Keywords: Bloch-Floquet Theorem, Periodic Media, Photonic Crystals, Plasmonic Crystals, Electronic Crystals, Phononic Crystals

Similar documents
CHEM6085: Density Functional Theory

Proof that the maximally localized Wannier functions are real

Photonic band gap engineering in 2D photonic crystals

Numerical construction of Wannier functions

Electrons in a periodic potential

Physics 221A Fall 1996 Notes 16 Bloch s Theorem and Band Structure in One Dimension

New Formula for Evaluating the Number of Unit Cell of a Finite Periodic Structure Considered as Infinite Periodic One

Photonic band structure in periodic dielectric structures

CHAPTER 4 ELECTROMAGNETIC WAVES IN CYLINDRICAL SYSTEMS

Group Theory and Its Applications in Physics

Optical properties of metamaterial-based devices modulated by a liquid crystal

Topological Physics in Band Insulators IV

Acoustooptic Bragg Diffraction in 2-Dimensional Photonic Crystals

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2.

Progress In Electromagnetics Research M, Vol. 20, 81 94, 2011

Angular Momentum in Quantum Mechanics

Modern Optics Prof. Partha Roy Chaudhuri Department of Physics Indian Institute of Technology, Kharagpur

Applied Mathematics Letters

Photonic crystals: a novel class of functional materials

Analysis of Photonic Band Structure in 1-D Photonic Crystal using PWE and FDTD Method

Part I. Mathematical Formalism

Research Article Band Structure Engineering in 2D Photonic Crystal Waveguide with Rhombic Cross-Section Elements

1 Algebra of State Vectors

Hilbert Spaces. Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space.

Minimal Update of Solid State Physics

Electrons in a weak periodic potential

Lecture 10: A (Brief) Introduction to Group Theory (See Chapter 3.13 in Boas, 3rd Edition)

Density of modes maps for design of photonic crystal devices

Appendix A. The Particle in a Box: A Demonstration of Quantum Mechanical Principles for a Simple, One-Dimensional, One-Electron Model System

Band gaps and the electromechanical coupling coefficient of a surface acoustic wave in a two-dimensional piezoelectric phononic crystal

E. YABLONOVITCH photonic crystals by using level set methods

Vector Spaces. Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms.

Lecture 10 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Analytical Analysis of H Polarized Line-Defect Modes in Two-Dimensional Photonic Crystals Based on Hermite Expansion of Floquet Orders

Computational Physics. J. M. Thijssen

2.3 Band structure and lattice symmetries: example of diamond

Behavior of light at photonic crystal interfaces

Mathematical Constraint on Functions with Continuous Second Partial Derivatives

Entropy Rate of Thermal Diffusion

Mobile Robotics 1. A Compact Course on Linear Algebra. Giorgio Grisetti

1. Reminder: E-Dynamics in homogenous media and at interfaces

Effective theory of quadratic degeneracies

2.4 Properties of the nonlinear susceptibilities

Band Gap Simulations of 1-Dimensional Photonic Crystal

EC 577 / MS 577: Electrical Optical and Magnetic Properties of Materials Professor Theodore. D. Moustakas Fall Semester 2012

Dispersion Relation of Defect Structure Containing Negative Index Materials

Keble College - Hilary 2012 Section VI: Condensed matter physics Tutorial 2 - Lattices and scattering

EXISTENCE OF GUIDED MODES ON PERIODIC SLABS

11.D.2. Collision Operators

Introduction to Group Theory

Reciprocal Lattice. Let A(r) be some function featuring discrete translation symmetry:

6.730 Physics for Solid State Applications

Page 404. Lecture 22: Simple Harmonic Oscillator: Energy Basis Date Given: 2008/11/19 Date Revised: 2008/11/19

Nearly-Free Electrons Model

Unitary Dynamics and Quantum Circuits

Floquet Topological Insulator:

Modeling photon generation

Symmetry and Simplicity

Phonons and lattice dynamics

Geometry of Crystal Lattice

Numerical Methods in Quantum Field Theories

Differential transfer-matrix method for solution of one-dimensional linear nonhomogeneous optical structures

G : Quantum Mechanics II

Nanomaterials and their Optical Applications

The Uniqueness of Maxwell's Equations Dr. Christopher S. Baird University of Massachusetts Lowell

Lecture 21 Reminder/Introduction to Wave Optics

Basic Semiconductor Physics

PHYSICAL REVIEW B 71,

Consistent Histories. Chapter Chain Operators and Weights

Tight-Binding Model of Electronic Structures

221B Lecture Notes Spontaneous Symmetry Breaking

Refering to Fig. 1 the lattice vectors can be written as: ~a 2 = a 0. We start with the following Ansatz for the wavefunction:

Chapter Three: Propagation of light waves

QM and Angular Momentum

M.S. Dresselhaus G. Dresselhaus A. Jorio. Group Theory. Application to the Physics of Condensed Matter. With 131 Figures and 219 Tables.

Separation of Variables in Linear PDE: One-Dimensional Problems

An Alternative Commutation Relation Between Position And. Momentum Operators of Massless Particles. H. Razmi. Abstract

THE NUMBER OF ORTHOGONAL CONJUGATIONS

arxiv: v1 [cond-mat.mes-hall] 26 Sep 2013

SUPPLEMENTARY FIGURES

Page 52. Lecture 3: Inner Product Spaces Dual Spaces, Dirac Notation, and Adjoints Date Revised: 2008/10/03 Date Given: 2008/10/03

Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction

GEOMETRICAL INFLUENCE ON PHOTONIC BANDGAP OF THREE DIMENSIONAL CHALCOGENIDE PHOTONIC CRYSTALS

Computational Nanoscience

The Spinor Representation

Spatio-Temporal Characterization of Bio-acoustic Scatterers in Complex Media

Simulation of two dimensional photonic band gaps

Preface Introduction to the electron liquid

Some Concepts used in the Study of Harish-Chandra Algebras of Matrices

Beyond the Parity and Bloch Theorem: Local Symmetry as a Systematic Pathway to the Breaking of Discrete Symmetries

Chapter 2 The Group U(1) and its Representations

CLASSICAL ELECTRICITY

Re-Thinking Schroedinger Boundary Conditions: the Simple Rotator is Not Simple

REVIEW ON MAGNETIC MOMENT CONFIGURATIONS. A. Purwanto Materials Science Research Center, National Atomic Energy Agency, Tangerang 15314, Indonesia

1 The Dirac notation for vectors in Quantum Mechanics

msqm 2011/8/14 21:35 page 189 #197

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

Chemistry 365: Normal Mode Analysis David Ronis McGill University

Modern Optics Prof. Partha Roy Chaudhuri Department of Physics Indian Institute of Technology, Kharagpur

QUANTUM MECHANIC S. Symmetries

Transcription:

On the Bloch Theorem and Orthogonality Relations Sina Khorasani School of Electrical Engineering Sharif University of Technology P. O. Box 11365-9363 Tehran, Iran Email: khorasani@sina.sharif.edu Abstract Bloch theorem for a periodic operator is being revisited here, and we notice extra orthogonality relationships. It is shown that solutions are bi-periodic, in the sense that eigenfunctions are periodic with respect to one argument, and pseudo-periodic with respect to the other. An additional kind of symmetry between r-space and k-space exists between the envelope and eignfunctions not apparently noticed before, which allows to define new invertible modified Wannier functions. As opposed to the Wannier functions in r-space, these modified Wannier functions are defined in the k-spaces, but satisfy similar basic properties. These could result in new algorithms and other novel applications in the computational tools of periodic structures. Keywords: Bloch-Floquet Theorem, Periodic Media, Photonic Crystals, Plasmonic Crystals, Electronic Crystals, Phononic Crystals 1. Introduction Consider a self-adjoint linear operator problem in the real physical space, denoted by the -space, as where as, are eigenvalues and are eigenfunctions. We define a translation operator ( [1] ) Now, we take the basis vectors, with the non-zero triple product. We may also define the discrete vectors where,, and are integers. The set of all such discrete vectors are referred to as the lattice sites [2-4]. Now, suppose that these two operators commute, - Then these two operators share the same set of eigenfunctions. Let The relationship between the sets of eigenvalues [5]. satisfy the eigenvalue equation and is generally complicated and highly nontrivial We may now define a set of reciprocal lattice vectors [2-4]. with the triple product 1,, and

Defining a reciprocal lattice vector we may call the set of all such discrete reciprocal lattice vectors as the reciprocal lattice points. For any choice of the discrete vectors and we now get the fundamental relationship For any given discrete lattice vector, this relationship allows infinite discrete solutions for at the reciprocal lattice vectors, and vice versa. In a three-dimensional space, this will dictate a three-fold degeneracy on the eigenvalues and eigenfunctions, albeit in the form of discrete translational symmetry to be discussed later below. 2. Bloch Theorem The basis of the well-known Bloch-Floquet theorem [2-7] is that by which the eigenfunctions of on the property take where is defined as the Bloch wavevector, and correspondingly, the set of all such vectors is referred to as the -space. In other words, is pseudo-periodic in the -space. Accordingly, the eigenfunctions satisfy Here, the so-called envelope functions are periodic in -space, that is We respectively refer and to as the wave and envelope functions. Referring to the above, we may see that both eigenvalues and are actually functions of as and This leads us to the fact that 2.1. Extensions to the Bloch Theorem The eigenvalues turnout to be multi-valued periodic functions in the reciprocal space, so that [2-4] A unit-cell of the -space which constitutes the periodicity of is known as the Brillouin Zone. Evidently, this unit-cell is extended in the -space across the basis vectors,, and. For every given vector, there are infinitely many of eigenvalue functions in general. So to be precise, one would need to consider, with being a natural number referred to as the 2

band index. This is exactly what truly happens for the case of every periodic media, such as photonic and plasmonic crystals [6,7,13], electronic crystals [2-4,9-12], and even phononic crystals [14]. If we take advantage of the periodicity of these eigenvalues, we may express always as, in such a way that would belong to the first Brillouin Zone. This notation with the aid of band-index makes a single-valued function of its argument. Similarly, as long as were restricted to a single Brillouin Zone, then the band index integer would be needed to resolve the eigenfunctions corresponding to the eigenvalues at equivalent points, where any two and points are said to be equivalent if with being a discrete reciprocal lattice vector. From this point on, we drop the explicit dependence of eigenfunctions on the band index for the sake of brevity, unless needed. 2.2. Further Properties of the Bloch Theorem The above relationships when put together with the basic Bloch theorem, we obtain unexpected result for the first time that is, must be pseudo-periodic in the -space, too. This is to be compared to the pseudoperiodicity of in the -space. When these two properties are combined, we arrive at the following conjugate results These state that both of the wave and envelope functions are biperiodic, however, the wave is pseudoperiodic in -space and periodic in -space, while conversely the envelope is periodic in -space and pseudoperiodic in -space. These properties furthermore allow a trivial translational-invariance in phase, such as the replacements ) are real-valued and double- would provide another equivalent set of eigenfunctions, as long as ( periodic as Choice of ( Section 4. ) is non-trivial for the optimum generation of Wannier functions, to be discussed later in 3. Orthogonality Relations Now, both of the wave and envelope functions should satisfy orthogonality relationships in -space and -space respectively as 3

with and being some normalization constants. The inner products are here defined as After normalization and expansion of the inner products, we get While the first relation is simply known as the orthogonality of wave functions, the second one actually is an expression of the completeness relationship. In the reduced-zone scheme, we may rewrite and renormalize the above equations as where the integration of inner products are restricted to unit cells as Here, and refer actually to the lattice s Unit Cell and Brillouin Zone, respectively. 4. Modified Wannier Functions The orthogonality relationships provide us with two sets of related, yet different, Wannier functions [9,13,15-18] in in -space and -space, respectively defined in the reduced zone-schemes as 4

As a result, we obtain the shift-properties and. This allows us to ignore the discrete vector indices, and simplify the definitions as where appropriate. Wannier functions now turn out to be readily orthogonal as Finally, the original wave and envelope functions may be reconstructed from the respective Wannier functions through discrete summations over the lattice points and reciprocal lattice points as Alternatively, we may rewrite the above definitions as This allows us to obtain the direct transformation pairs between these Wannier functions as Here, we note the use of identical band indices on both sides. It should be mentioned that the translationally-invariant phase takes significant part in the integration over eigenfunctions, which may be illustrated explicitly as 5

Since there are infinitely many choices for, Wannier functions would not be unique, and normally need to be constructed in such a way to be maximally-localized. This is normally done through global minimization of a spread functional; the reader is referred to literature for in-depth discussion of this issue [15], [17-20], [21], [9,22] for plasmonic, photonic, phononic, and electronic crystals, respectively. 5. Example 5.1. Two-dimensional Photonic Crystals Consider a two-dimensional (2D) photonic crystal (PC) with in-plane propagation, which allows separation of E-polarized and H-polarized modes. Here, the 2D relative permittivity and permeability function makes the whole structure periodic as and with. The operator for the normal component of the electric field would become [6] The scalar operator and eigenvalue is in the extended zone now given as { [ ]} with. Furthermore, is the E-polarization band structure, and is easy to be shown to be self-adjoint operator under these criteria, hence the eigenfunctions obeying the orthogonality relationships after corresponding displaying the band indices where actually denotes the area of the unit-cell; for this to happen, one may simply set. Note that, we have for the 2D PC. The relevant pair of E-polarization Wannier functions [19,20] would be 6

Similarly, the relationships of the H-polarized components could be found. As for the scalar operator of the normal component of the magnetic field, one would obtain { [ ]} is the H-polarization band structure, and is self-adjoint. Hence the eigenfunctions obey the orthogonality relationships after corresponding displaying the band indices where actually denotes the area of the unit-cell; for this to happen, one may simply set. Similarly, we have for the 2D PC. The relevant pair of H-polarization Wannier functions would be 5.2. Three-dimensional Photonic Crystals If the permittivity and permeability functions are three-dimensional (3D) periodic tensor of space, then within the frame of reference which, - becomes diagonal (under no loss and no optical activity [9-11]), one would have the following relation for the vector operator, - {, - [, - ]} 7

where, - [ ] is properly defined because of its diagonal form. Similarly, we obtain which leads to the orthogonality relations {, - } {, - }, - {, - } {, - }, - Here, represents the tensor outer product, and, - is the unit tensor. From these equations the additional forms are inferred by taking the trace.{, - } {, - }/.{, - } {, - }/ Finally, when the dielectric is isotropic, one would reach the scalar equations The relevant pair of vector E-polarization Wannier functions would be obtainable from generalization of the vector Wannier functions [19], -, - Identical deductions may be made for the magnetic field eigenfunctions once, - is diagonalized, which may be found by interchanging permittivity and permeability, as well as Electric and Magnetic fields everywhere. 6. Conclusions In this article, we have presented an in-depth discussion on the basic properties of Bloch waves in periodic media, and obtained a novel biperiodicity property in the eigenfunctions for the first time. We showed that the envelope and wave functions both satisfy mutual periodic and pseudoperiodic properties in the physical and reciprocal spaces, which shows there exist much more similarity between these two spaces than thought before. Extensions of these property were found to be applicable to 8

defining a new set of Wannier functions in reciprocal space, rather than the conventional definition in physical space, while these two Wannier functions are directly connected through unorthodox transformations. It is envisioned that the future investigation of these pair of Wannier functions would result in more efficient analytical tools of periodic media, and simplify the construction of maximallylocalized band functions. Appendix A These identities are useful in calculation of Fourier series and expansion terms of periodic functions and for and. Appendix B Self-adjointness property of directly leads to an orthogonality relation for wave functions in the -space. However, we may make the transformation which allows us to write being subject to periodic boundary conditions across -cells. The new operator is not necessarily self-adjoint, and hence the set of envelope functions are not necessarily orthogonal in the - space. If is expressible in terms of the gradient operator, then is obtainable from simply by the replacement. Now, noting that must be periodic in -space, the simultaneous pair of transformations and easily result in the desired pseudo-periodicity of in - space as described in Section 3. 9

Appendix C Now, we define the pair of Fourier transformations * + * + and perform Fourier transformations on both arguments as and mapping first to, then renaming and, to get back to the space But, this time we reach a different yet related eigenvalue problem in which is self-adjoint, too, given by Ideally, in order to construct the operator, one would need to make the replacements and, albeit simultaneously. Unfortunately, this is not typically doable in most practical problems, since the extensive algebraic form of must be known. Acknowledgement The author is indebted to Dr. Ali Naqavi at the École polytechnique fédérale de Lausanne for reading the initial manuscript and providing insightful comments. References 1. Sakurai J J, Napolitano J J (2010) Modern Quantum Mechanics (2nd Edition), Addison-Wesley. 2. Kittel C (2004) Introduction to Solid State Physics (8th Edition) Wiley. 3. Ashcroft N W, Mermin N D (1976) Solid State Physics, Holt, Rinehart and Winston, New York. 4. Barkeshli K (2015) Advanced Electromagnetics and Scattering Theory (Edited by Khorasani S) Springer, Berlin. 5. Roman S (2008) Advanced Linear Algebra (3rd Edition) Springer-Verlag, New York. 6. Sakoda K (2005) Optical Properties of Photonic Crystals (2nd Edition) Springer-Verlag, Berlin. 7. Joannopoulos JD, Johnson SG, Winn JN, Meade RD (2008) Photonic Crystals: Molding the Flow of Light (2nd Edition) Princeton University Press. 8. Khorasani S (2007) An Introduction to Optics of Photonic Crystals, Novin Publishers (in Persian), Tehran. 9. Martin RM (2008) Electronic Structure: Basic Theory and Practical Methods, Cambridge University Press, Cambridge. 10. Khorasani S (2010) Applied Quantum Mechanics, Delarang (in Persian), Tehran (2010). 11. Wang S (1989) Fundamentals of Semiconductor Theory and Device Physics, Prentice-Hall. 12. Yariv A (1989) Quantum Electronics (3rd Edition) John Wiley & Sons, New York. 13. Yeh P (1988) Optical Waves in Layered Media, John Wiley & Sons, New York. 10

14. Lu M-H, Feng L, Chen Y-F (2009) Phononic crystals and acoustic metamaterials, Materials Today 12: 34-42. 15. Hazeghi A, Khorasani S (2011) Wannier functions of two-dimensional plasmonic structures, Proceedings of SPIE 7946: 79461X. 16. Kohn W (1959) Analytic Properties of Bloch waves and Wannier Functions, Physical Review 115:809-821. 17. Marzari N, Vanderbilt D (1997) Maximally localized generalized Wannier functions for composite energy bands, Physical Review B 56:12847. 18. Wolff C, Mack P, Busch K (2013) Generation of Wannier functions for photonic crystals, Physical Review B 88:075201. 19. Takeda H, Chutinan A, John S (2006) Localized light orbitals: Basis states for three-dimensional photonic crystal microscale circuits, Physical Review B 74:195116. 20. Muradoglu M S, Baghai-Wadji A (2008) Construction of Wannier functions in phononic structures, Proceedings of SPIE 7269:72690R. 21. Muradoglu M S, Baghai-Wadji A R, Ng T W (2010) Prospects of Wannier functions in investigating photonic crystal all-optical devices for signal processing, Journal of the Optical Society of America A 27:757-765. 22. Hanke J P, Freimuth F, Blügel S, and Yuriy Mokrousov (2015) Higher-dimensional Wannier functions of multiparameter Hamiltonians, Physical Review B 91:184413. 11