MULTIPLE-LEVEL LOGIC OPTIMIZATION II

Similar documents
a b v a v b v c v = a d + bd +c d +ae r = p + a 0 s = r + b 0 4 ac + ad + bc + bd + e 5 = a + b = q 0 c + qc 0 + qc (a) s v (b)

Framework for functional tree simulation applied to 'golden delicious' apple trees

Constructive Geometric Constraint Solving

y1 y2 DEMUX a b x1 x2 x3 x4 NETWORK s1 s2 z1 z2

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

12. Traffic engineering

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management


Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Garnir Polynomial and their Properties

Section 10.4 Connectivity (up to paths and isomorphism, not including)

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

Fundamental Algorithms for System Modeling, Analysis, and Optimization

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

ETIKA V PROFESII PSYCHOLÓGA

An Example file... log.txt

" #$ P UTS W U X [ZY \ Z _ `a \ dfe ih j mlk n p q sr t u s q e ps s t x q s y i_z { U U z W } y ~ y x t i e l US T { d ƒ ƒ ƒ j s q e uˆ ps i ˆ p q y

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

(a) v 1. v a. v i. v s. (b)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

OC330C. Wiring Diagram. Recommended PKH- P35 / P50 GALH PKA- RP35 / RP50. Remarks (Drawing No.) No. Parts No. Parts Name Specifications

Vectors. Teaching Learning Point. Ç, where OP. l m n

Pharmacological and genomic profiling identifies NF-κB targeted treatment strategies for mantle cell lymphoma

An Introduction to Optimal Control Applied to Disease Models

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Principal Secretary to Government Haryana, Town & Country Planning Department, Haryana, Chandigarh.

Matrices and Determinants

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

Optimal Control of PDEs

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

Computational Biology, Phylogenetic Trees. Consensus methods

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Max. Input Power (W) Input Current (Arms) Dimming. Enclosure

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Symbols and dingbats. A 41 Α a 61 α À K cb ➋ à esc. Á g e7 á esc. Â e e5 â. Ã L cc ➌ ã esc ~ Ä esc : ä esc : Å esc * å esc *

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008


Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Redoing the Foundations of Decision Theory

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

COMP108 Algorithmic Foundations

F O R SOCI AL WORK RESE ARCH

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

Planning for Reactive Behaviors in Hide and Seek

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

The University of Bath School of Management is one of the oldest established management schools in Britain. It enjoys an international reputation for

ALTER TABLE Employee ADD ( Mname VARCHAR2(20), Birthday DATE );

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael.

February 17, 2015 REQUEST FOR PROPOSALS. For Columbus Metropolitan Library. Issued by: Purchasing Division 96 S. Grant Ave. Columbus, OH 43215

SOLAR MORTEC INDUSTRIES.

QUESTIONS BEGIN HERE!

Planar Upward Drawings

arxiv: v1 [cs.ds] 20 Feb 2008

Present state Next state Q + M N

Problem solving by search

1. Allstate Group Critical Illness Claim Form: When filing Critical Illness claim, please be sure to include the following:

THE ANALYSIS OF THE CONVECTIVE-CONDUCTIVE HEAT TRANSFER IN THE BUILDING CONSTRUCTIONS. Zbynek Svoboda

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

Examination paper for TFY4240 Electromagnetic theory

General Neoclassical Closure Theory: Diagonalizing the Drift Kinetic Operator

$%! & (, -3 / 0 4, 5 6/ 6 +7, 6 8 9/ 5 :/ 5 A BDC EF G H I EJ KL N G H I. ] ^ _ ` _ ^ a b=c o e f p a q i h f i a j k e i l _ ^ m=c n ^

Optimization of a parallel 3d-FFT with non-blocking collective operations

Quartets and unrooted level-k networks

Constructive Decision Theory

DEVELOPMENT SITES FOR SALE

Clustering for Processing Rate Optimization

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

4.3 Laplace Transform in Linear System Analysis

Obtain from theory/experiment a value for the absorbtion cross-section. Calculate the number of atoms/ions/molecules giving rise to the line.

LEO VAN IERSEL TU DELFT

Connection equations with stream variables are generated in a model when using the # $ % () operator or the & ' %

B œ c " " ã B œ c 8 8. such that substituting these values for the B 3 's will make all the equations true

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

Multipoint Alternate Marking method for passive and hybrid performance monitoring

Solutions to Homework 5

Juan Juan Salon. EH National Bank. Sandwich Shop Nail Design. OSKA Beverly. Chase Bank. Marina Rinaldi. Orogold. Mariposa.

MARKET AREA UPDATE Report as of: 1Q 2Q 3Q 4Q

Glasgow eprints Service

Continuing Education and Workforce Training Course Schedule Winter / Spring 2010

A Functional Quantum Programming Language

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

Discovering Frequent Graph Patterns Using Disjoint Paths

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

UNIQUE FJORDS AND THE ROYAL CAPITALS UNIQUE FJORDS & THE NORTH CAPE & UNIQUE NORTHERN CAPITALS

Transcription:

MUTIPE-EVE OGIC OPTIMIZATION II Booln mthos Eploit Booln proprtis Giovnni D Mihli Don t r onitions Stnfor Univrsit Minimition of th lol funtions Slowr lgorithms, ttr qulit rsults Etrnl on t r onitions Empl & ' : Controllilit on t r st Input pttrns nvr prou th nvironmnt t th ntwork s input s1 s2 DEMUX 1 2 *3 *4 NETWORK N1 1 ))2 1 (2 N2 N3 o1 o2 Osrvilit on t r st : Input pttrns rprsnting onitions whn n output is not osrv th nvironmnt Rltiv to h output Vtor nottion us:! " # $ + Inputs rivn -multiplr, - - /0 1 2 314 65 7 9 : = > 2 83 4 1? 6 @ A 2 1B 3 O P Q Outputs osrv whn 1 9 C D 1E G 6 H 9 I J 6 K M 9 N 4 2 3 2 4 3 4 R 4 S T 1 U V W X YZZ[ \ ] ^ 1 ` _1 44 f

œ g i œ ž Empl ovrll trnl on t r st h Intrnl on t r onitions k l m n DC CDCo p q r s t u wwwv 1 { 2 } ~ 3 š 4 š š 1 ƒ 2 3 ˆ 4 Š4 Œ 2 Ž 3 1 4 2 3 1 CDC in Ÿ out SUBNETWORK NETWORK Intrnl on t r onitions Inu th ntwork strutur Empl Controllilit on t r onitions: Pttrns nvr prou t th inputs of suntwork = + () = + = + () = + Osrvilit on t r onitions: Pttrns suh tht th outputs of suntwork r not osrv ª CDC of inlus ««Minimi ± ² ³ µ ¹ º» to otin:

5 - ¾ å Ý Ý ¼Stisfiilit ½ on t r onitions Invrint of th ntwork: À Á Â Ã Ä À ÁÅ Â Ã Æ Ç È É Ê Ë Ì Í Î Ï Ð Ñ Ò Ó Ô Õ Ö ÙCDC omputtion Ü Ntwork trvrsl lgorithm: Consir iffrnt uts moving from input to output Initil CDC is ß à ß á â Ú Û Ø Usful to omput ontrollilit on t rs ã Mov ut forwr Consir SDC ontriutions of prssor! Rmov unn vrils onsnsus ÙCDC omputtion ä Ý æ ç è é ê ë ì CONTROABIITY(, í î í ï ð ñ ò ) ó ô õ ö ø ù ú û ü ø ý þ forh vrt ÿ in topologil orr st ll ir su of r in forh vrt!! " # $ &!! " # $ ( ' ) * ) +, / 0 1 2 3 / 4 1 2 1 1 8 2 3 () 92 4 1 1 Empl 2 () 3 2 84 1 1 2 6 () 3 7 92 4 :{,} {,} > {,,4} {1,,4} = {1,2,3,4}

ª Â Ä Ó Ã Å À Á A Assum B C B D E G H1I J4 Empl? @ Prturtion mtho K Slt vrt M : Contriution N to O P O Q R S : T U V W 6 X Y 9 Z 2 3 Drop vrils [ \ ] ^ 6 _ ` 9 2 3 onsnsus: f g h i1 k4 l Slt vrt m n : Contriution N to o p o q r s : t u v w 1 { } ~ ƒ 1 ˆ Š 4 1 Œ Drop vril Ž 1 onsnsus: š œ 4 Moif ntwork ing n tr input «Etr input n flip ± ² Rpl lol funtion polrit of signl ³ µ Prtur trminl hvior: f ¹ º» ž Ÿ Ÿ 2 ¾ δ Empl ¾ ¼ ½ ¾ Osrvilit on t r onitions Conitions unr whih hng in polrit of signl is not priv t th outputs Complmnt of th Booln iffrn: () () () Æ Ç È Æ É Ê Ç Ë Ì Í 1 Î Ï Ð Ñ Ò 0 Diffrn of prtur funtion: fô Õ 0Ö fø Ù 1Ú

Ý à Z ß Û Ü æ è ð _ ` ã g Osrvilit on t r omputtion Prolm: Outputs r not prss s funtion of ll vrils If ntwork is flttn to otin f, it m plo in si ç Trvrs At root: Singl-output ntwork with tr strutur ntwork tr ï é ê ë ì í î is givn At intrnl vrtis: ä å Rquirmnt: á ol â Ntwork ruls for trvrsl omputtion ñ ò ó ô õ ö ø ù ú û ü ý þ ñ ò ó ù Empl ÿ 1 1 4 2 Assum 0! " # $ # & ' $ ( ) 5 6 7 8 9 : = >? @ A B : C 1 1 2 4 1* +, - / 0 1 2 0 3 4 D E G H 1 I J K M N O P Q M R P S 1T U V W X Y 1 [ Gnrl nout ronvrgn ntworks \ ] or h vrt with two (or mor) fnout stms: Th ontriution of th long th stms nnot tout ourt Å Intrpl of iffrnt pths Mor lort nlsis ^ 1 4

g h i ù þ f ñ C o C D É æ N œ N 7 Two-w fnout stm Comput Comin s f, 1 2, sts ssoit with gs t vrt { formul rivtion } ~ f 1 6 ƒ 2 1 1 f 1ˆ 6 Š Œ 2 Ž 0 0 f 1 6 2 1 1 f 1 6 š 2 0 0 Ž ž f 1Ÿ 2 0 1 f 1 2 0 1ª ª «f 1 2 1± 1² ³ f 1µ 2 0 1¹ ¹ º» Ž ¼ f 1½ ¾ 6 2 0À 1Á  fã 1Ä Å 6 Æ Ç 2 0 0È È Ê Ë Ì Í Î Ñ Ò Ó Ô Õ 2Ï 1 Ð 1Ö 0 Ø Ù Ú Û Ø 6 Ü Ý ß à á â ã à 2 1ä å ç è é ê ç ë ç ì í î ï ð ormul rivtion: Assum two qul prturtions on th gs k l fm 1n o 6 p 2 1q 1r s ft 1u v 6 w 2 0 0 Bus ò ó ò 1 ô õ 2 ö Multi-w Thorm gstms ø t ú û ü ý n intrnl or input vrt th g vrils t ÿ 1 2 1 2 orrsponing to Osrvilit on t r lgorithm 6 OBSERVABIITY(8 9 : = >,? @ A ) E G H B forhj K vrt M N in rvrs topologil for 1 to O PQ R S T U V Q R W U X Y Z 1 [ \ ] ^ _ ` f g h 1 g i 1 k k k l m l n o orr I t 1 2! " # th g s $ & ' () * +,- /+ 0 1 11 2 2 2 1 3 4 1 3 5

* E u r v w s i k l NM ÿ t 1 1 2 3 () 2 4 Empl 1 1 2 () 3 p q { } ~ 0 1 1 ƒ ~ ˆ Š Œ Ž 0 š œ ž Ÿ 1 1 ª «± ² 1 4 4 ³ 1µ ¹ º» ¼ ½ ¾  ÃÀ ÄÁ 4Å Æ Ç Í È ÎÉ Ê ÏÉ1 Ë Ì 4 4 1 Ð Ñ Ò 4 Ó Ô Õ Ö Ø Ù Ú Û ÜÝ Û ß Û à á â ã ä å æç è é êî ì í ë4 1 4 4 ï ð 1ñ ò ó ô 1 õ ö ú ø 1ù 4 1 û ü ý 4 2 4 Trnsformtions with on t rs Booln simplifition: Us Minimi þ stnr minimir (Esprsso) th numr of litrls Booln sustitution: Simplif funtion Equivlnt to simplifition ing n tr input with glol on t r onitions Empl Booln sustitution Sustitut into to gt! " # $ & ' ( ) # $ ) & $ # ) " & ' ) SDC st: Simplif +, - / 0 1 2 / 3 with 4 5 6 7 4 5 8 9 7 4 6 5 : 8 9 5 s on t r Singl-vrt optimition P Q R S T Q U V W X Y Z [ Y X \ ] ^ ^ _ m O rpt ` = slt vrt H f Comput th lol on t r st Optimi th funtion g h until (no mor rution is possil) Simplifition ils = >? @ A B C A D On litrl lss G hnging H th support I of J K

p u º ¼ G G Ý H nm o À Á Â Ä I ¾M Æ ˆ Empl M Š Optimition n prturtions Rpl q r s t δ Œ () () () Prturtion v w w { w Ž No trnl on t r st Conition for fsil rplmnt: Prturtion oun H lol on t r st Rpl AND wir: } ~ DC ƒ Anlsis: l If not primr input onsir lso CDC st š œ š œ œ ž Ÿ µ ª «± ª ² ³ fsil! Dgrs of from M Multipl-vrt optimition k ull rprsnt on t r onitions: Simplif mor thn I on lol funtion t tim Etrnl on t rs ¹ Intrnl osrvilit n G ontrollilit Potntill ttr (mor ¹ gnrl) pproh» Don t rs rprsnt n uppr oun prturtion I on th Anlsis: à Multipl l prturtions Approimtions: ½ Us smllr on t r sts to omputtion sp-up th Conition for fsil rplmnt: Å Uppr n» lowr ouns Booln rltion mol on th prturtion

Ë Ì ò õ Ô Õ # Ô! Õ " É ˆ Empl δ 1 δ2 ÇM È Multipl-vrt optimition Booln rltion mol ÖM () Ê () Ê Ù () () Ø Æ Th two prturtions k r rlt Í Cnnot hng simultnousl: Î Ï Ð Î Ñ Ò Ó Ñ Ú Û Ü Ý ß 0 0 0 à 00, 01, 10 á 0 0 1 â 00, 01, 10 ã 0 1 0 ä 00, 01, 10 å 0 1 1 æ 00, 01, 10 ç 1 0 0 è 00, 01, 10 é 1 0 1 ê 00, 01, 10 ë 1 1 0 ì 00, 01, 10 í 1 1 1 î 11 ï Multipl-vrt optimition Booln rltion mol Comput Booln rltion: ðm ñ ó lttn th ntwork Anl pttrns ô Driv quivln ö Us rltion minimir rltion from s $ Multipl-vrt optimition Booln rltion mol M rpt = slt vrt sust forh vrt Comput Dtrmin th quivln lsss of th Booln rltion of th suntwork inu in n optiml funtion omptil with th rltion using rltion minimir until (no mor rution is possil) ø Empl of minimum funtion: ù ú û ü ý þ 1 ÿ ÿ 10 1 1 01