Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides

Similar documents
Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides

Pd-Catalyzed Conversion of Aryl Chlorides, Triflates, and Nonaflates to Nitroaromatics

A Versatile Catalyst System for SuzukiMiyaura Cross- Coupling Reactions of C(sp[superscript 2])-Tosylates and Mesylates

An Efficient Process for Pd-Catalyzed CN Cross-Coupling Reactions of Aryl Iodides: Insight Into Controlling Factors

Asymmetric Palladium Catalyzed Cross-Coupling Reactions. Topic Talk September 4 th, 2014 Morken Lab Emma Edelstein 1

Direct Catalytic Cross-Coupling of Organolithium

Title. Author(s)Ishiyama, Tatsuo; Oohashi, Zengo; Ahiko, Taka-aki; M. CitationChemistry Letters, 8: Issue Date Doc URL.

Air-stable phosphine oxides as preligands for catalytic activation reactions of C Cl, C F, and C H bonds*

Modern Synthetic Methods

Phosphine-Catalyzed Formation of Carbon-Sulfur Bonds: Catalytic Asymmetric Synthesis of gamma-thioesters

Catellani Reaction (Pd-Catalyzed Sequential Reaction) Todd Luo

Ligand-Controlled Palladium-Catalyzed Regiodivergent Suzuki Miyaura Cross-Coupling of Allylboronates and Aryl Halides

Pd-Catalyzed Cross-Coupling Reactions of Amides and Aryl Mesylates

Iron Catalysed Coupling Reactions

A Single Phosphine Ligand Allows Palladium-Catalyzed Intermolecular C-O Bond Formation with Secondary and Primary Alcohols

Asymmetric Suzuki Cross-Couplings of Activated Secondary Alkyl Electrophiles: Arylations of Racemic - Chloroamides

A General Method for Suzuki Miyaura Coupling Reactions Using Lithium Triisopropyl Borates

Rhodium-catalyzed dehydrogenative borylation of cyclic alkenes

Iron Catalyzed Cross Coupling: Mechanism and Application. Matthew Burk Denmark Group Meeting

Arylhalide-Tolerated Electrophilic Amination of Arylboronic Acids with N-Chloroamides Catalyzed by CuCl at Room Temperature

Direct Oxidative Heck Cyclizations: Intramolecular Fujiwara-Moritani Arylations for the Synthesis of Functionalized Benzofurans and Dihydrobenzofurans

Citation. As Published Publisher. Version. Accessed Thu Jan 11 23:13:40 EST 2018 Citable Link Terms of Use. Detailed Terms

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines

Mechanistic Insides into Nickamine-Catalyzed Alkyl-Alkyl Cross-Coupling Reactions

Pd-Catalyzed Synthesis of Ar-SCF3 Compounds under Mild Conditions

Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid

Evidence for in Situ Catalyst Modification during the Pd- Catalyzed Conversion of Aryl Triflates to Aryl Fluorides

Hybridization of Nickel Catalysis and Photoredox Catalysis. Literature seminar#1 B4 Hiromu Fuse 2017/02/04(Sat)

Copper-Catalyzed Reaction of Alkyl Halides with Cyclopentadienylmagnesium Reagent

Functionalized main-group organometallics for organic synthesis*

Enantioselective Borylations. David Kornfilt Denmark Group Meeting Sept. 14 th 2010

Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group.

Title. Author(s)Ishiyama, Tatsuo; Itoh, Yoshiya; Kitano, Takahiro; M. CitationTetrahedron Letters, 38(19): Issue Date

Design and preparation of new palladium precatalysts for C C and C N cross-coupling reactions

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July

A Multi-Ligand Based Pd Catalyst for C N Cross-Coupling Reactions

The Mechanism of Pd-Catalyzed Amination Controversy.. And Conclusion?

Self-stable Electrophilic Reagents for Trifluoromethylthiolation. Reporter: Linrui Zhang Supervisor: Prof. Yong Huang Date:

Intramolecular Ene Reactions Utilizing Oxazolones and Enol Ethers Fisk, J.S. and Tepe, J..J J. Am. Chem. Soc., 2007, 129,

Twofold CH Functionalization: Palladium-Catalyzed Ortho Arylation of Anilides

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0

A Stille or Suzuki reaction is a good choice for this coupling O O because they are functional group tolerant, no radical chemistry F

Palladium-Catalyzed Alkylation of sp2 and sp3 C-H Bonds with Methylboroxine and Alkylboronic Acids: Two Distinct C-H Activation Pathways

Microwave-promoted synthesis in water

Recent Advances in C-B Bond Formation through a Free Radical Pathway

C H Activated Trifluoromethylation

Recent advances in transition metal-catalyzed or -mediated cyclization of 2,3-allenoic acids: New methodologies for the synthesis of butenolides*

Supporting Information. Negishi Cross-Coupling of Secondary Alkylzinc Halides with Aryl/Heteroaryl Halides using Pd-PEPPSI-IPent

Literature Report III

Sonogashira: in situ, metal assisted deprotonation

Joseph Salamoun Current Literature 11/21/15 Wipf Group

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group

Unusual (Z)-selective palladium(ii)-catalysed addition of aryl boronic acids to vinylaziridines

Molybdenum-Catalyzed Asymmetric Allylic Alkylation

Oxidative Addition and Reductive Elimination

Chapter 11, Part 1: Polar substitution reactions involving alkyl halides

Transition Metal-Catalyzed Carbon-Carbon Bond Cleavage (C-C Activation) Group Meeting Timothy Chang

Lecture 6: Transition-Metal Catalysed C-C Bond Formation

Palladium-catalyzed cross-addition of triisopropylsilylacetylene to unactivated alkynes*

Palladium-Catalyzed Alkylarylation of Acrylamides with

Abstracts. p69. Keywords: C-H activation palladium catalysts arylation arenes polycyclic compounds biaryls natural products

Tautomerism and Keto Enol Equilibrium

Recent Advances of Alkyne Metathesis. Group Meeting Timothy Chang

RKCL4625 NICKEL-PROMOTED LIGAND-FREE PALLADIUM-CATALYZED SUZUKI COUPLING REACTION

Initials: 1. Chem 633: Advanced Organic Chemistry 2016 Final Exam

CHEM 344 Organometallic Chemistry Practice Problems (not for credit)

The Mechanistic Studies of the Wacker Oxidation. Tyler W. Wilson SED Group Meeting

Palladium-catalyzed sp 3 C H activation. Yan Xu Dong Group Meeting Apr. 2, 2014

CHM 292 Final Exam Answer Key

A Simple Introduction of the Mizoroki-Heck Reaction

Ligand Effects in Nickel Catalysis. Anthony S. Grillo Chem 535 Seminar October 22, 2012

There is basically one simple mechanism for all electrophilic aromatic substitutions:

Lecture Notes Chem 51B S. King I. Conjugation

SURVEY ON ARYL COMPOUNDS

Organic Chemistry. Second Edition. Chapter 19 Aromatic Substitution Reactions. David Klein. Klein, Organic Chemistry 2e

ummary Manipulating Radicals

deactivation or decomposition is therefore quantified using the turnover number.

Functionalized Organometallic Reagents

Planar-Chiral Phosphine-Olefin Ligands Exploiting a (Cyclopentadienyl)manganese(I) Scaffold to Achieve High Robustness and High Enantioselectivity

Chapter 8. Substitution reactions of Alkyl Halides

CHEM 153 PRACTICE TEST #1 ANSWER KEY

Title. Author(s)Takagi, Jun; Kamon, Akihiro; Ishiyama, Tatsuo; Miyau. CitationSynlett, 2002(11): Issue Date Doc URL.

Supporting Information for

Basics of Catalysis and Kinetics

Copper-catalyzed cleavage of benzyl ethers with diacetoxyiodobenzene and p-toluenesulfonamide

Nucleophilic Fluorination. Souvik Rakshit Burke group Literature Seminar July 13, 2013

Palladium-Mediated Functionalization of Heteroaromatic Cations: Comparative Study on Quinolizinium Cations

Section Practice Exam II Solutions

Recent Developments in Alkynylation

Benzene and Aromatic Compounds. Chapter 15 Organic Chemistry, 8 th Edition John McMurry

Titanacyclopropanes as versatile intermediates for carbon carbon bond formation in reactions with unsaturated compounds*

AROMATIC & HETEROCYCLIC CHEMISTRY

A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols

17.3 REACTIONS INVOLVING ALLYLIC AND BENZYLIC ANIONS

PAPER No. : 5; Organic Chemistry-II MODULE No. : 13; Mixed S N 1 and S N 2 Reactions

Mechanism and Transition-State Structures for Nickel- Catalyzed Reductive AlkyneAldehyde Coupling Reactions

Chapter 15. Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution on Arenes. The first step is the slow, rate-determining step

I. Introduction. Peng Zhao. Liu lab

Curriculum Vitae Lingkui Meng

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition

Transcription:

Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Han, Chong, and Stephen L. Buchwald. Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides. Journal of the American Chemical Society 131, no. 22 (June 10, 2009): 7532-7533. http://dx.doi.org/10.1021/ja902046m American Chemical Society (ACS) Version Author's final manuscript Accessed Fri Apr 06 18:29:48 EDT 2018 Citable Link Terms of Use Detailed Terms http://hdl.handle.net/1721.1/82067 Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

NIH Public Access Author Manuscript Published in final edited form as: J Am Chem Soc. 2009 June 10; 131(22): 7532 7533. doi:10.1021/ja902046m. Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides Chong Han and Stephen L. Buchwald Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 Chong Han: ; Stephen L. Buchwald: sbuchwal@mit.edu Abstract An efficient palladium-catalyzed process has been developed for Negishi coupling of secondary alkylzinc halides and sterically and electronically demanding aryl bromides and activated aryl chlorides. The palladium catalyst composed of a new biaryldialkylphosphine ligand, CPhos, effectively promotes the reductive elimination step relative to the undesired β-hydride elimination pathway. The general substrate scope and excellent ratio of the desired secondary to the undesired primary coupling product make this method a powerful and reliable tool for C(sp 3 )-C(sp 2 ) bond formation. The transition-metal-catalyzed cross-coupling reactions involving sp 2 -hybridized carbon nucleophiles and aryl or vinyl halides have been extensively examined during the past three decades. 1 In contrast, few comprehensive studies have been published concerning the analogous cross-coupling of secondary C(sp 3 )-hybridized organometallics with aryl halides. 2 A simplified scheme of the course of the reaction for the coupling of an isopropyl metal with an aryl halide is shown (Scheme 1). 1 Oxidative addition followed by transmetallation would produce intermediate B, which can reductively eliminate to form the desired product i-prar with concomitant reformation of L n Pd(0). Competitive with this is the reversible β-hydride elimination to form C, from which reductive elimination can take place producing reduced arene. Additionally, C can undergo a migratory insertion reaction to produce D which can reductively eliminate to form the undesired product n-prar. Of obvious importance to developing a successful catalytic method is to have ligands that will facilitate the rate of reductive elimination from B relative to the rate of β-hydride elimination. Pioneering work by Kumada and Hayashi demonstrated, with a limited set of substrates, that dichloro[1,3-bis(diphenylphosphino)propane] nickel(ii) (NiCl 2 (dpppk)) 2h and dichloro[1,1 - bis(diphenylphosphino)ferrocene] palladium(ii) (PdCl 2 (dppf)) 2i could be used for the coupling of secondary alkyl Grignard reagents with aryl and vinyl halides. Recently, Dreher and Molander reported an elegant and more comprehensive study of the Pd-catalyzed Suzuki- Miyaura coupling of secondary alkyltrifluoroborates with aryl chlorides. 2g These publications describe the formation of good ratios of secondary to primary alkyl coupling products in a Correspondence to: Stephen L. Buchwald, sbuchwal@mit.edu. Supporting Information Available. Experimental procedures, structural proofs, and spectral data for all new compounds are provided (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

Han and Buchwald Page 2 number of cases. However, the product ratios obtained when electron-deficient and/or orthosubstituted aryl halide substrates were used were poor to moderate and the substrate scope reported was somewhat limited in terms of the functional groups that were demonstrated to be tolerated. In this communication, we report a general catalyst for the palladium-catalyzed Negishi coupling of secondary alkylzinc halides with aryl bromides and chlorides in high yield with excellent ratios of secondary to primary coupling products which is based on a new biarylphosphine ligand, CPhos. We initiated our studies by evaluating a series of biaryldialkylphosphine ligands 3 with both an electron-deficient and -rich ortho-substituted aryl bromide, 2-bromobenzonitrile and 2- bromoanisole, in combination with isopropyl zinc bromide using 1 mol % Pd(OAc) 2 at ambient temperature in THF (Figure 1). SPhos (L1), RuPhos (L2), and XPhos (L3), previously reported to be excellent ligands for Suzuki-Miyaura 4 and Negishi coupling 5 reactions, including those with primary alkyl boron and zinc reagents reported by Molander 4b-d and Knochel 5b-c, gave moderate results. In contrast, a new ligand (L6), CPhos, bearing ortho,ortho'-dimethylamino substituents on the lower (nonphosphine-containing) ring was found to give results superior to other biarylphosphine ligands in terms of the ratio of branched (i-pr) to linear (n-pr) products and the yield. The use of PdCl 2 (dppf) 2i provided low (<10%) conversion of products under the same conditions. We next examined the coupling of a range of aryl halides with isopropylzinc bromide, which was readily prepared as a THF solution by LiCl- assisted zinc insertion into isopropyl bromide according to Knochel's method 6 (Table 1). Our coupling conditions at ambient temperature, were successfully applied to a series of ortho- and para-substituted aryl bromides; the selectivity for the branched product remains high (>20:1, i-pr:n-pr) in all cases. 7 In general, the selectivity realized for ortho-substituted aryl bromides were lower than those obtained with corresponding para-substituted ones, presumably due to steric effects (entries 1-4 v.s. entries 7-10); this is consistent with what has been previously reported. 2f Employing toluene as a cosolvent afforded higher yields and selectivities in the cases of electron-deficient aryl bromides (entries 3-5 and 9-10). Esters (entry 3 and 9), nitriles (entry 4 and 10), aldehydes (entry 5), and unprotected indoles (entry 12) were well tolerated. 5b,c However, the coupling of 4- bromonitrobenzene provided a modest yield of the desired product due to formation of unidentified side products (entry 6). In addition, activated aryl chlorides 8 (entries 3-5 and 9-10) were also suitable substrates at ambient temperature providing products in high yield and with good selectivity although longer reaction times were often needed compared to those for the reactions of the corresponding aryl bromides. To probe the generality of the coupling reaction with respect to secondary alkylzinc halide, a variety of cyclic and acyclic zinc reagents were prepared using Knochel's protocol. 6,9 Coupling reactions of these alkylzinc reagents with aryl bromides and activated aryl chlorides could be performed efficiently employing 1-2 mol % catalyst (Scheme 2). The ratio of branched to linear product remained high for reactions involving acyclic zinc reagents (1e-f). Additionally, no isomeric products were observed for the reaction with the N-Boc piperazine substrate (1d). There are two most probable scenarios to explain the differences seen with CPhos and XPhos (cf. Scheme 1): (1) The ratio of branched to linear products is determined by the relative rates of corresponding reductive elimination steps if a fast equilibrium exists between species B and D. In this case, similar product ratios should be obtained for couplings of both i-pr and n-pr zinc reagents; (2) The product ratio is largely dependent on the relative rates of reductive elimination versus β-hydride elimination reinsertion. In order to distinguish between these, we examined the coupling of 2-bromobenzonitrile with n-propyl zinc bromide (eq 2) to

Han and Buchwald Page 3 compare the results to those obtained with isopropyl zinc bromide (eq 1). Consistent with the latter explanation are the different product distributions seen for the coupling of i-pr versus n-pr zinc reagents (CPhos, P1:P2=95:5 in eq 1 versus P1:P2< 1:99 in eq 2; XPhos, P1:P2=25:75 in eq 1 versus P1:P2=2:98 in eq 2). This explanation is further supported by an observed kinetic isotope effect on the product distribution (k H /k D =3.1) for the coupling of fully deuterated isopropyl zinc bromide using XPhos. 9 In summary, we have established an efficient new catalyst system for Negishi coupling of secondary alkylzinc halides with a wide range of aryl bromides and activated chlorides in which the undesired β-hydride elimination pathway is effectively suppressed employing the new ligand CPhos, L6. The broad substrate scope and excellent selectivity of the coupling process provides a general and useful means for the forging of C(sp 3 )-C(sp 2 ) bonds. Further, we have provided evidence that the excellent selectivity observed for branched versus linear products with secondary alkyl zincs using CPhos is due to the slow relative rates of β-hydride elimination-reinsertion versus reductive elimination. Supplementary Material Acknowledgments References Refer to Web version on PubMed Central for supplementary material. We thank the National Institutes of Health (Grant GM 46059) for funding this work. We are grateful to Merck, BASF (Pd compounds), and Nippon Chemical for additional support. We thank Dr. Tom Kinzel and Dr. Donald Watson for helpful discussions. The Varian NMR instrument used was supported by NIH (GM 1S10RR13886-01). 1. For recent reviews, see: (a)metal-catalyzed Cross-Coupling Reactions. de Meijere A, Diederich F. Wiley-VCHNew York2004(b)Tamao K, Miyaura N. Top Curr Chem 2002;219:1.(c)Hassan J, Sevignon M, Gozzi C, Schulz E, Lemaire M. Chem Rev 2002;102:1359. [PubMed: 11996540] 2. For representative references, see: Negishi coupling: (a)boudier A, Knochel P. Tetrahedron Lett 1999;40:687.(b)Dai C, Fu GC. J Am Chem Soc 2001;123:2719. [PubMed: 11456957](c)Corley EG, Conrad K, Murry JA, Savarin C, Holko J, Boice G. J Org Chem 2004;69:5120. [PubMed: 15255748] (d)kondolff I, Doucet H, Santelli M. Organometallics 2006;25:5219.(e)Luo X, Zhang H, Duan H, Liu Q, Zhu L, Zhang T, Lei A. Org Lett 2007;9:4571. [PubMed: 17918950](f)Melzig L, Gavryushin A, Knochel P. Org Lett 2007;9:5529. [PubMed: 18047363] Suzuki-Miyaura coupling: (g)dreher SD, Dormer PG, Sandrock DL, Molander GA. J Am Chem Soc 2008;130:9257. [PubMed: 18582050] and references cited therein. Kumada coupling: (h)tamao K, Kiso Y, Sumitani K, Kumada M. J Am Chem Soc 1972;94:9268.(i)Hayashi T, Konishi M, Kobori Y, Kumada M, Higuchi T, Hirotsu K. J Am Chem Soc 1984;106:158. 3. (a) Martin R, Buchwald SL. Acc Chem Res 2008;41:1461. [PubMed: 18620434] (b) Surry DS, Buchwald SL. Angew Chem, Int Ed 2008;47:6338. 4. (a) Walker SD, Barder TE, Martinelli JR, Buchwald SL. Angew Chem, Int Ed 2004;43:1871. (b) Molander GA, Sandrock DL. Org Lett 2007;9:1597. [PubMed: 17367156] (c) Molander GA, Petrillo DE. Org Lett 2008;10:1795. [PubMed: 18393522] (d) Molander GA, Canturk B. Org Lett 2008;10:2135. [PubMed: 18439019] 5. For aryl-aryl Negishi coupling using RuPhos, see: (a)milne JE, Buchwald SL. J Am Chem Soc 2004;126:13028. [PubMed: 15469301] For Negishi coupling of aryl halides with primary alkyl zinc halides using SPhos, see: (b)manolikakes G, Schade MA, Hernandez CM, Mayr H, Knochel P. Org Lett 2008;10:2765. [PubMed: 18529011](c)Manolikakes G, Hernandez CM, Schade MA, Metzger A, Knochel P. J Org Chem 2008;73:8422. [PubMed: 18834176] 6. Krasovskiy A, Malakhov V, Gavryushin A, Knochel P. Angew Chem, Int Ed 2006;45:6040. 7. Less than 2% reduction products (Ar-H) were observed in all cases.

Han and Buchwald Page 4 8. Attempted coupling of 4-chloroanisole using standard conditions at 60 C provided low conversion (<2%). 9. See Supporting Information for experimental details.

Han and Buchwald Page 5 Figure 1. Ligand effects in the coupling of ortho-substituted aryl bromides with isopropyl zinc bromide.

Han and Buchwald Page 6 Scheme 1. A Simplified Reaction Course for the Coupling of i-prm with an Aryl Halide.

Han and Buchwald Page 7 Scheme 2. Negishi Cross-Coupling of Secondary Alkylzinc Halides with Aryl or Heteroaryl Bromides and Chlorides. a a Isolated yields; average of two runs. b Reaction conducted in THF. c 2 mol % Pd(OAc) 2 and 4 mol % CPhos. d The alkylzinc reagent (1.5 equiv) was slowly added over 30 min. e 23:1 branched: linear.

Han and Buchwald Page 8 Scheme 3. Comparison of Product Distribution for the Coupling of Isopropyl and n-propyl Zinc Bromide with 2-Bromobenzonitrile.

Han and Buchwald Page 9 Table 1 Negishi Cross-Coupling of Isopropylzinc Bromide with Aryl Bromides and Chlorides. entry ArX yield a P1:P2 1 R= 4-OMe, X= Br 92% 37:1 2 R= 4-Ph, X= Br 95% 39:1 3 R= 4-CO 2 Me X= Br 94% b 46:1 X= Cl 98% b,c 45:1 4 R= 4-CN X= Br 87% b 59:1 X= Cl 94% b 43:1 5 R= 4-CHO X= Br 89% b 43:1 X= Cl 93% b 47:1 6 R= 4-NO 2, X= Br 50% b,d 28:1 7 R= 2-OMe, X= Br 97% 27:1 8 R= 2-Ph, X= Br 97% c 22:1 9 R= 2-CO 2 Me X= Br 91% b 37:1 X= Cl 97% b,e 30:1 10 R= 2-CN X= Br 89% b 20:1 X= Cl 94% b,c 22:1 11 R= 2-SMe, X= Br 95% f 30:1 12 5-bromoindole 96% 58:1 a Isolated yields of mixtures of i-pr and n-pr products; average of at least two runs. b Toluene employed as a cosolvent. c rt, 3 h. d 0 C, 30 min. e rt, 6 h. f rt, 1 h.