Module 3: Element Properties Lecture 5: Solid Elements

Similar documents
VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Support vector machines for regression

SVMs for regression Non-parametric/instance based classification method

SVMs for regression Multilayer neural networks

Learning Enhancement Team

Robot Dynamics. Hesheng Wang Dept. of Automation Shanghai Jiao Tong University

ME 501A Seminar in Engineering Analysis Page 1

Graphical rules for SU(N)

Module 3: Element Properties Lecture 1: Natural Coordinates

COMPLEX NUMBER & QUADRATIC EQUATION

Charged Particle in a Magnetic Field

STRENGTH FIELDS AND LAGRANGIANS ON GOsc (2) M

ELASTIC-VISCOPLASTIC HOMOGENIZATION ANALYSIS OF PLAIN-WOVEN GFRP LAMINATES WITH MISALIGNED PLAIN FABRICS

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad

Homework Math 180: Introduction to GR Temple-Winter (3) Summarize the article:

Journal of Engineering and Applied Sciences. Ultraspherical Integration Method for Solving Beam Bending Boundary Value Problem

Figure XX.1.1 Plane truss structure

Numerical integration in more dimensions part 2. Remo Minero

PHYSICS 212 MIDTERM II 19 February 2003

Interval Valued Neutrosophic Soft Topological Spaces

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus

CAMBRIDGE UNIVERSITY ENGINEERING DEPARTMENT. PART IA (First Year) Paper 4 : Mathematical Methods

6 Roots of Equations: Open Methods

CHAPTER 4: DETERMINANTS

REGULAR STURM-LIOUVILLE OPERATORS WITH TRANSMISSION CONDITIONS AT FINITE INTERIOR DISCONTINUOUS POINTS

Complement of an Extended Fuzzy Set

Lecture 7 Circuits Ch. 27

Fuzzy Rings and Anti Fuzzy Rings With Operators

2 a Mythili Publishers, Karaikkudi

5. Every rational number have either terminating or repeating (recurring) decimal representation.

7.2 Volume. A cross section is the shape we get when cutting straight through an object.

LESSON 11: TRIANGLE FORMULAE

Application to Plane (rigid) frame structure

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

4. Eccentric axial loading, cross-section core

Some Results on the Counterfeit Coins Problem. Li An-Ping. Beijing , P.R.China Abstract

CHENG Chun Chor Litwin The Hong Kong Institute of Education

Review of linear algebra. Nuno Vasconcelos UCSD

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting

Lecture 4: Piecewise Cubic Interpolation

Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY

425. Calculation of stresses in the coating of a vibrating beam

MARKOV CHAIN AND HIDDEN MARKOV MODEL

Pattern Generation for Two Dimensional. cutting stock problem.

JSM Survey Research Methods Section. Is it MAR or NMAR? Michail Sverchkov

HW #3. 1. Spin Matrices. HW3.nb 1. We use the spin operators represented in the bases where S z is diagonal:

Neural Network Introduction. Hung-yi Lee

50 AMC Lectures Problem Book 2 (36) Substitution Method

Lecture 36. Finite Element Methods

Numerical Analysis Topic 4: Least Squares Curve Fitting

CHAPTER (6) Biot-Savart law Ampere s Circuital Law Magnetic Field Density Magnetic Flux

CS 4758 Robot Kinematics. Ashutosh Saxena

NUMERICAL DIFFERENTIATION

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. with respect to λ. 1. χ λ χ λ ( ) λ, and thus:

Multiple view geometry

8 THREE PHASE A.C. CIRCUITS

Numerical Solution of Ordinary Differential Equations

THE SMOOTH INDENTATION OF A CYLINDRICAL INDENTOR AND ANGLE-PLY LAMINATES

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1.

The Ellipse. is larger than the other.

Engineering Tensors. Friday November 16, h30 -Muddy Charles. A BEH430 review session by Thomas Gervais.

A Study on the Properties of Rational Triangles

PARABOLIC AND ELLIPTIC REFLECTORS

Pre-Calculus Summer Assignment

Worksheet #2 Math 285 Name: 1. Solve the following systems of linear equations. The prove that the solutions forms a subspace of

Accurate Analysis of Dielectric Backed Planar Conducting Layers of Arbitrarily Shaped in a Rectangular Waveguide

Announcements. Image Formation: Outline. The course. Image Formation and Cameras (cont.)

Least squares. Václav Hlaváč. Czech Technical University in Prague

Principle Component Analysis

" = #N d$ B. Electromagnetic Induction. v ) $ d v % l. Electromagnetic Induction and Faraday s Law. Faraday s Law of Induction

Quiz: Experimental Physics Lab-I

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER

Basic projective geometry

( ) { } [ ] { } [ ) { } ( ] { }

Al-Zangana Iraqi Journal of Science, 2016, Vol. 57, No.2A, pp:

Dynamic Analysis Of An Off-Road Vehicle Frame

ORDINARY DIFFERENTIAL EQUATIONS

12.4 Similarity in Right Triangles

QUADRATIC EQUATION. Contents

CENTROID (AĞIRLIK MERKEZİ )

European Journal of Mathematics and Computer Science Vol. 3 No. 1, 2016 ISSN ISSN

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP

Machine Learning: and 15781, 2003 Assignment 4

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Section 1.3 Triangles

Study on the Normal and Skewed Distribution of Isometric Grouping

The Similar Structure Method for Solving Boundary Value Problems of a Three Region Composite Bessel Equation

Phase Transition in Collective Motion

LECTURE 21 Mohr s Method for Calculation of General Displacements. 1 The Reciprocal Theorem

Voltammetry. Bulk electrolysis: relatively large electrodes (on the order of cm 2 ) Voltammetry:

CHAPTER 4. Vector Spaces

2 Finite difference basics

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

Cyclic Codes BCH Codes

Mass Transfer as you have learned it. Diffusion with Drift. Classic - in Gases 1. Three Gases (1) Appendix. Mass transfer in

8.3 THE HYPERBOLA OBJECTIVES

Strain Energy in Linear Elastic Solids

Transcription:

Modue : Eement Propertes eture 5: Sod Eements There re two s fmes of three-dmenson eements smr to two-dmenson se. Etenson of trngur eements w produe tetrhedrons n three dmensons. Smr retngur preeppeds re generted on the etenson of retngur eements.fg..5. shows few ommon used sod eements for fnte eement nss. Fg..5. Three-dmenson sod eements Dervton of shpe funtons for suh three dmenson eements n Crtesn oordntes re ger qute umersome. Ths s oserved whe deveopng shpe funtons n two dmensons. Therefore the shpe funtons for the two s eements of the tetrhedr nd preeppeds fmes w e derved usng ntur oordntes. The ponom epresson of the fed vre n three dmensons must e ompete or nompete ut smmetr to stsf the geometr sotrop requrements. Competeness nd smmetr n e

5 ensured usng the Ps prmd whh s shown n Fg..5.. It s mportnt to note tht eh ndependent vre must e of equ strength n the ponom. Fg..5. Ps prmd n three dmensons The foowng -D qudrt ponom wth ompete terms n e pped to n eement hvng 0 nodes. f h = h h h h 0 5 7 8 9.5. However the geometr sotrop s not n souterequrement for fed vre representton to derve the shpe funtons..5. Tetrhedr Eements The smpest eement of the tetrhedr fm s four node tetrhedron s shown n Fg..5.. The node numerng hs een foowed n sequent mnner.e n ths se nt-owse dreton. Smr to the re oordntes the onept of voume oordnteshs een ntrodued here. The oordntes of the nodes re defned oth n Crtesn nd voume oordntes. Pont P nd s shown n Fg..5. s n rtrr pont n the tetrhedron.

Fg..5.Fournode tetrhedron eement The ner shpe funton for ths eement n e epressed s N.5. Here re the set of ntur oordntes nsde the tetrhedron nd re defned s foows.5. Where s the voume of the su eement whh s ound pont P nd fe nd s the tot voume of the eement. For empe m e nterpreted s the rto of the voume of the su eement P to the tot voume of the eement. The voume of the eement s gven the determnnt of the nod oordntes s foows:.5. The retonshp etween the Crtesn nd ntur oordntes of pont P m e epressed s.5.5 It m e noted tht the dentt nuded n the frst row ensure the mtr nverte.

7.5. The nverse reton s gven.5.7 Here s the voume sutended from fe nd terms nd represent the proeted re of fe on the oordnte pnes respetve nd re gven s foows:.5.8 w e n order.e.. The voume oordntes fuf nod ondtons for nterpoton funtons. Therefore the fed vre n e epressed n terms of nod vues s f f f f f =.5.9 Though the shpe funtons.e. the voume oordntesn terms of go oordntes s ger ompeut the re strghtforwrd.the prt dervtves of the ntur oordntes wth respet to the Crtesn oordntes re gven.5.0 Smr to re ntegr the gener ntegr ten over the voume of the eement s gven s r q p s r q p d s v r q p..5. The four node tetrhedr eement s ner funton of the Crtesn oordntes. Hene the frst prt dervtves of the fed vre w e onstnt. The tetrhedr eement s onstnt strn eement s the eement ehts onstnt grdents of the fed vre n the oordnte dretons. Hgher order eements of the tetrhedr fm re shown n Fg..5.. The shpe funtons for suh hgher orderthree dmenson eements n red e derved n voumeoordntes s for hgher-order two-dmenson trngur eements. The seond eement of ths fm hs 0 nodes nd u form forthe fed vre nd nterpoton funtons.

8.5. Br Eements rous orders of eements of the preepped fm re shown n Fg..5.. Fg..5. shows the eght-node r eementwth referene to go Crtesn oordnte sstem nd then wth referene to ntur oordnte sstem. The ntur oordntes for the r eement n e rete Crtesn oordnte sstem nd.5. Here nd re the ength heght nd wdth of the eement. The oordnte of the enter of the r eement n e wrtten s foows: nd 5.5. Thus from eq..5. nd eq..5. the nod vues n ntur oordnte sstems n e derved whh s shown n Fg..5.. Wth the ove retons vrtons of h & w e from - to. Now the nterpoton funton n e derved n sever proedures s done n se of two dmenson retngur eements. For empe the nterpoton funton n e derved nspeton n terms of ntur oordnte sstem s foows: N 8 h = hh.5. Fg..5. Eghtnode r eement B usng fed vre the foowng terms of the ponom m e used for dervng the shpe funton for eght-node r eement. = 0 5 7 fh h h h h.5.

9 The ove equton s nompete ut smmetr. However suh representtons re qute often used nd souton onvergene s heved n the fnte eement nss. Agn the shpe funtons for three dmenson 8-node or 7-node r eements n e dervedusng grnge nterpoton funton. For ths we need to ntrodue nterpoton funton n the ζ-dreton. Thus for empe the grnge nterpoton funton for three dmenson 8 node r eement n e otned from the produt of pproprte nterpoton funtons n the ξ η nd ζ dretons. Therefore the shpe funton w eome N h = f f hf Where =. n-node.5.5 Thus usng the grnge nterpoton funton the shpe funton t node n e epressed s - h-h - h = h = - h-h - - h- - N f f f = = - -h - -- -- --.5. Usng n of the ove onepts the nterpoton funton for 8-node r eement n e found s foows: N= - -h - N = -h - N= h - N = - h - N5= - -h N = -h N7 = h N8= - h.5.7 The shpe funtons of retngur preepped eements wth hgher nodes n e derved n smr mnner stsfng neessr rter.