New 3-Micron Polysaccharide-based Chiral Columns for Fast HPLC and SFC Geoffrey B. Cox, Norbert M. Maier Chiral Technologies, Inc

Similar documents
TCI Chiral HPLC Column

Separation of Chiral Pesticides by SFC and HPLC

Chiral separations efficient, fast and productive

Optical Isomer Separation Columns and Packing Materials

Application Note. Authors. Abstract. Pharmaceuticals

ChromegaChiral TM CSP Media and Columns

ChromegaChiral TM CSP Media and Columns

APPLICATIONS TN HPLC Conditions. Lux Cellulose-1 Cellulose tris(3,5-dimethylphenylcarbamate)

Enantiomer Separation of Chiral Acids on CHIRALPAK AX-QN and CHIRALPAK AX QD

How proteins separate on reverse-phase HPLC

High Speed vs. High Resolution Analyses in HPLC: A Critical Performance Comparison of Column Options Using Poppe and Kinetic Plots

Chiral Separation Using SFC and HPLC

FAQ's. 1 - Which column would be the most appropriate for my application?

Better HPLC Methods Using Temperature Programming

LIQUID CHROMATOGRAPHY

Chiral Flash Columns

High Resolution Fast LC

Changing the way you think about HPLC

New 5-micron HALO-5 columns based on Fused- Core particle technology boost the performance of HPLC. Compared to other HPLC columns, HALO-5 columns

(proton form) (ammonium salt) (proton form) (ammonium salt) LMGP / LM1-057A. -16 to -24 C

High Speed 2D-HPLC Through the Use of Ultra-Fast High Temperature HPLC as the Second Dimension

Welcome to our E-Seminar: Choosing HPLC Columns for Faster Analysis Smaller and Faster

Comparison of Solid Core HPLC Column Performance: Effect of Particle Diameter

Capacity vs Throughput on Modified Macrocylics in Reversed Phase, Polar Ionic Mode and Normal Phase

Thermo Scientific Accucore XL HPLC Columns. Technical Manual

Small Molecule Selectivity Sampler

Supporting Information-II. Asymmetric Synthesis of Drug-like Spiro[chroman-3,3'- indolin]-2'-ones through Aminal-catalysis

2017 Reaction of cinnamic acid chloride with ammonia to cinnamic acid amide

Packings for HPLC. Packings for HPLC

637. Thiamethoxam. HPLC method

Too Polar for Reversed Phase What Do You Do?

Alternatives to Sub-2 µm UHPLC Columns

Performance characteristics of the Agilent 1290 Infinity Quaternary Pump

Mass Spectrometry Reference Standard 1-Heptadecanoyl-2-(5Z,8Z,11Z,14Z-Eicosatetraenoyl)-sn-Glycero-3-Phospho- (1 -Myo-Inositol)(Ammonium Salt)

SEPARATION OF FLURBIPROFEN AND IBUPROFEN ENANTIOMERS ON A CHIRAL STATIONARY PHASE USING SUPERCRITICAL FLUIDS

Determination of Enantiomeric Excess of Metolachlor from Chiral Synthesis using the Agilent 1260 Infinity Analytical SFC System

Enantioselective Organocatalytic Michael Addition of Malonate Esters to Nitro Olefins Using Bifunctional Cinchonine Derivatives

Phenyl-Hexyl. UHPLC Columns. Alternate, complementary selectivity to C18 and C8 bonded phases

Luna 2.5 µm C18(2)-HST. Advantages of 2.5 µm for increasing the speed of analysis while maintaining high efficiency

The Secrets of Rapid HPLC Method Development. Choosing Columns for Rapid Method Development and Short Analysis Times

C18 Column. Care & Use Sheet

Supporting Information

Bringing uhplc Performance to the Separation of Peptides

Method Development for Chiral LC/MS/MS Analysis of Acidic Stereoisomeric Pharmaceutical Compounds with Polysaccharide-based Stationary Phases

LC and LC/MS Column Selection Flow Chart

This method describes the identification of the following prohibited colorants in cosmetic products:

Hypersil BDS Columns TG 01-05

Application Note. Author. Abstract. Food Testing & Agriculture. Edgar Naegele Agilent Technologies, Inc. Waldbronn, Germany

A Look at Column Choices. Ed Kim Application Engineer Agilent Technologies, Inc February 12, 2009

Supporting Information

Supporting Information

LC-MS/MS Method for the Determination of Diclofenac in Human Plasma

PI(17:0/14:1(9Z)) (Proton Form) (Ammonium salt Form) (Proton Form) (Ammonium salt Form) LMGP / LM7-112B

Supporting Information

Product Bulletin. ACE LC/MS and Rapid Analysis HPLC Columns. HPLC Columns

LC-MS compatible Separation of the Fungicide Spiroxamine

Part 2. Overview of HPLC Media

penta-hilic UHPLC COLUMNS

CHROMTECH - CHIRAL HPLC COLUMNS

Chromatography. Gas Chromatography

Dilution(*) Chromatography

Reversed Phase Solvents

Supercritical Fluid Chromatography

HPLC Method Development with Eclipse Plus: Standard Practices and New Columns. Agilent Technologies

State-of-the-art C18 HPLC Columns

Choosing Columns and Conditions for the Best Peak Shape

Supporting Information

Superficially Porous Silica Particles with Wide Pores for Biomolecular Separations

P R O D U C T B U L L E T I N. Fused-Core particle technology for hyper-fast and super-rugged HPLC columns

Probing the Synergistic Catalytic Model: A Rationally Designed Urea-Tagged Proline Catalyst for the Direct Asymmetric Aldol Reaction

Packed Column for Ultra-Fast Reversed-Phase Liquid Chromatography, TSKgel Super-ODS. Table of Contents

LC Technical Information

Polymer Coated Titania for Analytical and Preparative Reversed-Phase Chromatography

GL Chromatodisc. Usage Type Description. GL Chromatodisc Type A GL Chromatodisc Type P GL Chromatodisc Type N 13AI

High Temperature Ultra Fast Liquid Chromatography. Peter W. Carr, Jon Thompson, Dwight Stoll, and Adam Schallinger

CHAPTER 1 Role of Bioanalytical Methods in Drug Discovery and Development

Barry E. Boyes, Ph.D. Consumables and Accessories Business Unit May 10, 2000

penta-hilic UHPLC COLUMNS

Improve Peak Shape and Productivity in HPLC Analysis of Pharmaceutical Compounds with Eclipse Plus C8 Columns Application

Practical Applications of Method Translation Using the Agilent Method Translation Tool Rita Steed Inside Application Engineer Agilent Technologies

Enantiomeric and Diastereomeric Separations of Pyrethroids Using UPC 2

BÜCHI Labortechnik AG. Loadability _Company_Presentation BUCHI. For internal use only

Determination of Carbonyl Compounds In Water by Dinitrophenylhydrazine Derivatization and HPLC/UV*

Supporting Information

ChromegaChiral TM Columns. The right choice for chiral purification

Impact of Instrument Dispersion on Performance of HPLC Capillary Columns

A Quality by Design (QbD) Based Method Development for the Determination of Impurities in a Peroxide Degraded Sample of Ziprasidone

CHANGING THE WAY YOU THINK ABOUT HPLC

Developing a fast, generic method for rapid resolution LC with quadrupole MS detection. Application Note

InertSustain AQ-C18. HPLC, LC/MS Columns. Maximizing retention for highly polar compounds in reversed phase methods with highly aqueous mobile phases

Practicing Chiral Chromatography in Your Mobile Phase Comfort Zone

LC Column Troubleshooting. Do you have an equivalent column for my LC column?

Emergence of a Single Solid Chiral State from a Nearly. Racemic Amino Acid Derivative

Chromatographic Separation

Supporting Information for: Using a Lipase as a High Throughput Screening Method for Measuring the Enantiomeric. Excess of Allylic Acetates

Method Development Kits

SPE Introduction. general chromatography. solid phase extraction. How to Choose an SPE Product. Solid-Phase Processing Methods

Alltech Alltima HP Introduction

A Look at Agilent HPLC Columns Choices

William E. Barber, Ph.D. Applications Chemist October

Transcription:

New 3-Micron Polysaccharide-based Chiral Columns for Fast HPLC and SFC Geoffrey B. Cox, Norbert M. Maier Chiral Technologies, Inc Pilar Franco and Tong Zhang Chiral Technologies, Europe

Benefits of 3-Micron Columns High Speed separations Reduction in analysis time More samples per day Reduction in cost per sample High efficiency separations Higher resolution for difficult samples Higher precision from higher resolution

Why Stop at 3-Microns? Pressure 3-Micron columns give attainable pressure drops at high flow rate Pressure increases dramatically with smaller particles [ΔP = f(1/d p2 )] Equipment Conventional HPLC systems cannot reach the high pressures needed for very small particles Conventional HPLC systems need modification for very small particles

R s / Time (min) Pressure (bar) Pressure, R s and Particle Size 12 6 1 DP Time 5 8 4 6 3 4 2 2 R s 1 1 2 3 4 5 6 dp Calculated for methanol at the optimum flow velocity for each particle

Effect of Equipment on Performance CHIRALPAK Agilent 12 SL Agilent 11 Relative Loss AD -3 (ECV optimized) (standard) (%) Column Size N 1 N 2 N 1 N 2 N 1 N 2 25 x 4.6 mm I.D. 323 3969 3136 39 2.1.2 15 x 4.6 mm I.D. 158 1562 152 1516 3.9 2.9 5 x 4.6 mm I.D. 666 65 636 641 4.5 1.4 (Trifluorophenylethanol; n-hexane/2-propanol 9:1; 1 ml/min, 21 nm, 25 C) The 3-Micron columns may be used in conventional (but modern) HPLC units without significant loss in performance, even with the smaller columns. With older units, small volume flow cells and narrow diameter capillaries may be needed for optimum performance.

Reduction in Particle Size Gives Faster Mass Transfer 2.5-Microns Bandwidth due to pore diffusion 1.5-Microns This effect increases with flow velocity

HETP (mm) Van Deemter Plots: 3- vs 5-Microns.35.3.25.2.15.1 5-micron CHIRALPAK AD-H CHIRALCEL AD-3 CHIRALPAK IC -3 CHIRALPAK IA -3 9:1 Hexane : IPA trans-stilbene xide Higher optimum flow rate with smaller particles leads to faster analyses and higher efficiency Smaller HETP allows shorter columns and faster analyses.5 3-Micron...5 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. Flow Velocity (mm/sec)

HETP (mm) Van Deemter Plots Reversed Phase Mobile phase: Water-Acetonitrile 6:4 (v/v) Detection: 21 nm Temp.: 25 C Sample volume: 1. microl.25 1-Indanol, 1st Enantiomer.2.15 5-Micron CHIRALPAK AD-3R.1 CHIRALPAK AD-3R CHIRALPAK AD-RH.5 3-Micron...5 1. 1.5 2. 2.5 u (mm/s)

2.252 Reversed Phase Tests AD-3R CHIRALPAK AD-3R 15 x 4.6 mm 4% ACN.2M KH 2 P 4.5 ml/min; 25 C 5 1 N1 N2 4 2 3 Mephenesin (1) 29 254 1-Indanol (2) 2325 236 1-Naphthylethanol (3) 292 1961 3 2-Methyl-1-tetralone (4) 2191 228 2 4 1 2 4 6 8 1 12 14 16 18 min After 3 week pressure stability test

CHIRALPAK IA (5µm) CHIRALPAK IC (5µm) Selectivity: Transfer From 5-Micron 7. 6. y = 1.367x R 2 =.996 7. 6. y =.9948x R 2 =.999 5. 5. 4. 4. 3. 3. 2. 2. 1. 1. 2. 3. 4. 5. 6. 7. CHIRALPAK IA-3 (3µm) 1. 1. 2. 3. 4. 5. 6. 7. CHIRALPAK IC-3 (3µm) Effortless method transfer from 5- to 3-Micron columns

k CHIRALPAK IA (5µm) CHIRALPAK IA (5µm) Retention Factors: Transfer from 5-Micron 3.5 3. 4.5 4. 2.5 2. 1.5 1..5...5 1. 1.5 2. 2.5 3. 3.5 k CHIRALPAK IA-3 (3µm) 3.5 3. 2.5 2. 1.5 1..5.. 1. 2. 3. 4. 5. CHIRALPAK IA-3 (3µm) Effortless method transfer from 5- to 3-Micron columns

Transfer to 3-Micron: CHIRALPAK IA-3 mau 4 3 1 2 3 CHIRALPAK IA (15 x 5.6 mm I.D., 5 mm) Hexane-Isopropanol 9:1 (v/v) UV 21 nm, 25 C flow rate:.6 ml/min * ~ Equal plate numbers 2 N = 18, 7 4 5 1 6 8 1 2 3 4 5 6 7 8 9 min mau 4 3 1 2 3 CHIRALPAK IA-3 (15 x 5.6 mm I.D., 3 mm) Hexane-Isopropanol 9:1 (v/v) UV 21 nm, 25 C flow rate: 1.75 ml/min N = 23, 7 Mecoprop methyl ester: 1,2 trans-stilbene oxide: 3,7 Benzoin ethyl ether: 4,5 Ruelene: 6,8 2 4 5 1 6 8 1 2 3 min 4 3-fold faster

Transfer to 3-Micron: CHIRALPAK IC-3 mau 5 4 3 CHIRALPAK IC-5 (15 x 5.6 mm I.D., 3 mm) hexane/2-propanol 9:1 (v/v) UV 21 nm, 25 C flow rate:.6 ml/min 3 4 * ~ Equal plate numbers 2 1 N = 19,2 1 2 1 2 3 4 5 6 7 5 6 min mau 5 4 CHIRALPAK IC-3 (15 x 5.6 mm I.D., 3 mm) Hexane-Isopropanol 9:1 (v/v) UV 21 nm, 25 C flow rate: 1.75 ml/min 3 4 1-Phenyl-2,2,2-trifluoroethanol: 1,2 Tetrahydronaphthol: 3,4 Mecoprop methyl ester: 5,6 3 2 N = 21,8 1 2 1 1 2 5 6 3-fold faster

High Efficiency Separations - Metolochlor N CH 3 Cl 2 x CHIRALCEL D-3 (15 x 4.6 mm I.D.) R s1,2 2.2 R s3,4 1.92 N1 1998 N2 2129 N3 196 N4 18435 1 2 3 4 min Serial coupled columns, n-hexane/2-propanol 97.5:2.5 (v/v);.5 ml/min; 235 nm; 15 C

CHIRALPAK IA-3 (4.6 x 15 mm) High Speed Separations Cl Cl N N Furoin H Cl.2.4.6.8 1. 1.2 1.4 min.2.4.6.8 1. 1.2 1.4 min MtBE-MeH 8:2 (+.1% Ethanolamine) Flow rate: 3.5 ml/min MeH 1% Flow rate: 3. ml/min

Pressure Stability For high speed separations, the columns must be pressure stable Extensive pressure testing of the 3-Micron columns shows no practical limit with conventional HPLC systems

operational pressure (bar) Pressure Stability 5 4 Column: CHIRALPAK AD-3 (15 x 4.6 mm I.D.) pressurizing solvent: ethanol; stress test performed without guard cartridge. 3 2 1 2.3 ml/min EtH 43 bar operation pressure for 1 week total volume of mobile phase passing through column 23 L (= 14,5 column volumes) 1 2 3 4 5 6 7 exposure time (days) Test EtH 1 Test EtH 2 Test EtH 3 Test EtH 4 Test EtH 5 Test Hex 1 Test Hex 2

3.359 3.373 18.862 18.742 7.223 7.344 Column Tests Pressure Stability mau 3 25 2 15 1 5 TS Ethanol:.5 ml/min Before 2.5 5 7.5 1 12.5 15 17.5 2 min Column: CHIRALPAK AD-3 (15 x 4.6 mm I.D.) mau 35 3 25 2 15 1 5 After 2.5 5 7.5 1 12.5 15 17.5 min 2 Compound QC-Test N unchallenged N after stress N Diff (%) N1 N2 N1 N2 N1 N2 TS/Ethanol Test EtH 2227 1713 2243 179 +.7 -.2 Troeger base Hexane / IPA Test EtH 1844 1394 1847 1375 +.2-1.4 TS Hexane/IPA Test Hex 2123 1553 2224 1599 + 4.8 + 2.9

Fast Separations N H H N Cl CH xprenolol.hcl Cl Dichlorprop Cl Carbinoxamine N 6 12 18 24 3 seconds 6 12 18 seconds 24 6 12 18 24 3 seconds CHIRALPAK AD-3 (5 x 4.6 mm I.D.); for oxprenolol and carbinoxamine: n-hexane/ 2-propanol/diethylamine 9/1/.1 (v/v/v); for dichlorprop: n-hexane/2-propanol/trifluoroacetic acid 9/1/.1 (v/v/v); flow rate: 5. ml/min; UV-detection: 235 nm; temperature: 25 C.

Reversed Phase CHIRALPAK AD-3R (4.6 x 15 mm) Tolperisone.2M NH 4 HC 3 aq. (ph9. -DEA) ACN 4:6 Methyl 2-phenylsulfinylacetate H 2 -ACN 6:4 N S 1 2 3 4 5 1 2 3 4 5

mv mv SFC 16 Devrinol CHIRALPAK IC-3 15 x 4.6 mm 15% methanol / C 2 14 3 ml/min 12 bar bp 12 1 8 6 4 2 N 1 Vince lactam 8 6 4 2 CHIRALPAK IA-3 15 x 4.6 mm 3% methanol / C 2 3 ml/min 12 bar bp N H 1 2 3 4 5 6 7 Minutes.5 1. 1.5 2. 2.5 3. 3.5 Minutes

3-Micron Columns Column Normal Reversed SFC Fast High Phase Phase Separations efficiency CHIRALPAK IA-3 CHIRALPAK IC-3 CHIRALPAK AD-3 CHIRALPAK AD-3R CHIRALCEL D-3 CHIRALCEL D-3R

Conclusions High efficiency at high flow rates Robust Pressure limit > 4 bar (Determined by HPLC unit) Improves productivity by reduction of analysis time High efficiency allows difficult separations Can be used in conventional HPLC units