REACTIVE DIVIDING-WALL COLUMNS: TOWARDS ENHANCED PROCESS INTEGRATION

Similar documents
Reactive Dividing-Wall Columns How to Get More with Less Resources?

IMPROVED CONTROL STRATEGIES FOR DIVIDING-WALL COLUMNS

Rate-based design of integrated distillation sequences

Thermally Coupled Distillation Systems: Study of an Energy-efficient Reactive Case

Dividing wall columns for heterogeneous azeotropic distillation

SIMULATION ANALYSIS OF FULLY THERMALLY COUPLED DISTILLATION COLUMN

Wikisheet Dividing Wall Column

Chemical Engineering and Processing: Process Intensification

A NOVEL PROCESS CONCEPT FOR THE PRODUCTION OF ETHYL LACTATE

Design and Analysis of Divided Wall Column

The most important nomenclature used in this report can be summarized in:

Complex Distillation Arrangements : Extending the Petlyuk Ideas

A novel design of reactive distillation configuration for 2-methoxy-2-methylheptane process

Distillation is a method of separating mixtures based

Reduction of Energy Consumption and Greenhouse Gas Emissions in a Plant for the Separation of Amines

regressing the vapor-liquid equilibrium data in Mathuni et al. and Rodriguez et al., respectively. The phase equilibrium data of the other missing pai

BOUNDARY VALUE DESIGN METHOD FOR COMPLEX DEMETHANIZER COLUMNS

INDUSTRIAL EXPERIENCE WITH HYBRID DISTILLATION PERVAPORATION OR VAPOR PERMEATION APPLICATIONS

Economic and Controllability Analysis of Energy- Integrated Distillation Schemes THESIS. (Summary of the Ph.D. dissertation)

Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati

Recovery of Aromatics from Pyrolysis Gasoline by Conventional and Energy-Integrated Extractive Distillation

RATE-BASED MODELING OF TWO COMMERCIAL SCALE H 2 S STRIPPING COLUMNS

MODULE 5: DISTILLATION

IV Distillation Sequencing

Level 4: General structure of separation system

Minimum Energy Consumption in Multicomponent Distillation. 3. More Than Three Products and Generalized Petlyuk Arrangements

Experimental evaluation of a modified fully thermally coupled distillation column

Reprinted from February Hydrocarbon

Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide

Active vapor split control for dividing-wall columns

MULTI-LOOP CONTROL STRUCTURE FOR DIVIDING-WALL DISTILLATION COLUMNS. Abstract. Introduction

PRACTICAL CONTROL OF DIVIDING-WALL COLUMNS

THERMAL INTEGRATION OF A DISTILLATION COLUMN THROUGH SIDE-EXCHANGERS

Process Unit Control System Design

Heterogeneous Azeotropic Distillation Operational Policies and Control

SELECTIVE REMOVAL OF CARBON DIOXIDE FROM AQUEOUS AMMONIA SOLUTIONS

Structural considerations and modeling in the synthesis of heat integrated thermally coupled distillation sequences

COPYRIGHTED MATERIAL INTRODUCTION CHAPTER 1

Approximate Design of Fully Thermally Coupled Distillation Columns

CONTROL PROPERTIES ANALYSIS OF ALTERNATE SCHEMES TO THERMALLY COUPLED DISTILLATION SCHEMES

Two of the most important

DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM. I-Lung Chien and Kai-Luen Zeng

Placement and Integration of Distillation column Module 06 Lecture 39

Control properties of thermally coupled distillation sequences for different operating conditions

Implementation and Operation of a Dividing-Wall Distillation Column

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Hybrid Systems for the Separation of Light Hydrocarbon Mixtures

Design and Control Properties of Arrangements for Distillation of Four Component Mixtures Using Less Than N-1 Columns

Towards intensified separation processes in gas/vapour-liquid systems. Chair of Fluid Process Engineering Prof. Dr.-Ing.

Analysis of processing systems involving reaction and distillation: the synthesis of ethyl acetate

A Generalized Ease Of Separation Index for Selection of Optimal Configuration of Ternary Distillation

Acetone Process Energy Recovery by Means of Energy Analysis

Minimum Energy Consumption in Multicomponent Distillation: III: Generalized Petlyuk Arrangements with more than Three Products

SIMULATION STUDY OF DIVIDED WALL DISTILLATION COLUMN PROF.B.MUNSHI

Open Archive Toulouse Archive Ouverte

Simulation and Analysis of Ordinary Distillation of Close Boiling Hydrocarbons Using ASPEN HYSYS

LATEST TECHNOLOGY IN Safe handling & Recovery OF Solvents in Pharma Industry

Shortcut Design Method for Columns Separating Azeotropic Mixtures

The Role of Process Integration in Process Synthesis

Pressure Swing Distillation with Aspen Plus V8.0

Study of arrangements for distillation of quaternary mixtures using less than n-1 columns

THERMODYNAMIC INSIGHT ON EXTRACTIVE DISTILLATION WITH ENTRAINER FORMING NEW AZEOTROPES

Optimizing Control of Petlyuk Distillation: Understanding the Steady-State Behavior

A comparative study on the recovery of 1,2-dichloroethane and the removal of benzene contained in the byproducts of VCM process

Distillation. Presented by : Nabanita Deka

Steady State Design for the Separation of Acetone-Chloroform Maximum Boiling Azeotrope Using Three Different Solvents

Thermodynamic Analysis and Hydrodynamic Behavior of a Reactive Dividing Wall Distillation Column 1. Introduction

Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or

Distillation. Senior Design CHE 396 Andreas Linninger. Innovative Solutions. Michael Redel Alycia Novoa Tanya Goldina Michelle Englert

Conceptual Design of Reactive Distillation Columns with Non-Reactive Sections

Azeotropic Distillation Methods. Dr. Stathis Skouras, Gas Processing and LNG RDI Centre Trondheim, Statoil, Norway

Simulation of Butyl Acetate and Methanol Production by Transesterification Reaction via Conventional Distillation Process

ECONOMIC ANALYSIS OF ANETHANOL-TO-HYDROCARBON PROCESSSET-UP THROUGH MODELLING AND SIMULATION USING ASPEN PLUS

Prepared for Presentation at the 2004 Annual Meeting, Austin, TX, Nov. 7-12

A Rate-Based Equation-Oriented Parallel Column Model: Application to Dividing Wall Columns

Novel Control Structures for Heterogeneous Reactive Distillation

Eldridge Research Group

Simulation and Design of a Dividing Wall Column with an Analysis of a Vapour Splitting Device

Optimization of Batch Distillation Involving Hydrolysis System

Triple Column Pressure-Swing Distillation for Ternary Mixture of Methyl Ethyl Ketone /Isopropanol /Ethanol

Effect of Li-Br salt on azeotropic mixture of formic acid-water by extractive distillation

Comparison of Conventional Extractive Distillation and Heat Integrated Extractive Distillation for Separating Tetrahydrofuran/Ethanol/Water

All Rights Reserved. Armando B. Corripio, PhD, P.E., Multicomponent Distillation Column Specifications... 2

Multivariable model predictive control design of reactive distillation column for Dimethyl Ether production

Application of Decomposition Methodology to Solve Integrated Process Design and Controller Design Problems for Reactor-Separator-Recycle Systems

Make distillation boundaries work for you!

DETERMINATION OF OPTIMAL ENERGY EFFICIENT SEPARATION SCHEMES BASED ON DRIVING FORCES

Design and control of an ethyl acetate process: coupled reactor/column configuration

,, Seong-Bo Kim,Hai-SongBae, and Jeong-Sik Han

Dehydration of Aqueous Ethanol Mixtures by Extractive Distillation

Comparison of Conventional and Middle Vessel Batch Reactive Distillation Column: Application to Hydrolysis of Methyl Lactate to Lactic Acid

Performance of Reactive Distillation Columns with Multiple Reactive Sections for the Disproportionation of Trichlorosilane to Silane

Effect of Two-Liquid Phases on the Dynamic and the Control of Trayed Distillation Columns

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March ISSN

Control of Thermally Coupled Distillation Arrangements with Dynamic Estimation of Load Disturbances

Separations and Reactors Design Project. Production of Allyl Chloride

Vapor-liquid equilibrium

Steady State Multiplicity and Stability in a Reactive Flash

POSITION R & D Officer M.Tech. No. of questions (Each question carries 1 mark) 1 Verbal Ability Quantitative Aptitude Test 34

Transcription:

Distillation bsorption 1.. de aan,. Kooijman and. Górak (Editors) ll rights reserved by authors as per D1 copyright notice RETIVE DIVIDING-WLL OLUMNS: TOWRDS ENNED PROESS INTEGRTION nton. Kiss, J. J. Pragt,. J. G. van Strien kzonobel Research, Development and Innovation, 6 M rnhem, The Netherlands Email: tony.kiss@akzonobel.com bstract This work presents an integrated reactive-distillation design based on a dividingwall column (DW) applied to an industrial case study within kzonobel. Remarkably, it is among the first industrial application of a reactive DW reported in literature. The benefits of this novel integrated design are the ability to overcome VLE and chemical equilibrium limitations, as well as to separate the main product as high purity side-stream. To solve the problem of a production shift required by market demand changes, we developed an innovative integrated design that combines reaction and separations into one reactive DW that allows significant savings in capital and operating costs up to 36% and 15%, respectively. Two scenarios are analyzed and the results of the rigorous simulations are presented. Keywords: reactive distillation, dividing-wall column, equilibrium restrictions 1. Introduction One of the most important separation technologies in the chemical processing industry is distillation. Essentially, all of the chemicals produced go through at least one distillation column on their way from crude oil to final product. Even in an economy based on renewable sources of energy such as biomass, the fuel of choice will be bio(m)ethanol or biodiesel all of these processes requiring separation by distillation. onsidering its many well-known advantages, distillation is and it will remain the separation method of choice in the chemical industry with ten of thousands columns in operation around the world. owever, one important drawback is its considerable energy requirements, as distillation can generate more than 5% of plant operating cost. n innovative solution to diminish this energy consumption drawback is using advanced process integration and intensification. 1 Process integration and intensification aims at significant capital and energy savings, as well as environmental benefits, by integrating different phenomena or operations, as for example: reactive separations, dividing-wall columns, heat integrated reactors or columns. Several successful examples of integrated processes can be found among reactive-separations that combine reaction and separation steps in a single unit, such as reactive distillation, reactive absorption and reactive extraction. For example, reactive distillation has significant economic advantages over conventional reactor-separator-recycle systems, 2 particularly for reversible reactions in which conversion is limited by chemical equilibrium constraints and/or separation is restricted by VLE limitations. owever, due to the integration of reaction and separation into a single vessel, reactive distillation is limited to systems in which the reaction and separation conditions are similar mainly in terms of pressure and temperature. Nevertheless, compared to conventional reactor-distillation sequences, the integrated reactive-distillation design brings several advantages such as: increased conversion due to overcoming equilibrium limitations, increased selectivity via suppression of secondary reactions, reduced energy requirements due to in-situ heat integration, avoidance of hot spots by liquid evaporation, breaking of azeotropes by chemical reaction and ability to separate close boiling components. eside reactive separations, there is also the option to integrate two different separation units together. onventionally, a ternary mixture can be separated via a direct sequence (lightest first), indirect sequence (heaviest first) or distributed sequence (mid-split) consisting of 2-3 distillation columns. This separation sequence progressed to the Petlyuk column configuration 3 consisting of two fully thermally coupled distillation columns. Eventually, this led to the concept of dividing-wall column (DW) that integrates in fact the two columns of a Petlyuk system (Figure 1) into one shell.,5 253

.. Kiss et al. LIQ PF D VP DW Figure 1. Petlyuk column with prefractionator vs dividing-wall column (DW). DW is very appealing to the chemical industry as it can separate three or more components in a single distillation tower, thereby eliminating the need for a second unit, hence saving the cost of building two columns and cutting operating costs by using a single condenser and reboiler. In fact, using dividing-wall columns can save up to 3% in the capital invested and up to % in the energy costs. 2,5-7 ompared to conventional distillation arrangements, DW offers the following benefits: igh purity for all three product streams reached in only one column. igh thermodynamic efficiency due to reduced remixing effects. Lower energy consumption compared to conventional (in-)direct separation sequences. Small footprint due to reduced number of equipment units. Lower capital investment due to the integrated design. DW and reactive distillation are both improvements of traditional distillation units but at the same time they correspond to two different ways of integration: separation-separation and reactionseparation, respectively. The incentives of these integrated units could be further enhanced if they are combined via an additional integration step. The resulting unit called reactive dividing-wall column (RDW) has a highly integrated configuration that consists of one condenser, one reboiler, reactive zones, a pre-fractionator and the main column together in a single-shell distillation setup. 2. Problem statement The problem and solutions described here relate to a novel integrated design project applicable to one of kzonobel plants. The current industrial process involves a relatively complex, fast chemical equilibrium of 1 species denoted below by letters J, and sorted in descending order of volatility, with being the most volatile and J the heaviest component. Due to the homogeneous catalyst, the reactions may take place everywhere in the system. Therefore, the reactions were modeled as a system of fast equilibrium reactions: 1. + J + (main reaction) 2. + + E (secondary reaction) 3. D + + I (secondary reaction). + E + F (secondary reaction) 5. F + J 2 G (secondary reaction) onventionally, the reactor outlet mixture (F1: DEI) is separated in a series of distillation columns. Most of the streams are recycled back to the reactor while component is purified (min. 9.5%) and afterwards put on the market as the main product. owever, due to changes in the market demand, the by-product became more economically attractive than the main product. The problem with the existing plant is that no increase of the by-product production rate is possible at the cost of the main product although market changes strongly demand it. Moreover, the obvious option of adding another reactor and two distillation columns for this production change was discarded due to the unavailable floor area and the high investment costs involved. To solve this problem we investigated a base case design alternative, namely a two-column configuration that uses a reactive distillation column (RD), followed by a conventional distillation column (D). The operating parameters, such as temperature and pressure, are fortunately similar in these two individual columns. 25

Reactive Dividing-Wall olumns: Towards Enhanced Process Integration Therefore the design can be further integrated into a reactive DW setup that combines the two columns of the base case into only one distillation vessel. 3. Results and discussion The conceptual design of the (reactive) distillation columns was performed using graphical stage composition lines and stage-to-stage methods for RD column design. Note that three binary homogeneous azeotropes are present in the system (-E, D-E, -I), as illustrated by the residue curve maps (Figure 2). This drawback can be surmounted in an integrated reactive distillation setup, as these homogeneous azeotropes can be broken by the chemical reactions described previously. Residue curve map for /D/E Residue curve map for /E/I Molefrac D.6.5..3.2.1 Molefrac.9..7.6.5..3.2.1 Molefrac I.6.5..3.2.1 Molefrac.9..7.6.5..3.2.1.1.2.3..5.6.7..9 Molefrac E.1.2.3..5.6.7..9 Molefrac E Figure 2. Residue curve map of the ternary systems -D-E and -E-I. The base case design consisting of a reactive distillation column (RD) and a conventional distillation column (D) was rigorously simulated in spen Plus flowsheet shown in Figure 3. This sequence has two column shells, two reboilers, two condensers, one extra pump, and it requires a great deal of piping and floor area that are not available in the existing plant. owever, the advantage of this setup is its flexibility, as the columns can operate at different pressures operation that is not possible in an integrated column such as reactive DW. REY-1 REY-2 TOP2 F1 1 TOP1 PUMP F2 2 TM2 EX TM1 Figure 3. spen Plus flowsheet of the two-columns distillation sequence. The composition and temperature profiles in the RD (1) and D (2) columns are shown in Figure. The top product of the first column is a mixture of the most volatile components,, and. The second column separates and in the top, while component is delivered as a bottom product. The temperature profiles in these columns show small differences, suggesting reactive DW as a rational choice. Note that the dimensionless temperature used in the following figures, is calculated by dividing the temperature on a specific stage to the maximum temperature of all columns (T stage / T max ), namely the reboiler temperature of the reactive DW the alternative describe thereafter. 255

.. Kiss et al. Top Top Stage olumn 2 olumn 1 J E tm tm Figure. omposition and temperature profiles in the two columns (base case). In addition to the base case configuration, we considered the more integrated design that combines reaction and separation into one reactive DW (Figure 5). The key factor that allows such an integration of two columns into one unit is the similar pressure and temperature conditions in the standalone columns. asically, the reactive DW setup consists of only one column shell, one reboiler and one condenser and requires significant less piping and floor space compared to the base case design. owever, the column diameter is somewhat larger compared to the diameter of the columns presented in the base case. Note that modeling reactive distillation and DW is nowadays possible using state-of-the-art rate-based models (Mueller and Kenig, 7). owever, due to the absence of a reactive DW unit in spen Plus, this integrated unit was simulated using two coupled rigorous RDFR (reactive-) distillation units the thermodynamic equivalent of reactive DW (Figure 5). RE-1 V1 RE-2 L2 DEI F1 1 2 V2 RDW L1 IJ TM Figure 5. Proposed RDW alternative (left). spenplus flowsheet of DW (right). hemical reactions take place only on the feed side and bottom sections of the column, where the light components are separated from the heavy ones. small amount of component is added on top of the feed location, in order to break the azeotropes and to push the mid-boiling and heavy components (D-J) to the bottom of the column. Moreover, the formation of heavy components F and G (waste by-products) is avoided by adding an extra feed stream of light component into the bottom of the column. consumes the heavier component F and avoids the parallel conversion of F into G, according to the reactions: + F + E, and F + J 2 G. The reactive DW column has 22 stages in total, with the feed located on stage, and liquid sidedraw from stage. The location of the feed stage and side-draw has a crucial effect on the sideproduct purity. Out of all column stages, 3 of them are located above and bellow the dividing-wall, for the common rectifying and stripping sections, respectively. The liquid composition and the temperature profiles in the reactive DW are shown in Figure 6. The feed side of the RDW resembles the RD of the base case. owever, the product side of RDW performs only the separation of product from, since no chemical reactions take place here as components,, do not react with each other, according to reactions equations 1-5. Main product is collected as high purity side stream from the product-side of the column, as illustrated by 256

Reactive Dividing-Wall olumns: Towards Enhanced Process Integration the composition profiles. Note that compared to the base case, the height of the reactive DW remains the same as of the RD but the diameter is slightly larger. The temperature differences between the feed- and product-side of the RDW are reasonable small, the maximum difference being less than 25 hence it can be easily achieved in practice. Stage 1 2 Top Side withdrawal Temperature feed-side Temperature product-side J ottom Figure 6. omposition and temperature profiles in the RDW (1/2 feed/product side). Figure 7 shows the results of the sensitivity analysis for the side product purity versus column feed stage and side-draw stage, respectively. Remarkably, the product has a high purity on a large range of stages, thus the column is very robust and able to cope well with disturbances in feed flow rate and feed composition. This inherent robustness is the major practical reason to have a relatively large number of stages also on the product removal side of the column similar to the feed side of the RDW. Moreover, having some useless stages is an asset during hydraulic design, because it allows dosing the amount of pressure drop required to achieve the required design vapor split. 9.6 9.6 Product purity / [wt%] 9. 9.2 Product purity / [wt%] 9. 9.2 9. 5 1 15 Feed stage / [-] 257 9. 5 1 15 Side-draw stage / [-] Figure 7. omposition and temperature profiles in RDW (1/2 feed/product side). The economics of the reactive DW alternative was then compared against the base case design. Rigorous calculations of the equipment costs and total investment were performed using spentech IRUS process evaluator (spen Technology, 9). Since the reactive DW makes use of two columns in one shell (DW) and only one reboiler and one condenser, the investment costs are significantly lower compared to the base case. Note that the equipment cost includes: equipment and setting, piping, civil and electrical, structural steel, instrumentation, insulation, paint and manpower. For the reactive DW case the total investment cost is 36% less compared to the base case, due to the need for only one column, condenser and reboiler (Table 1). In addition, about 15% less energy is required mainly because the mid-boiling product is evaporated only once, as no remixing effect is present in the reactive DW.

.. Kiss et al. Table 1. Equipment and operating cost for the base-case (RD+D) vs RDW. Equipment / Description Units ase case RDW olumn shell(s) keuro 23 26 ondenser(s) + Reboiler(s) keuro 352 227 Total installed equipment cost keuro 775 91 Steam and electricity keuro/year 13 ooling water keuro/year 3 Total operating costs keuro/year 17 91. onclusions The innovative reactive DW design proposed in this work is able to overcome the chemical equilibrium limitations by removing the products from the reaction zone consequently pulling the equilibrium towards products formation as well as surmount vapor-liquid equilibria (VLE) restrictions by consuming specific components, thus breaking the homogeneous azeotropes present in the system. Moreover, although the main product is not the lightest nor the heaviest component in the system hence not recoverable as top distillate or bottom product the reactive DW can still separate it as high purity side-stream. The industrial case-study described here proves that the reactive DW concept is sufficiently developed to become an efficient distillation unit in the chemical industry world-wide. asically, the reactive DW unit integrates a reactive distillation (RD) tower with another conventional distillation column (D). The key factor that allows such integration of reaction + separation + separation is the similar pressure and temperature profiles in the two standalone distillation columns of the base case design (RD+D). The reactive DW setup offers similar or better performance compared to the base case design. Moreover, due to the robust design, the column copes very well with disturbances in both feed flow rate and composition. ompared to the base case design using two standalone distillation columns, the reactive DW alternative developed for this industrial application allows up to 36% savings in capital costs and 15% savings in energy costs, respectively. References 1. R. Taylor, R. Krishna,. Kooijman, hem. Eng. Prog., 99 (3) 2-39 2... Kiss,. Pragt,. van Strien, omp. ided hem. Eng., (7) 67-72 3. F.. Petlyuk, V. M. Platonov, D. M. Slavinskii, Int. hem. Eng., 5 (1965) 555-561. G. Kaibel, hem. Eng. Technol., 1 (197) 92 9 5.. ecker, S. Godorr,. Kreis, J. hem. Eng., January (1) 6-7 6. M.. Schultz, D. G. Stewart, J. M. arris, S. P. Rosenblum, M. S. Shakur, D. E. O rien, hem. Eng. Prog., May (2) 6-71 7. R. Isopescu,. Woinaroschy, L. Draghiciu, Rev. him., 59 () -15. I. Mueller, E. Y. Kenig, Ind. Eng. hem. Res., 6 (7) 379-3719 25