Topological Solitons from Geometry

Similar documents
Abelian vortices from Sinh Gordon and Tzitzeica equations

Singular Monopoles and Instantons on Curved Backgrounds

Self-dual conformal gravity

How to recognise a conformally Einstein metric?

Monopoles and Skyrmions. Ya. Shnir. Quarks-2010

Kink Chains from Instantons on a Torus

Solitons and point particles

Einstein Maxwell Dilaton metrics from three dimensional Einstein Weyl structures.

Transparent connections

Moduli Space of Higgs Bundles Instructor: Marco Gualtieri

How to recognize a conformally Kähler metric

Gravitating vortices, cosmic strings, and algebraic geometry

Simon Salamon. Turin, 24 April 2004

INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD

Electrically and Magnetically Charged Solitons in Gauge Field Th

The topology of asymptotically locally flat gravitational instantons

Math. Res. Lett. 13 (2006), no. 1, c International Press 2006 ENERGY IDENTITY FOR ANTI-SELF-DUAL INSTANTONS ON C Σ.

arxiv: v1 [hep-th] 9 Sep 2016

The geometry of the space of BPS vortex-antivortex pairs

Heterotic Torsional Backgrounds, from Supergravity to CFT

DIFFERENTIAL GEOMETRY AND THE QUATERNIONS. Nigel Hitchin (Oxford) The Chern Lectures Berkeley April 9th-18th 2013

ALF spaces and collapsing Ricci-flat metrics on the K3 surface

arxiv:nlin/ v1 [nlin.si] 4 Dec 2000

arxiv:math/ v1 [math.dg] 16 Mar 2003

Part III Classical and Quantum Solitons

Baby Skyrmions in AdS 3 and Extensions to (3 + 1) Dimensions

Linear connections on Lie groups

Topological reduction of supersymmetric gauge theories and S-duality

arxiv:hep-th/ v2 14 Oct 1997

Solitons in the SU(3) Faddeev-Niemi Model

Abelian and non-abelian Hopfions in all odd dimensions

Torus actions and Ricci-flat metrics

ALF spaces and collapsing Ricci-flat metrics on the K3 surface

Constructing compact 8-manifolds with holonomy Spin(7)

Continuity of the Deconfinement Transition in (Super) Yang Mills Theory

arxiv: v2 [hep-th] 28 Nov 2018

The Higgs bundle moduli space

η = (e 1 (e 2 φ)) # = e 3

Ancient solutions to Ricci flow

Quantising Gravitational Instantons

Holographic Entanglement Entropy for Surface Operators and Defects

arxiv: v1 [physics.gen-ph] 8 Mar 2017

On the BCOV Conjecture

Khovanov Homology And Gauge Theory

Geometry and Physics. Amer Iqbal. March 4, 2010

Continuity of the Deconfinement Transition in (Super) Yang Mills Theory

N = 2 supersymmetric gauge theory and Mock theta functions

Topological Solitons

Anti-Self-Duality and Solitons

B-FIELDS, GERBES AND GENERALIZED GEOMETRY

CLASSIFICATION OF NON-ABELIAN CHERN-SIMONS VORTICES

Integration of non linear conservation laws?

A dispersionless integrable system associated to Diff(S 1 ) gauge theory

Intro to Geometry and Topology via G Physics and G 2 -manifolds. Bobby Samir Acharya. King s College London. and ICTP Trieste Ψ(1 γ 5 )Ψ

arxiv:hep-th/ v2 24 Sep 1998

Donaldson Invariants and Moduli of Yang-Mills Instantons

A Variational Analysis of a Gauged Nonlinear Schrödinger Equation

Morse theory and stable pairs

7 The cigar soliton, the Rosenau solution, and moving frame calculations

THE GEOMETRY OF B-FIELDS. Nigel Hitchin (Oxford) Odense November 26th 2009

Dynamics of Multiple Kaluza-Klein Monopoles in M- and String Theory

Instantons and Donaldson invariants

Metrisability of Painleve equations and Hamiltonian systems of hydrodynamic type

Solitons, Vortices, Instantons

Two simple ideas from calculus applied to Riemannian geometry

A loop of SU(2) gauge fields on S 4 stable under the Yang-Mills flow

Contents. Appendix A Strong limit and weak limit 35. Appendix B Glauber coherent states 37. Appendix C Generalized coherent states 41

EFFECTIVE STRING THEORIES AND FIELD THEORIES IN FOUR DIMENSIONS

A Review of Solitons in Gauge Theories. David Tong

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight

Questions arising in open problem sessions in AIM workshop on L 2 -harmonic forms in geometry and string theory

arxiv: v2 [hep-th] 21 Jun 2018

Exact Solutions of the Einstein Equations

V = 1 2 (g ijχ i h j ) (2.4)

R. MacKenzie. Laboratoire de Physique Nucleaire, Universite de Montreal C.P. 6128, succ. centreville, Abstract

Modern Geometric Structures and Fields

Geometry of Skyrmions

Berry s Phase. Erik Lötstedt November 16, 2004

Adiabatic Paths and Pseudoholomorphic Curves

NOTE ON ASYMPTOTICALLY CONICAL EXPANDING RICCI SOLITONS

arxiv:gr-qc/ v1 21 Mar 1996

Exact Results in D=2 Supersymmetric Gauge Theories And Applications

Mathematical Research Letters 2, (1995) A VANISHING THEOREM FOR SEIBERG-WITTEN INVARIANTS. Shuguang Wang

Riemannian Curvature Functionals: Lecture III

Some new torsional local models for heterotic strings

Moduli of heterotic G2 compactifications

Aspects of integrability in classical and quantum field theories

arxiv:hep-th/ v3 25 Sep 2006

Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem

Hyperbolic vortices and Dirac fields in 2+1 dimensions

LECTURE 3: Quantization and QFT

The Explicit Construction of Einstein Finsler Metrics with Non-Constant Flag Curvature

Cosmic Strings and Topological Defects

Lecture 3: Short Summary

Mass, quasi-local mass, and the flow of static metrics

HYPERKÄHLER MANIFOLDS

8.821 String Theory Fall 2008

The Strominger Yau Zaslow conjecture

Complete integrability of geodesic motion in Sasaki-Einstein toric spaces

TWISTORS AND THE OCTONIONS Penrose 80. Nigel Hitchin. Oxford July 21st 2011

Transcription:

Topological Solitons from Geometry Maciej Dunajski Department of Applied Mathematics and Theoretical Physics University of Cambridge Atiyah, Manton, Schroers. Geometric models of matter. arxiv:1111.2934. Proc. R. Soc. Lond A (2012). MD. Abelian vortices from Sinh Gordon and Tzitzeica equations. arxiv:1201.0105. Phys. Lett. B. 710 (2012). MD. Skyrmions from gravitational instantons. arxiv:1206.0016. Proc. R. Soc. Lond. A (2013). Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 1 / 13

Waves or Particles Here I will only say that I am emphatically in favour of the retention of the particle idea. Naturally, it is necessary to redefine what is meant. Max Born, Nobel Lecture, December 11, 1954. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 2 / 13

Waves or Particles Here I will only say that I am emphatically in favour of the retention of the particle idea. Naturally, it is necessary to redefine what is meant. Max Born, Nobel Lecture, December 11, 1954. Waves: Dispersion, diffraction, superpositions. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 2 / 13

Waves or Particles Here I will only say that I am emphatically in favour of the retention of the particle idea. Naturally, it is necessary to redefine what is meant. Max Born, Nobel Lecture, December 11, 1954. Waves: Dispersion, diffraction, superpositions. Particles: mass, localisation. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 2 / 13

Waves or Particles Here I will only say that I am emphatically in favour of the retention of the particle idea. Naturally, it is necessary to redefine what is meant. Max Born, Nobel Lecture, December 11, 1954. Waves: Dispersion, diffraction, superpositions. QFT: Fourier transform, infinities, regularisation,..., string theory. Particles: mass, localisation. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 2 / 13

Waves or Particles Here I will only say that I am emphatically in favour of the retention of the particle idea. Naturally, it is necessary to redefine what is meant. Max Born, Nobel Lecture, December 11, 1954. Waves: Dispersion, diffraction, superpositions. QFT: Fourier transform, infinities, regularisation,..., string theory. Particles: mass, localisation. Solitons, classical non linear field equations, topological charges, stability. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 2 / 13

Solitons Solitons: Non singular, static, finite energy solutions of the field equations. ( 1 L = 2 φ2 t 1 2 φ2 x U(φ)) dx, where φ : R 1,1 R. R Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 3 / 13

Solitons Solitons: Non singular, static, finite energy solutions of the field equations. ( 1 L = 2 φ2 t 1 2 φ2 x U(φ)) dx, where φ : R 1,1 R. R Stable vacuum: U 0. Set U 1 (0) = {φ 1, φ 2,..., φ N }. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 3 / 13

Solitons Solitons: Non singular, static, finite energy solutions of the field equations. ( 1 L = 2 φ2 t 1 2 φ2 x U(φ)) dx, where φ : R 1,1 R. R Stable vacuum: U 0. Set U 1 (0) = {φ 1, φ 2,..., φ N }. Finite energy: φ(x, t) φ i as x. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 3 / 13

Solitons Solitons: Non singular, static, finite energy solutions of the field equations. ( 1 L = 2 φ2 t 1 2 φ2 x U(φ)) dx, where φ : R 1,1 R. R Stable vacuum: U 0. Set U 1 (0) = {φ 1, φ 2,..., φ N }. Finite energy: φ(x, t) φ i as x. φ(x, t) = φ 1 + δφ(x, t). Perturbative Scalar boson ( + m 2 )δφ = 0. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 3 / 13

Solitons Solitons: Non singular, static, finite energy solutions of the field equations. ( 1 L = 2 φ2 t 1 2 φ2 x U(φ)) dx, where φ : R 1,1 R. R Stable vacuum: U 0. Set U 1 (0) = {φ 1, φ 2,..., φ N }. Finite energy: φ(x, t) φ i as x. φ(x, t) = φ 1 + δφ(x, t). Perturbative Scalar boson ( + m 2 )δφ = 0. Kink: φ = φ 1 as x. φ = φ 2 as x. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 3 / 13

Solitons Solitons: Non singular, static, finite energy solutions of the field equations. ( 1 L = 2 φ2 t 1 2 φ2 x U(φ)) dx, where φ : R 1,1 R. R Stable vacuum: U 0. Set U 1 (0) = {φ 1, φ 2,..., φ N }. Finite energy: φ(x, t) φ i as x. φ(x, t) = φ 1 + δφ(x, t). Perturbative Scalar boson ( + m 2 )δφ = 0. Kink: φ = φ 1 as x. φ = φ 2 as x. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 3 / 13

Solitons and Topology Soliton stability Nontrivial topology Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 4 / 13

Solitons and Topology Soliton stability Nontrivial topology Complete integrability Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 4 / 13

Solitons and Topology Soliton stability Nontrivial topology Complete integrability Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 4 / 13

Solitons and Topology Soliton stability Nontrivial topology Complete integrability Static vortices: Abelian gauge potential + Higgs field φ : R 2 C. Boundary conditions: F = 0 and φ = 1 as r. φ : S 1 S 1. Vortex number π 1 (S 1 ) = Z. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 4 / 13

Solitons and Topology Soliton stability Nontrivial topology Complete integrability Static vortices: Abelian gauge potential + Higgs field φ : R 2 C. Boundary conditions: F = 0 and φ = 1 as r. φ : S 1 S 1. Vortex number π 1 (S 1 ) = Z. Skyrmions: U : R 3,1 SU(2). Static+finite energy. U : S 3 SU(2). Topological baryon number π 3 (S 3 ) = Z. B = 1 24π 2 R 3 Tr[(U 1 du) 3 ]. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 4 / 13

Abelian Higgs Model 2D Kähler manifold (Σ, g, ω). Hermitian line bundle L Σ with U(1) connection A and a global section C section φ : Σ L. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 5 / 13

Abelian Higgs Model 2D Kähler manifold (Σ, g, ω). Hermitian line bundle L Σ with U(1) connection A and a global section C section φ : Σ L. Ginsburg Landau energy E[A, φ] = 1 ( Dφ 2 + F 2 + 1 2 4 (1 φ 2 ) 2 )vol Σ, Σ F = da Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 5 / 13

Abelian Higgs Model 2D Kähler manifold (Σ, g, ω). Hermitian line bundle L Σ with U(1) connection A and a global section C section φ : Σ L. Ginsburg Landau energy E[A, φ] = 1 ( Dφ 2 + F 2 + 1 2 4 (1 φ 2 ) 2 )vol Σ, Σ Bogomolny equations Dφ = 0, F = 1 2 ω(1 φ 2 ) F = da Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 5 / 13

Abelian Higgs Model 2D Kähler manifold (Σ, g, ω). Hermitian line bundle L Σ with U(1) connection A and a global section C section φ : Σ L. Ginsburg Landau energy E[A, φ] = 1 ( Dφ 2 + F 2 + 1 2 4 (1 φ 2 ) 2 )vol Σ, Σ Bogomolny equations Dφ = 0, F = 1 2 ω(1 φ 2 ) Taubes equation: z = x + iy, g = Ω(z, z) dzd z. Set φ = exp(h/2 + iχ), solve for A. 0 h + Ω Ωe h = 0, where 0 = 4 z z. F = da Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 5 / 13

Vortex from geometry. 0 h + Ω Ωe h = 0. Vortex number N = 1 2π Σ B vol Σ, h 2N log z z 0 + const +.... Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 6 / 13

Vortex from geometry. 0 h + Ω Ωe h = 0. Vortex number N = 1 2π Σ B vol Σ, h 2N log z z 0 + const +.... Vortices on R 2, i. e. Ω = 1. No explicit solutions. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 6 / 13

Vortex from geometry. 0 h + Ω Ωe h = 0. Vortex number N = 1 2π Σ B vol Σ, h 2N log z z 0 + const +.... Vortices on R 2, i. e. Ω = 1. No explicit solutions. Make the Taubes equations integrable: Ω = exp ( h/2). 0 (h/2) = sinh (h/2), Sinh Gordon equation. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 6 / 13

Vortex from geometry. 0 h + Ω Ωe h = 0. Vortex number N = 1 2π Σ B vol Σ, h 2N log z z 0 + const +.... Vortices on R 2, i. e. Ω = 1. No explicit solutions. Make the Taubes equations integrable: Ω = exp ( h/2). 0 (h/2) = sinh (h/2), Solitons from geometry: L = T Σ, Chern number=euler characteristic. Sinh Gordon equation. SO(2) = U(1), Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 6 / 13

Geometry of Sinh Gordon vortex g = e h/2 dzd z. Constant mean curvature surface Σ R 2,1. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 7 / 13

Geometry of Sinh Gordon vortex g = e h/2 dzd z. Constant mean curvature surface Σ R 2,1. Radial solutions, h = h(r), s.t. h 0 as r. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 7 / 13

Geometry of Sinh Gordon vortex g = e h/2 dzd z. Constant mean curvature surface Σ R 2,1. Radial solutions, h = h(r), s.t. h 0 as r. Large r: Modified Bessel equation, h 8λK 0 (r) for a constant λ. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 7 / 13

Geometry of Sinh Gordon vortex g = e h/2 dzd z. Constant mean curvature surface Σ R 2,1. Radial solutions, h = h(r), s.t. h 0 as r. Large r: Modified Bessel equation, h 8λK 0 (r) for a constant λ. Small r: Liouville equation, h = 4σ log r +... for a constant σ. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 7 / 13

Geometry of Sinh Gordon vortex g = e h/2 dzd z. Constant mean curvature surface Σ R 2,1. Radial solutions, h = h(r), s.t. h 0 as r. Large r: Modified Bessel equation, h 8λK 0 (r) for a constant λ. Small r: Liouville equation, h = 4σ log r +... for a constant σ. In general, Painléve III equation. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 7 / 13

Geometry of Sinh Gordon vortex g = e h/2 dzd z. Constant mean curvature surface Σ R 2,1. Radial solutions, h = h(r), s.t. h 0 as r. Large r: Modified Bessel equation, h 8λK 0 (r) for a constant λ. Small r: Liouville equation, h = 4σ log r +... for a constant σ. In general, Painléve III equation. Theorem (MD, 2012) Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 7 / 13

Geometry of Sinh Gordon vortex g = e h/2 dzd z. Constant mean curvature surface Σ R 2,1. Radial solutions, h = h(r), s.t. h 0 as r. Large r: Modified Bessel equation, h 8λK 0 (r) for a constant λ. Small r: Liouville equation, h = 4σ log r +... for a constant σ. In general, Painléve III equation. Theorem (MD, 2012) 1 σ(λ) = 2π 1 arcsin (πλ) if 0 λ π 1. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 7 / 13

Geometry of Sinh Gordon vortex g = e h/2 dzd z. Constant mean curvature surface Σ R 2,1. Radial solutions, h = h(r), s.t. h 0 as r. Large r: Modified Bessel equation, h 8λK 0 (r) for a constant λ. Small r: Liouville equation, h = 4σ log r +... for a constant σ. In general, Painléve III equation. Theorem (MD, 2012) 1 σ(λ) = 2π 1 arcsin (πλ) if 0 λ π 1. 2 There exists a one vortex solution with strength 4 2/π. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 7 / 13

Geometry of Sinh Gordon vortex g = e h/2 dzd z. Constant mean curvature surface Σ R 2,1. Radial solutions, h = h(r), s.t. h 0 as r. Large r: Modified Bessel equation, h 8λK 0 (r) for a constant λ. Small r: Liouville equation, h = 4σ log r +... for a constant σ. In general, Painléve III equation. Theorem (MD, 2012) 1 σ(λ) = 2π 1 arcsin (πλ) if 0 λ π 1. 2 There exists a one vortex solution with strength 4 2/π. 3 CMC surface with deficit angle π near r = 0. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 7 / 13

Geometry of Sinh Gordon vortex g = e h/2 dzd z. Constant mean curvature surface Σ R 2,1. Radial solutions, h = h(r), s.t. h 0 as r. Large r: Modified Bessel equation, h 8λK 0 (r) for a constant λ. Small r: Liouville equation, h = 4σ log r +... for a constant σ. In general, Painléve III equation. Theorem (MD, 2012) 1 σ(λ) = 2π 1 arcsin (πλ) if 0 λ π 1. 2 There exists a one vortex solution with strength 4 2/π. 3 CMC surface with deficit angle π near r = 0. Uses isomonodromy theory, and connection formulae (Kitaev). Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 7 / 13

Geometry of Sinh Gordon vortex g = e h/2 dzd z. Constant mean curvature surface Σ R 2,1. Radial solutions, h = h(r), s.t. h 0 as r. Large r: Modified Bessel equation, h 8λK 0 (r) for a constant λ. Small r: Liouville equation, h = 4σ log r +... for a constant σ. In general, Painléve III equation. Theorem (MD, 2012) 1 σ(λ) = 2π 1 arcsin (πλ) if 0 λ π 1. 2 There exists a one vortex solution with strength 4 2/π. 3 CMC surface with deficit angle π near r = 0. Uses isomonodromy theory, and connection formulae (Kitaev). One more integrable case: Tzitzeica equation and affine spheres. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 7 / 13

Skyrmions Skyrme model of Baryons. Nonlinear pion field U : R 3,1 SU(2). Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 8 / 13

Skyrmions Skyrme model of Baryons. Nonlinear pion field U : R 3,1 SU(2). Energy of static skyrmions. Set R j = U 1 j U su(2). E[U] = 1 ( Tr(R j R j ) + 1 ) 2 8 (Tr([R i, R j ][R i, R j ]) d 3 x > 12π 2 B. R 3 Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 8 / 13

Skyrmions Skyrme model of Baryons. Nonlinear pion field U : R 3,1 SU(2). Energy of static skyrmions. Set R j = U 1 j U su(2). E[U] = 1 ( Tr(R j R j ) + 1 ) 2 8 (Tr([R i, R j ][R i, R j ]) d 3 x > 12π 2 B. R 3 Finite energy, U : S 3 S 3 and B = deg(u) Z. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 8 / 13

Skyrmions Skyrme model of Baryons. Nonlinear pion field U : R 3,1 SU(2). Energy of static skyrmions. Set R j = U 1 j U su(2). E[U] = 1 ( Tr(R j R j ) + 1 ) 2 8 (Tr([R i, R j ][R i, R j ]) d 3 x > 12π 2 B. R 3 Finite energy, U : S 3 S 3 and B = deg(u) Z. Skyrmions from instanton holonomy (Atiyah+ Manton, 1989). ( ) U(x) = P exp A 4 (x, τ)dτ. Yang Mills potential A su(2) for a Yang Mills field F = da + A A on R 4. Baryon number = instanton number. R Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 8 / 13

Skyrmions Skyrme model of Baryons. Nonlinear pion field U : R 3,1 SU(2). Energy of static skyrmions. Set R j = U 1 j U su(2). E[U] = 1 ( Tr(R j R j ) + 1 ) 2 8 (Tr([R i, R j ][R i, R j ]) d 3 x > 12π 2 B. R 3 Finite energy, U : S 3 S 3 and B = deg(u) Z. Skyrmions from instanton holonomy (Atiyah+ Manton, 1989). ( ) U(x) = P exp A 4 (x, τ)dτ. Yang Mills potential A su(2) for a Yang Mills field F = da + A A on R 4. Baryon number = instanton number. R 4 S R R3 Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 8 / 13

Particles as Gravitational Instantons Gravitational instantons = Riemannian, Einsten four manifolds (M, g) whose curvature is concentrated in a finite region of a space-time. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 9 / 13

Particles as Gravitational Instantons Gravitational instantons = Riemannian, Einsten four manifolds (M, g) whose curvature is concentrated in a finite region of a space-time. Taub NUT metric g = r + m dr 2 + (r 2 + mr)(dθ 2 + sin θ 2 dφ 2 ) + rm2 r r + m (dψ + cos θdφ)2, where θ [0, π), φ [0, 2π), ψ [0, 4π). Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 9 / 13

Particles as Gravitational Instantons Gravitational instantons = Riemannian, Einsten four manifolds (M, g) whose curvature is concentrated in a finite region of a space-time. Taub NUT metric g = r + m dr 2 + (r 2 + mr)(dθ 2 + sin θ 2 dφ 2 ) + rm2 r r + m (dψ + cos θdφ)2, where θ [0, π), φ [0, 2π), ψ [0, 4π). Small r: g flat metric on R 4. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 9 / 13

Particles as Gravitational Instantons Gravitational instantons = Riemannian, Einsten four manifolds (M, g) whose curvature is concentrated in a finite region of a space-time. Taub NUT metric g = r + m dr 2 + (r 2 + mr)(dθ 2 + sin θ 2 dφ 2 ) + rm2 r r + m (dψ + cos θdφ)2, where θ [0, π), φ [0, 2π), ψ [0, 4π). Small r: g flat metric on R 4. Large r: Hopf bundle S 3 S 2, Chern class = 1. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 9 / 13

Particles as Gravitational Instantons Gravitational instantons = Riemannian, Einsten four manifolds (M, g) whose curvature is concentrated in a finite region of a space-time. Taub NUT metric g = r + m dr 2 + (r 2 + mr)(dθ 2 + sin θ 2 dφ 2 ) + rm2 r r + m (dψ + cos θdφ)2, where θ [0, π), φ [0, 2π), ψ [0, 4π). Small r: g flat metric on R 4. Large r: Hopf bundle S 3 S 2, Chern class = 1. Asymptotically locally flat (ALF): M S 1 bundle over S 2 at. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 9 / 13

Particles as Gravitational Instantons Gravitational instantons = Riemannian, Einsten four manifolds (M, g) whose curvature is concentrated in a finite region of a space-time. Taub NUT metric g = r + m dr 2 + (r 2 + mr)(dθ 2 + sin θ 2 dφ 2 ) + rm2 r r + m (dψ + cos θdφ)2, where θ [0, π), φ [0, 2π), ψ [0, 4π). Small r: g flat metric on R 4. Large r: Hopf bundle S 3 S 2, Chern class = 1. Asymptotically locally flat (ALF): M S 1 bundle over S 2 at. Particles = gravitational instantons. (Atiyah, Manton, Schroers). Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 9 / 13

Particles as Gravitational Instantons Gravitational instantons = Riemannian, Einsten four manifolds (M, g) whose curvature is concentrated in a finite region of a space-time. Taub NUT metric g = r + m dr 2 + (r 2 + mr)(dθ 2 + sin θ 2 dφ 2 ) + rm2 r r + m (dψ + cos θdφ)2, where θ [0, π), φ [0, 2π), ψ [0, 4π). Small r: g flat metric on R 4. Large r: Hopf bundle S 3 S 2, Chern class = 1. Asymptotically locally flat (ALF): M S 1 bundle over S 2 at. Particles = gravitational instantons. (Atiyah, Manton, Schroers). Charged particles = ALF instantons. Charge = Chern number of asymptotic S 1 bundle. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 9 / 13

Particles as Gravitational Instantons Gravitational instantons = Riemannian, Einsten four manifolds (M, g) whose curvature is concentrated in a finite region of a space-time. Taub NUT metric g = r + m dr 2 + (r 2 + mr)(dθ 2 + sin θ 2 dφ 2 ) + rm2 r r + m (dψ + cos θdφ)2, where θ [0, π), φ [0, 2π), ψ [0, 4π). Small r: g flat metric on R 4. Large r: Hopf bundle S 3 S 2, Chern class = 1. Asymptotically locally flat (ALF): M S 1 bundle over S 2 at. Particles = gravitational instantons. (Atiyah, Manton, Schroers). Charged particles = ALF instantons. Charge = Chern number of asymptotic S 1 bundle. Neutral particles = compact instantons. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 9 / 13

Particles as Gravitational Instantons Gravitational instantons = Riemannian, Einsten four manifolds (M, g) whose curvature is concentrated in a finite region of a space-time. Taub NUT metric g = r + m dr 2 + (r 2 + mr)(dθ 2 + sin θ 2 dφ 2 ) + rm2 r r + m (dψ + cos θdφ)2, where θ [0, π), φ [0, 2π), ψ [0, 4π). Small r: g flat metric on R 4. Large r: Hopf bundle S 3 S 2, Chern class = 1. Asymptotically locally flat (ALF): M S 1 bundle over S 2 at. Particles = gravitational instantons. (Atiyah, Manton, Schroers). Charged particles = ALF instantons. Charge = Chern number of asymptotic S 1 bundle. Neutral particles = compact instantons. Proton, neutron, electron, neutrino. Atiyah Hitchin, CP 2, Taub NUT, S 4. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 9 / 13

Skyrmions from gravitational instantons Skyrmion from the holonomy of the spin connection (MD, 2012). Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 10 / 13

Skyrmions from gravitational instantons Skyrmion from the holonomy of the spin connection (MD, 2012). Spin connection Λ 2 = so(4) = so(3) so(3). Taub NUT γ = 0. γ + su(2) self dual YM on (M, g) Skyrmion on M/SO(2). Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 10 / 13

Skyrmions from gravitational instantons Skyrmion from the holonomy of the spin connection (MD, 2012). Spin connection Λ 2 = so(4) = so(3) so(3). Taub NUT γ = 0. γ + su(2) self dual YM on (M, g) Skyrmion on M/SO(2). A = (1/2)ε ijk γ ij t k, where [t i, t j ] = ε ijk t k. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 10 / 13

Skyrmions from gravitational instantons Skyrmion from the holonomy of the spin connection (MD, 2012). Spin connection Λ 2 = so(4) = so(3) so(3). Taub NUT γ = 0. γ + su(2) self dual YM on (M, g) Skyrmion on M/SO(2). A = (1/2)ε ijk γ ij t k, where [t i, t j ] = ε ijk t k. AH, Taub NUT, CP 2 are SO(3) invariant. Pick SO(2) SO(3). ( U(r, ψ, θ) = exp π 3 f j (r)n j t j ), j=1 where n = (cos ψ sin θ, sin ψ sin θ, cos θ) and f 1 = f 2 = r r + m, f 3 = r(r + 2m) (r + m) 2. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 10 / 13

Geometry of Taub NUT skyrmion Skyrmion on three space (B, h) = M/SO(2) = H 2 S 1 h = h H 2 + R 2 dψ 2, R : H 2 R. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 11 / 13

Geometry of Taub NUT skyrmion Skyrmion on three space (B, h) = M/SO(2) = H 2 S 1 h = h H 2 + R 2 dψ 2, R : H 2 R. Upper half plane: h = dx2 +dy 2 y 2, R 2 = x 2 +y 2 y 2 (m 1 x 2 +y 2 +1) 2 +x 2. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 11 / 13

Geometry of Taub NUT skyrmion Skyrmion on three space (B, h) = M/SO(2) = H 2 S 1 h = h H 2 + R 2 dψ 2, R : H 2 R. Upper half plane: h = dx2 +dy 2 y 2, R 2 = Poincare disc D H 2, x + iy = z i iz 1, x 2 +y 2 y 2 (m 1 x 2 +y 2 +1) 2 +x 2. S1 B D Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 11 / 13

Atiyah Hitchin skyrmion SO(3) invariant metrics. Let a i = a i (r), and dη 1 = η 2 η 3 etc. g = (a 2 /r) 2 dr 2 + a 1 η 1 2 + a 2 η 2 2 + a 3 η 3 2, Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 12 / 13

Atiyah Hitchin skyrmion SO(3) invariant metrics. Let a i = a i (r), and dη 1 = η 2 η 3 etc. g = (a 2 /r) 2 dr 2 + a 1 η 2 1 + a 2 η 2 2 + a 3 η 2 3, Self-dual spin connection A = f 1 (r)η 1 t 1 + f 2 (r)η 2 t 2 + f 3 (r)η 3 t 3. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 12 / 13

Atiyah Hitchin skyrmion SO(3) invariant metrics. Let a i = a i (r), and dη 1 = η 2 η 3 etc. g = (a 2 /r) 2 dr 2 + a 1 η 2 1 + a 2 η 2 2 + a 3 η 2 3, Self-dual spin connection A = f 1 (r)η 1 t 1 + f 2 (r)η 2 t 2 + f 3 (r)η 3 t 3. Topological degree Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 12 / 13

Atiyah Hitchin skyrmion SO(3) invariant metrics. Let a i = a i (r), and dη 1 = η 2 η 3 etc. Self-dual spin connection g = (a 2 /r) 2 dr 2 + a 1 η 1 2 + a 2 η 2 2 + a 3 η 3 2, A = f 1 (r)η 1 t 1 + f 2 (r)η 2 t 2 + f 3 (r)η 3 t 3. Topological degree 1 B T N = 2 (integration). Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 12 / 13

Atiyah Hitchin skyrmion SO(3) invariant metrics. Let a i = a i (r), and dη 1 = η 2 η 3 etc. Self-dual spin connection g = (a 2 /r) 2 dr 2 + a 1 η 1 2 + a 2 η 2 2 + a 3 η 3 2, A = f 1 (r)η 1 t 1 + f 2 (r)η 2 t 2 + f 3 (r)η 3 t 3. Topological degree 1 B T N = 2 (integration). 2 B AH = 1. Set r = 2 π/2 0 1 sin (β/2) 2 sin (τ) 2 2 dτ. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 12 / 13

Outlook Solitons (vortices, skyrmions) induced by the geometry of space time. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 13 / 13

Outlook Solitons (vortices, skyrmions) induced by the geometry of space time. Topological charges (vortex number, baryon number)= Characteristic classes the Levi Civita connection (Euler characteristic, Hirzebruch signature). Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 13 / 13

Outlook Solitons (vortices, skyrmions) induced by the geometry of space time. Topological charges (vortex number, baryon number)= Characteristic classes the Levi Civita connection (Euler characteristic, Hirzebruch signature). Explicit solutions. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 13 / 13

Outlook Solitons (vortices, skyrmions) induced by the geometry of space time. Topological charges (vortex number, baryon number)= Characteristic classes the Levi Civita connection (Euler characteristic, Hirzebruch signature). Explicit solutions. Particles as four manifolds. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 13 / 13

Outlook Solitons (vortices, skyrmions) induced by the geometry of space time. Topological charges (vortex number, baryon number)= Characteristic classes the Levi Civita connection (Euler characteristic, Hirzebruch signature). Explicit solutions. Particles as four manifolds. Thank You. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012 13 / 13