fig 2.10 Nagle pp.32-3 Nov 2006 Fig. 3 and June 2008 Figs 3A and B. Very useful teaching tools. Basis of the whole discussion about the role of climate in types and rates. Nov 2005 Fig. 2 Essential and excellent teaching tool. Properties of two rocks - granite and limestone Joints Bedding planes Composition Structure TS First, the characteristics of granite and limestone. Processes that influence them. Granite -hydrolysis,limestone carbonation and solution. Introduction of the idea of contrasts between in the tropics and temperate latitudes could be included especially as a preparation for the Paper 2 Tropical environments option, if this is to be studied. However it is not essential for this unit. June 2007 Q.8(b) specifically on granite Hart pp.104-5 Prosser p.27 Resultant landforms are not required here, see Paper 2 Tropical environments for them. Impact of human activity in areas like the Yorkshire Dales, UK would provide material for the human impact on and mass movement here. Nagle pp.40-1 Hart pp.100-2 Nagle pp.34-5, pp.38-9 Prosser p.29 Ross pp.71-75

Footpath erosion, removal of clints from limestone pavements for landscape gardening, may be useful additions for 3.4 3.3 Slope and development Understand that slopes are systems Knowledge of slope form Understanding of mass movement Knowledge and of mass movement Understanding of the relationship between process and form Internal strength Shear stress Boulder controlled slopes Concave slope Convex slope Free face Heave Flow Fall Slide slump Soil creep Landslide Mudslide Avalanche Rotational slip Debris slide Debris avalanche TS Introduce using a diagram of the slope as a system with inputs and outputs. Consequent form is dynamic, as the result of. Look at relationship between internal strength and external forces producing shear stress. If stress greater than strength, then movement occurs. Critical angle of rest for different particle sizes/shapes. Result and slope form. Definition of mass movement Movement of material downslope under the influence of gravity. There is no other agent of movement, but slope wash and/or the presence of soil water may assist the process. Understanding of the role of water Classification of slope - a triangular diagram is the best way of discussing the variety of. Conditions for each type of process. A The students can then plot some of the for themselves to demonstrate their understanding Students need to learn about each of the major and be aware of the resultant slope forms. E.g. rotational slip may be a slide along a slip plane with a flow at the toe if there is clay at the base of the slope. So there will be a compound slope profile possible with concave and convex elements June 2007 Q. 3 Fig. 3 is a model of a slope, ideal teaching tool. Ross p.59 Waugh p.46 Fig 2.12 Prosser p.34 Fig 1.37 Hart p.106 Fig. 4.37 Hart p.107 Nagle p.46 Geofile Jan 2008 Hillslope hydrology June 2006 Fig. 2 alternative to the triangular diagram, useful teaching aid. Knowledge and Note It is important that students realise that differences in slope produce differences

the factors that influence slope in slope form. By that is meant angle/gradient, shape, characteristics. Often this answer is one of the weakest on the paper. The factors are similar to those that influence - climate, soil, vegetation, rock lithology especially mixed lithology (e.g. chalk overlying clay). Gradient (influences the shear stress), aspect. Should be seen as part of the slope as an open system. Students should understand the role of climate in influencing rates of. This is usually little appreciated by candidates. Do emphasise and study this part of the topic. Nov 2005 Q. 8(c) and June 2008 Q. 3(b). The question appears frequently. Hart p.115 Nagle p.49 Waugh p.46 Fig 2.13 Ross p.59 Hart pp.108-113 Detailed catalogue of Waugh pp.47-9 Good case studies pp.52-57 Prosser pp.32-38 Very good on how slopes develop Hart p.114 Case Study of Holbeck Hall, UK Ross p.58 Good diagrams and explanation June 2007 Q. 3(b) June 2008 Q. 3(c) specifically on rates of 3.4 The human impact Understanding that human activity may have a significant impact on and slope Human activities which affect and slope may be intentional (e.g. mining, quarrying, spoil heaps, stabilising slopes, coastal management), or unintentional (e.g. effects of acid rain, deforestation, overgrazing by animals, landslides where favelas have been built on steep slopes). Impacts may be positive, i.e. prevent movement, or June 2006 Q. 8(c) emphasis on and slope form Ross pp.59-62 including case study Nagle pp. 54-55 Hart pp.115-7 Good material on human activities

negative and reduce internal strength/increase external stress. Examples are available in many textbooks, but the use of local examples is encouraged. They are often much easier for candidates to understand, remember and use.