Hendra Pachri, Yasuhiro Mitani, Hiro Ikemi, and Ryunosuke Nakanishi

Similar documents
3D Slope Stability Analysis for Slope Failure Probability in Sangun mountainous, Fukuoka Prefecture, Japan

International Journal of Innovative Research in Advanced Engineering (IJIRAE) ISSN: Issue 08, Volume 3 (August 2016)

GIS Application in Landslide Hazard Analysis An Example from the Shihmen Reservoir Catchment Area in Northern Taiwan

Statistical Seismic Landslide Hazard Analysis: an Example from Taiwan

Landslide Susceptibility Mapping Using Logistic Regression in Garut District, West Java, Indonesia

Landslide Hazard Assessment Methodologies in Romania

Landslide Susceptibility, Hazard, and Risk Assessment. Twin Hosea W. K. Advisor: Prof. C.T. Lee

Practical reliability approach to urban slope stability

Landslide hazard assessment in the Khelvachauri area, Georgia

Landslide Susceptibility Mapping by Using Logistic Regression Model with Neighborhood Analysis: A Case Study in Mizunami City

SPATIAL MODELS FOR THE DEFINITION OF LANDSLIDE SUSCEPTIBILITY AND LANDSLIDE HAZARD. J.L. Zêzere Centre of Geographical Studies University of Lisbon

Investigation of landslide based on high performance and cloud-enabled geocomputation

EMERGENCY PLANNING IN NORTHERN ALGERIA BASED ON REMOTE SENSING DATA IN RESPECT TO TSUNAMI HAZARD PREPAREDNESS

Using Weather and Climate Information for Landslide Prevention and Mitigation

Assessment of the Incidence of Landslides Using Numerical Information

LANDSLIDE HAZARD MAPPING BY USING GIS IN THE LILLA EDET PROVINCE OF SWEDEN

INTRODUCTION. Climate

Need of Proper Development in Hilly Urban Areas to Avoid

Assessment of regional rainfall-induced landslides using 3S-based hydro-geological model

Evaluation of Landslide Hazard Assessment Models at Regional Scale (SciNet NatHazPrev Project)

DEM-based Ecological Rainfall-Runoff Modelling in. Mountainous Area of Hong Kong

Landslide analysis to estimate probability occurrence of earthquakes by software ArcGIS in central of Iran

Pinyol, Jordi González, Marta Oller, Pere Corominas, Jordi Martínez, Pere

INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 1, No 1, 2010

Predicting of Shallow Slope Failure Using Probabilistic Model: a Case Study of Granitic Fill Slope in Northern Thailand

2013 Esri Europe, Middle East and Africa User Conference October 23-25, 2013 Munich, Germany

Landslide Hazard Mapping of Nagadhunga-Naubise Section of the Tribhuvan Highway in Nepal with GIS Application

TESTING ON THE TIME-ROBUSTNESS OF A LANDSLIDE PREDICTION MODEL. Hirohito Kojima* and Chang-Jo F. Chung**

Spatial Support in Landslide Hazard Predictions Based on Map Overlays

A METHODOLOGY FOR ASSESSING EARTHQUAKE-INDUCED LANDSLIDE RISK. Agency for the Environmental Protection, ITALY (

Application of high-resolution (10 m) DEM on Flood Disaster in 3D-GIS

PROANA A USEFUL SOFTWARE FOR TERRAIN ANALYSIS AND GEOENVIRONMENTAL APPLICATIONS STUDY CASE ON THE GEODYNAMIC EVOLUTION OF ARGOLIS PENINSULA, GREECE.

Landslide Mapping and Hazard Analysis for a Natural Gas Pipeline Project

A Sampled Method of Classification of Susceptibility Evaluation Unit for Geological Hazards based on GIS

Topographical Change Monitoring for Susceptible Landslide Area Determination by Using Multi-Date Digital Terrain Models and LiDAR

ASTER DEM Based Studies for Geological and Geomorphological Investigation in and around Gola block, Ramgarh District, Jharkhand, India

An Introduced Methodology for Estimating Landslide Hazard for Seismic andrainfall Induced Landslides in a Geographical Information System Environment

Landslide hazards zonation using GIS in Khoramabad, Iran

LANDSLIDE SUSCEPTIBILITY MAPPING USING INFO VALUE METHOD BASED ON GIS

International Journal of Modern Trends in Engineering and Research e-issn No.: , Date: April, 2016

Landslide Susceptibility in Tryon State Park, Oregon

Figure B.15 - Example of plotting the landslide potential points

Coupling TRIGRS and TOPMODEL in shallow landslide prediction. 1 Presenter: 王俊皓 Advisor: 李錫堤老師 Date: 2016/10/13

An analysis on the relationship between land subsidence and floods at the Kujukuri Plain in Chiba Prefecture, Japan

Generation of Land Disaster Risk Map from LANDSAT TM and DTM data. Masataka TAKAGI*, Shunji MURAI* and Takashi AKIYAMA **

Back Analysis of Slope Failure Using Finite Element with Point Estimate Method (FEM-PEM)

Deep-Seated Landslides and Landslide Dams Characteristics Caused by Typhoon Talas at Kii Peninsula, Japan

Dr. S.SURIYA. Assistant professor. Department of Civil Engineering. B. S. Abdur Rahman University. Chennai

Landslides & Debris Flows

GEOMORPHOLOGY APPROACH IN LANDSLIDE VULNERABILITY, TANJUNG PALAS TENGAH, EAST KALIMANTAN, INDONESIA

Applying Hazard Maps to Urban Planning

An advanced application of Geographic Information System (GIS) to rock engineering

BASIC DETAILS. Morphometric features for landslide zonation A case study for Ooty Mettupalayam highway

ACCURACY OF DIGITAL ELEVATION MODEL ACCORDING TO SPATIAL RESOLUTION

CHANGE DETECTION USING REMOTE SENSING- LAND COVER CHANGE ANALYSIS OF THE TEBA CATCHMENT IN SPAIN (A CASE STUDY)

Quantitative Slope Stability Mapping With ArcGIS: Prioritize Highway Maintenance

Landslide Hazard Assessment Models at Regional Scale (SciNet NatHazPrev Project)

CHARACTERISTICS OF SLOP FAILURES AND LANDSLIDE DAMS CAUSED BY THE 2008 IWATE-MIYAGI NAIRIKU EARTHQUAKE

Floodplain modeling. Ovidius University of Constanta (P4) Romania & Technological Educational Institute of Serres, Greece

STRATEGY ON THE LANDSLIDE TYPE ANALYSIS BASED ON THE EXPERT KNOWLEDGE AND THE QUANTITATIVE PREDICTION MODEL

Landslide Hazard Zonation Methods: A Critical Review

The Comprehensive Slope-land Disaster Magnitude Assessment for Landslide and Debris Flow

MAPPING POTENTIAL LAND DEGRADATION IN BHUTAN

SUB CATCHMENT AREA DELINEATION BY POUR POINT IN BATU PAHAT DISTRICT

Response on Interactive comment by Anonymous Referee #1

Debris flow: categories, characteristics, hazard assessment, mitigation measures. Hariklia D. SKILODIMOU, George D. BATHRELLOS

Landslide Computer Modeling Potential

Development of Water Management Modeling by Using GIS in Chirchik River Basin, Uzbekistan

Assessment of Urban Geomorphological Hazard in the North-East of Cairo City, Using Remote Sensing and GIS Techniques. G. Albayomi

Preparing Landslide Inventory Maps using Virtual Globes

Multi-stage Statistical Landslide Hazard Analysis: Earthquake-Induced Landslides

Interpretive Map Series 24

Integrating Geographical Information Systems (GIS) with Hydrological Modelling Applicability and Limitations

DOWNLOAD OR READ : GIS BASED FLOOD LOSS ESTIMATION MODELING IN JAPAN PDF EBOOK EPUB MOBI

!" &#'(&) %*!+,*" -./0"1$ 1% % % - % 8 99:; < % % % % = 1. % % 2 /0 2 8 $ ' 99!; & %% % 2,A 1% %,1 % % % 2 3 %3 % / % / "1 % ; /0 % 2% % % %36

DEVELOPMENT OF FLOOD HAZARD VULNERABILITY MAP FOR ALAPPUZHA DISTRICT

Reliability Based Seismic Stability of Soil Slopes

Use of ArcMap for 3D Stability Analysis of Preexisting Landslides

CHARACTERISTICS OF RAIN INFILTRATION IN SOIL LAYERS ON THE HILLSLOPE BEHIND IMPORTANT CULTURAL ASSET

Progress Report. Flood Hazard Mapping in Thailand

Application of GIS Technique in Three-Dimensional Slope Stability Analysis

Contents. 1.Introduction

Effect of land cover / use change on soil erosion assessment in Dubračina catchment (Croatia)

USING GIS CARTOGRAPHIC MODELING TO ANALYSIS SPATIAL DISTRIBUTION OF LANDSLIDE SENSITIVE AREAS IN YANGMINGSHAN NATIONAL PARK, TAIWAN

Remote Sensing and GIS Contribution to. Tsunami Risk Sites Detection. of Coastal Areas in the Mediterranean

8 Current Issues and Research on Sediment Movement in the River Catchments of Japan

Evaluating Flood Hazard Potential in Danang City, Vietnam Using FOSS4G

EFFICIENCY OF THE INTEGRATED RESERVOIR OPERATION FOR FLOOD CONTROL IN THE UPPER TONE RIVER OF JAPAN CONSIDERING SPATIAL DISTRIBUTION OF RAINFALL

A GIS-based statistical model for landslide susceptibility mapping: A case study in the Taleghan watershed, Iran

Structural Analysis and Tectonic Investigation of Chamshir Dam Site, South West Zagros

Watershed Delineation in GIS Environment Rasheed Saleem Abed Lecturer, Remote Sensing Centre, University of Mosul, Iraq

Estimation of landslides activities evolution due to land use changes in a Pyrenean valley

ANALYSIS OF A SLOPE FAILURE IN AN OPEN PIT MINE USING TSLOPE

Flood hazard mapping in Urban Council limit, Vavuniya District, Sri Lanka- A GIS approach

Special edition paper

Journal of Remote Sensing & GIS ISSN:

GIS BASED ANALYSIS ON ENVIRONMENTAL SENSITIVE AREAS AND IDENTIFICATION OF THE POTENTIAL DISASTER HAZARDOUS LOCATIONS IN SOUTHERN SRI LANKA

MODELING DEM UNCERTAINTY IN GEOMORPHOMETRIC APPLICATIONS WITH MONTE CARLO-SIMULATION

Geomorphology and Landslide Hazard Models

ON THE CORRELATION OF SEDIMENTATION AND LANDSLIDES IN WU RIVER CATCHMENT INFLUENCED BY THE 1999 CHI-CHI EARTHQUAKE

Transcription:

21 2nd International Conference on Geological and Civil Engineering IPCBEE vol. 8 (21) (21) IACSIT Press, Singapore DOI: 1.7763/IPCBEE. 21. V8. 2 Relationships between Morphology Aspect and Slope Failure Probability by Using 3D Slope Stability Analysis in Yamasubaru Subbasin, Miyazaki Prefecture, Japan Hendra Pachri, Yasuhiro Mitani, Hiro Ikemi, and Ryunosuke Nakanishi Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka, 819-39 Japan Abstract. Recently, the assessment of probabilistic slope failure hazard at basin scale is a one part of decision analytical approach to slope failure risk assessment and management. This paper demonstrates the integrating of deterministic and statistical approach to assess the performance of the predicted results based on a factor of safety (FS) of whole slope units. Therefore, the spatial probabilistic modeling of slope failures using a combined Geographic Information System (GIS), 3D slope stability analysis, and Monte Carlo simulation approach is applied in the slope failures-prone area of Yamasubaru sub-basin, Miyazaki Prefecture. As the predicted results have been evaluated by the actual data of slope failure caused by the typhoon 14 in 2, the validity of this model has shown enough. Therefore, the best value shows a highest of the factual slope failure occurred in SU4 for FS 1., about 93.7 %. Furthermore, the relationships on between of morphology and the probability of slope failure shows a varying of the morphology aspect classes are the causal factors in determining the occurrence and distribution of slope failure predicted. Keywords: Slope Failure, GIS, 3D Slope Stability, Morphology. 1. Introduction In the Mimikawa River Basin, Typhoon No.14 was brought about a severe sediment attributable to mountain slope failures in Miyazaki Prefecture, Japan in September 2. An awareness of the potential risk from sediment disasters is needed to prediction the occurrence in the basin in future. Therefore, assessment of probabilistic slope failure hazard at basin scale is a one part of decision analytical approach to landslides risk assessment and management. Landslides susceptibility mapping has shown a great deal of importance for suitable urban development [1]. Numerous efforts have been devoted by many researchers to develop landslide susceptibility maps in over the last three decades [2]. These maps describe areas where landslides are likely to occur in the future and classify those areas into different susceptibility zones from very low to very high susceptible zones. The engineering analysis of landslides risk has essentially two components, the probability of occurrence and the resulting consequence. The deterministic approach to slope failure usually requires of a factor of safety, from geometry, shear strength and pore pressure [3].The use of two- or three-dimensional rasterbased GIS currently requires the transfer of slope data and hydrologic data from a GIS to external slope stability program. A new GIS grid-based 3D deterministic model has been developed, and only one stratum has been considered for landslide hazard mapping [4]. In order to assess the landslides and potential of debris flow hazard of the mountainous region, the study of historical landslides is critical. Therefore, the study of the mechanisms and properties of past slope failure is a valuable reference for assessing the future slope failure hazard in its adjacent or geotechnical similar area. Here, we demonstrated the implementation of the Frequency Ratio (FR) model with the support of the 3D slope stability tools to assess the factor of safety (FS) of the whole slope units based on sub catchmentand Corresponding author. Tel.: + 81-8-3986-298; fax: +81-92-82-3396. E-mail address: hendrapachri@hotmail.com.

produce a reasonable cohesion, friction angle, and unit weight values. The critical 3D slope stability simulation gave the results about the relationship on between morphology aspect and geotechnical parameters. The FS values have become important to explain the susceptibility of landslide. In this analysis is concern for three parts of FS value ranges, such as FS 1., FS 1.2, and FS 1.. Furthermore, the observation of relationships between distribution of slope failures in the past and probability of the occurrence slope failure based on 3D slope stability analysis is carried out to determination the best-fit model for each geotechnical parameter values. Moreover, the relationships of between on slope stability results and morphology aspect (slope angle, elevation, and slope angle) have been analyzed to obtained more knowledge about morphology control in slope failure susceptibility. Table 1: Geotechnical values on 3D Slope stability simulation. No ID Geotechnical values Lithology Cohesion (kn/m 2 ) Friction angle (ᴼ) Unit weight (kn/m 3 ) 1 SU1 Shale 3 17. 18 2 SU2 Sandstone 3 1 18 3 SU3 Sandstone 3 22. 18 4 SU4 Shale 2 17. 18 2. Data and Methodology 2.1. Slope Failure in Yamasubaru Sub-basin In this study, slope failures location map is prepared based on of the previous researches conducted on the area and aerial photographs. In addition, field work has been carried out to map recent landslides. A total of 923 landslides were mapped in the area. The instability factors were chosen based on the above-mentioned studies which were carried out on the study area, the bibliographical review and from field investigations. 2.2. Spatial Database Preparation by Using GIS and Remote Sensing Digital Elevation Model (DEM), which represents the land surface terrain of the surface terrain of the area, was generated with a 1 m grid from the ASTER GDEM. Using this DEM, the three topographic parameters, slope gradient map, slope aspect map and elevation map were automatically derived and convert into ASCII data. From the lithological point of view, nine units were classified from seamless digital geological maps of Japan (1:2.) obtained from Geological Survey of Japan, AIST 2 []. Geotechnical data including cohesion, friction angle, and unit weight, were derived from the laboratory test of previous studies conducted on the area and literature review. 2.3. 3D Slope Stability Analysis The availability of the geographical information system (GIS) can facilitate the use of a deterministic or a probabilistic geotechnical approach as part of a methodology on assessment of slope failure hazard. Regarding the attributing factors, the assessment of slope failure susceptibility is carried out by using the Slope Failure Analysis System (SFAS) GIS. Based on the model of slope stability analysis and Monte Carlo simulation, the critical slip surface and minimum 3D safety factor can be obtained for each slope unit [6]. A GIS-based hydrologic analysis and modelling tool, Arc Hydro tool is employed to draw dividing lines for forming slope units automatically. In this study, the unit size of watershed subdivision is, obtained from digital elevation model (DEM) data. By inputting these parameters into the model of slope stability, the value of a safety factor or failure can be obtained. Based on Hovland s (1977) model, the 3D safety factor can be expressed as following equation: F 3D J I ca W cos tan J I W sin 6 (1)

(a) (b) (c) Fig. 1. The slope failure probability map produced by 3D slope stability analysis. (a) FS 1; (b) FS 1.2; and (c) FS 1.. Where, F 3D : the 3D slope safety factor; W: the weight of one column; A : the area of the slip surface; c : the cohesion: φ: the friction angle; θ : the normal angle of slip surface: and J,I: the numbers of row and column of the fixel in the range of slope failure. In this case study, the sliding surface is assumed to be confined to the surface layer. The thickness of the landslide body is set in the range of -3 m, which is the same as the depth of surface layer. Slope angle that less than or equal value take as flat is ᴼ. The final critical 3D safety factor is the minimum safety factor of times random calculations. 3. Results and Discussions 3.1. Slope Failure Probability of Yamasubaru Sub Basin The analysis of slope failure probability analysis has been simulated that related to geological information, geomorphologic aspect, geotechnical parameters for obtained the relationships between morphology aspect and slope failure probability. Table 1 shows the geotechnical values based on the results of small catchment analysis in Yamasubaru sub-basin. The detail of a slip surface is uncertain because the lack information that obtained from a previous report. To detect the 3D critical slip, the search is performed by means of a minimization of the 3D safety factor using the Monte Carlo simulation. The 3D slope stability analysis clearly indicated that the spatial and temporal distribution of slope failure probability is strongly controlled by the geotechnical values and by surface topography through slope angle, elevation, slope aspect (Fig. 1). Here we built upon the results of the statistical analysis to explore the utility of spatially distributed by deterministic of slope failure probability. In this study, the criteria of slope failure probability have been divided into three classes based on a factor of safety values, such as (1) FS 1.; FS 1., (2) FS 1.2; FS 1.2, and (3) FS 1.; FS 1.. The Fig. 1 is representative of the fourth of 3D slope stability simulation results by comparing of slope failure evidence that SU4 is the large number of slope failure probability, such as FS 1., FS 1.2, and FS 1.. The results attest that the total number of slope failure predicted increases when the limit of Factor of Safety (FS) increases about 3927, 446 and 4682 of 83 slope unit at whole area. Moreover, the SU1, SU2, and SU3 are representing geotechnical values of the whole area in simulation. These results show the influence of cohesion (c) and friction angle (ϕ) values that the number of slope failure predicted increases when cohesion and friction angle values decrease. 3.2. Evaluation of the Slope Failure Probability Map Spatial effectiveness of the susceptibility map will be checked by the highest percentage of the actual slope failure by comparing the predicted unstable site. The rate graph will be created for varying of geotechnical values, and their percentage will be calculated. The rate explains how well the model and controlling factors predict the landslide. The model with the highest percentage is considered to be the best. Fig. 2(a) shows a representative the evaluation of slope failure predicted that produced by 3D slope stability analysis on varying of geotechnical values for each factor of safety classes. In fact, the slope failure occurred in the SU4 value was higher than other values, where the calculated probability can be over 7%. In order, 7

the graph shows a highest of the actual slope failure occurred in SU4 for FS 1., about 93.7%. The total number of slope failure is increase, when the value of a factor of the safety increases. Fig. 2. Evaluation of slope failure probability that produced by 3D slope stability analysis. (a). Percentage of the slope failure (FS 1.); (b). The evaluation was checked by calculate the error of slope failure. Moreover, the evaluation of spatial effectiveness was also checked by calculate the error of slope failure. The error of slope failure is the number of slope failure predicted minus the number of actual slope failure. These results are obtained from all the varying of geotechnical values. In this study, variety scenarios were described two assumptions. Firstly, the using each of values for whole area, and secondly, by divided the geological unit in two geotechnical values, such as shale and sandstone. These results show the error of slope failure strongly related to slope failure predicted and the factual slope failure. The error of slope failure is increase when the number of the factual slope failure is increase. Therefore, the evaluation by use of each geotechnical values show the relationship is linear, that the slope failure evidence will increase when the error slope failure is increase. In particular, the evaluation of spatial effectiveness by divided the geological unit is performed for three factors of safety classes, such as 1., 1.2, and 1. (Fig. 2(b)). The FS 1.2 and FS 1. of shale rock show a good relationship that the percentage of actual slope failure is increase when the error of slope failure is increase. 3.3. Relationships between Morphology Aspect and Slope Failure Probability Fig. 3 shows the frequency distribution of slope failure predicted of SU2 as represent a sandstone rock and SU4 as represent a shale rock for the three topographic attributes (elevation, slope aspect, and slope angle). The following is relationships of morphology aspect and slope failure predicted, such as: Elevation: the maximum of the number of slope failure predicted the both SU2 (sandstone) and SU4 (shale) on 6 7 m. However, in the SU2 show to almost increase on 1 7 m when the factor safety class increase, and is decrease of 7 m to over than 1 m. Moreover, in the SU4 shows the number of slope failure predicted is decrease on 1 7 m when the factor safety class is increase, and is decrease of 7 to over than 1 m (Fig. 3(a) and Fig. 3(d)). Slope aspect: the both of the slope aspect of SU2 (sandstone) and SU4 (shale) show the number of slope failure predicted of the North (N) North East (NE) and the South (S) North West (NW) directions are increase. However, the North East South (S) direction is decrease. Furthermore, each slope aspect classes show the different of the number of slope failure predicted when the factor of safety classes is increase (Fig. 3(b) and Fig. 3(e)). Slope angle: the number of slope failure predicted is increased when the slope angle classes are increase on 1ᴼ - 4ᴼ. However, the slope angle is decrease when it is over than 4ᴼ. Moreover, the both SU2 (sandstone) and SU4 (shale) show the different pattern of maximum of the number of slope failure predicted on 2ᴼ-3ᴼ when the factor of safety classes is increase (Fig. 3(c) and Fig. 3(f)). 4. Conclusions The map of slope failure probability that preferred in the frame of the present work is a step forward in the management of sediment disaster in the Mimikawa River. The 3D GIS analysis and statistical methodology have demonstrated to be a suitable tool when the relationships between slope failure and causal factors have to be analyzed. A result is achieved by the inspection of the frequency ratio that determined the 8

role played by influencing factors on the investigated phenomenon. The sandstone and shale geotechnical values correspond to area that is particularly prone to slope failure predicted that related to the morphology aspect. Moreover, the influence of the changes of unit weight value will be considered in the analysis in the future. 18 18 16 16 14 14 12 12 1 1 8 8 6 6 4 4 2 2 7 7 6 6 4 4 3 3 2 2 1 1 2 2 1 1 (a) (c) (e) Fig. 3. Relationships between morphology aspect and slope failure distributed by influenced of geotechnical properties. The figure shows SU2 class (a, b, and c) and SU4 class (d, e, and f).. Acknowledgements The authors would like to thank the Indonesian Government, Directorate General of Higher Education for its DIKTI Scholarship. 6. References 2 2 1 1 1 2 3 4 6 7 8 9 1 Elevation classes (m) 1 2 3 4 6 7 8 9 1 11 1 2 3 4 1 2 3 4 >4 Slope angle classes (ᴼ) N N NE E SE S SW W NW Slope aspect classes 1 2 3 4 6 7 8 9 [1] B. Pradhan. Landslide Susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. Journal of Indian Soc.Remote Sensing. 21. 38: 21-32. [2] T.H. Mezughi., J.M. Akhir., A. Rafek and I. Abdullah. Landslide assessment using frequency ratio model applied to an area the E-W highway (Gerik-Jeli). Am. J. Environ. Sci. 211. (7)1: 43- [3] R. Fell., D. Hartford. Landslide risk management. In: Cruden, D., Fell, R. (Eds.), Landslides Risk Assessment. Balkema, Rotterdam, 1997. pp. 1-19. [4] M. Xie., T. Esaki., C. Qiu., C. Wang., Z. Wang,. Deterministic Landslide Risk Assessment at a Past Landslide Site. Geotech Geology Engineering. 29. 27: 3-364. [] MITI Agency of Industrial Science and Technology. Geological Survey, Geologic Atlas of Japan (Kyushu). 199 [6] M. Xie., T. Esaki., G. Zhou., and Y. Mitani,. Geographic Information System-Based Three-Dimensional Critical Slope Stability Analysis and Landslide Hazard Assessment. Journal of Geotechnical and Geoenvironmental Engineering. ASCE. 23. (129)12: 119-1118. 9 2 2 1 1 2 2 1 1 18 18 16 16 14 14 12 12 1 1 8 8 6 6 4 4 2 2 7 7 6 6 4 4 3 3 2 2 1 1 N N NE E SE S SW W NW Slope aspect classes 1 2 3 4 6 7 8 9 1 (f) (b) 11 22 33 44 66 77 88 99 1111 Elevation classes (m) (d) 1 1 2 2 3 3 4 4 >4 Slope angle classes (ᴼ)