Hartree Fock Wave Functions with a Modified GTO Basis for Atoms

Similar documents
Now we must transform the original model so we can use the new parameters. = S max. Recruits

Factorising FACTORISING.

Lecture 6: Coding theory

MCH T 111 Handout Triangle Review Page 1 of 3

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point

Surds and Indices. Surds and Indices. Curriculum Ready ACMNA: 233,

CS 491G Combinatorial Optimization Lecture Notes

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs

Proportions: A ratio is the quotient of two numbers. For example, 2 3

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 3 : Interaction by Particle Exchange and QED. Recap

Generalization of 2-Corner Frequency Source Models Used in SMSIM

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Electromagnetism Notes, NYU Spring 2018

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

Review of Gaussian Quadrature method

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx

Eigenvectors and Eigenvalues

I 3 2 = I I 4 = 2A

Math 32B Discussion Session Week 8 Notes February 28 and March 2, f(b) f(a) = f (t)dt (1)

1B40 Practical Skills

Section 2.3. Matrix Inverses

Logic, Set Theory and Computability [M. Coppenbarger]

Necessary and sucient conditions for some two. Abstract. Further we show that the necessary conditions for the existence of an OD(44 s 1 s 2 )

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable

Physics 505 Homework No. 11 Solutions S11-1

Chapter 4rth LIQUIDS AND SOLIDS MCQs

6.5 Improper integrals

Name Solutions to Test 3 November 8, 2017

1 This diagram represents the energy change that occurs when a d electron in a transition metal ion is excited by visible light.

SOME INTEGRAL INEQUALITIES FOR HARMONICALLY CONVEX STOCHASTIC PROCESSES ON THE CO-ORDINATES

A Primer on Continuous-time Economic Dynamics

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Lecture 8: Abstract Algebra

Polynomials. Polynomials. Curriculum Ready ACMNA:

6.3.2 Spectroscopy. N Goalby chemrevise.org 1 NO 2 CH 3. CH 3 C a. NMR spectroscopy. Different types of NMR

Lecture 2: Cayley Graphs

TOPIC: LINEAR ALGEBRA MATRICES

Comparing the Pre-image and Image of a Dilation

Section 4: Integration ECO4112F 2011

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!

p-adic Egyptian Fractions

CS 360 Exam 2 Fall 2014 Name

University of Sioux Falls. MAT204/205 Calculus I/II

System Validation (IN4387) November 2, 2012, 14:00-17:00

Linear Inequalities. Work Sheet 1

6.3.2 Spectroscopy. N Goalby chemrevise.org 1 NO 2 H 3 CH3 C. NMR spectroscopy. Different types of NMR

SIMPLE NONLINEAR GRAPHS

Let s divide up the interval [ ab, ] into n subintervals with the same length, so we have

Bases for Vector Spaces

CARLETON UNIVERSITY. 1.0 Problems and Most Solutions, Sect B, 2005

Momentum and Energy Review

Chemistry Practice Exam

Linear Algebra Introduction

a) Read over steps (1)- (4) below and sketch the path of the cycle on a P V plot on the graph below. Label all appropriate points.

Area and Perimeter. Area and Perimeter. Solutions. Curriculum Ready.

A Study on the Properties of Rational Triangles

4.5 THE FUNDAMENTAL THEOREM OF CALCULUS

POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS

Intermediate Math Circles Wednesday 17 October 2012 Geometry II: Side Lengths

Introduction to Olympiad Inequalities

Lecture 11 Binary Decision Diagrams (BDDs)

U Q W The First Law of Thermodynamics. Efficiency. Closed cycle steam power plant. First page of S. Carnot s paper. Sadi Carnot ( )

Chapter 8 Roots and Radicals

Homework Assignment 5 Solution Set

CSE 332. Sorting. Data Abstractions. CSE 332: Data Abstractions. QuickSort Cutoff 1. Where We Are 2. Bounding The MAXIMUM Problem 4

2.4 Linear Inequalities and Interval Notation

MATH 122, Final Exam

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4.

Chem Homework 11 due Monday, Apr. 28, 2014, 2 PM

If we have a function f(x) which is well-defined for some a x b, its integral over those two values is defined as

QUADRATIC EQUATION. Contents

1 This question is about mean bond enthalpies and their use in the calculation of enthalpy changes.

AP CALCULUS Test #6: Unit #6 Basic Integration and Applications

SECTION A STUDENT MATERIAL. Part 1. What and Why.?

Thermal energy 2 U Q W. 23 April The First Law of Thermodynamics. Or, if we want to obtain external work: The trick of using steam

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Nodal densities of Gaussian random waves satisfying mixed boundary conditions

Dorf, R.C., Wan, Z. T- Equivalent Networks The Electrical Engineering Handbook Ed. Richard C. Dorf Boca Raton: CRC Press LLC, 2000

Energy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon

Practice Problems Solution

Solutions to Problem Set #1

Review Topic 14: Relationships between two numerical variables

22: Union Find. CS 473u - Algorithms - Spring April 14, We want to maintain a collection of sets, under the operations of:

SEMI-EXCIRCLE OF QUADRILATERAL

Engr354: Digital Logic Circuits

Trigonometry Revision Sheet Q5 of Paper 2

CS 573 Automata Theory and Formal Languages

ANALYSIS AND MODELLING OF RAINFALL EVENTS

Conservation Law. Chapter Goal. 6.2 Theory

PYTHAGORAS THEOREM WHAT S IN CHAPTER 1? IN THIS CHAPTER YOU WILL:

VISIBLE AND INFRARED ABSORPTION SPECTRA OF COVERING MATERIALS FOR SOLAR COLLECTORS

z TRANSFORMS z Transform Basics z Transform Basics Transfer Functions Back to the Time Domain Transfer Function and Stability

ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS

Green s Theorem. (2x e y ) da. (2x e y ) dx dy. x 2 xe y. (1 e y ) dy. y=1. = y e y. y=0. = 2 e

Technology Mapping Method for Low Power Consumption and High Performance in General-Synchronous Framework

u(t)dt + i a f(t)dt f(t) dt b f(t) dt (2) With this preliminary step in place, we are ready to define integration on a general curve in C.

GRUPOS NANTEL BERGERON

3.15 NMR spectroscopy Different types of NMR There are two main types of NMR 1. C 13 NMR 2. H (proton) NMR

Transcription:

Hrtree Fok Wve Funtions with Moifie GTO Bsis for Atoms E. BUENDIA, F. J. GALVEZ, A. SARSA Deprtmento e Fısi Moern, Fult e Cienis, Universi e Grn, E-807 Grn, Spin Reeive Mrh 996; revise 7 Mrh 997; epte 0 Mrh 997 ABSTRACT: We hve solve the tomi Hrtree Fok equtions y using the lgeri pproh, expning the single-prtile ril wve funtion in terms of moifie Gussin type oritls Ž GTOs. sis. Severl tomi properties suh s Kto s usp onition for the eletron ensity or the orret symptoti ehvior of the eletron momentum ensity istriution re urtely verifie. Aitionlly the energy of the tomi groun stte n e otine y using smller numer of sis funtions thn in stnr GTO expnsions. This stuy hs een performe for severl toms of the first three rows. 997 John Wiley & Sons, In. Int J Qunt Chem 65: 59 64, 997 Key wors: Atomi struture; Hrtree Fok; moifie Gussin oritls; momentum ensity; single-prtile ensity Introution H rtree Fok Ž HF. wve funtions for toms my e otine numerilly or y mens of lgeri pproximtions, in whih the ril wve funtion n e expne either in terms of Slter-type oritls Ž STOs. Žthe t of Clementi n Roetti re the most use within this type of sis. or in terms of Gussin-type oritls Ž GTOs. 4, 5. Reently the Hrtree Fok t of Clementi n Roetti hve een improve y reoptimiztion Corresponene to: F. J. Glvez. Contrt grnt sponsor: Spnish Direion Generl e Investigion Cientıfi y Teni Ž DGICYT.. Contrt grnt numer: PB95--A. of the exponents of the STOs 6 n y vrying the omposition of the STO sis for eh tom 7, 8. It shoul e note tht fewer STOs thn GTOs in tomi lultion re neessry to otin the energy with given ury. However, this lst type is use minly in moleulr lultions euse ll the multienter integrls whih pper n e nlytilly evlute 9. But there exist two importnt limittions of working with GTOs euse ny finite liner omintion of Gussins n hve neither usp t the nuleus in the ril eletron ensity nor orret symptoti ehvior of the momentum ensity istriution. The Gussin-type oritls re efine in spheril polr oorintes s l r Nr e Y Ž,. Ž. lm lm Interntionl Journl of Quntum Chemistry, Vol. 65, 59 64 997 997 John Wiley & Sons, In. CCC 000-7608 / 97 / 00059-06

BUENDIA, GALVEZ, AND SARSA eing N onstnt of normliztion. Note tht the power of the r vrile oinies with the ngulr momentum of the tomi oritl. Mny lultions hve een performe y using this sis; perhps one of the most reent n etile stuies for ifferent toms re those of Prtrige 5. We lso mention the work of Primor n Kovevi ˇ 0 where they introue the Hermite Gussin sis funtions Ž. l H r Nr H Ž r. e r Y Ž,. nlm n lm n lm, Ž. eing H n the Hermite polynomil of n egree. This expression inlues even powers on r Žprt the term r l. in the GTO sis to esrie the ril wve funtion of the oritls for the Helium tom n H moleulr ion. Both types of GTO sis given respetively y Eqs. Ž. n Ž. provie wve funtions tht re le to reproue quite well the est energy of the toms otine either numerilly or y mens of STO prmeteriztion, ut none of them is le to reproue the Kto s eletron nuleus usp onition, : Ž 0. Ž 0. Z 0 eing Ž r. the spherilly verge single-prtile ensity, nor the long p rnge ehvior of the momentum ensity istriution. As it is known 6, preise esription of oth the singleprtile ensity t the nuleus n the momentum ensity istriution is neessry to reh n greement with the experimentl t. A previous work tht tkes into ount the usp onition y using Gussins ws one y E. Steiner 7, who employe GTO sis n n extr usp funtion of the form t Ž. Ž. r r if r 0 if r, where n t re vritionl prmeters. The prie to e pi for using this sis set is tht some integrls must e numerilly performe. Finlly, we woul like to omment tht reful stuy of ifferent types of GTOs hs een me y W. Klopper n W. Kutzelnigg 8 y testing them in the hyrogen tom. The min onlusion of tht work is tht one must use sis set tht stisfies the eletron nuleus usp in orer to get the fstest onvergene in the lultion of, for exmple, the energy of the system or the vlue of the eletron ensity t the nuleus. Our purpose is to show how GTO sis moifie in suh wy tht it inlues o power on r provies not only similr results for the energy to those provie y nother sis of Gussin type ut lso goo esription of the single-prtile ensity roun r 0, n the orret symptoti ehvior of the orresponing momentum ensity istriution. Moifie GTO Bsis n Results The elementl funtion of the moifie GTO sis use in this work will e enote y Ž. nlm r n hs the following nlytil expression: Ž. n r r Ž. r nlm lm n r l Nr e r Y Ž,. lm, n,,,... Ž. where we hve expliitly seprte the power r n from the usul GTO. We only nee oritls with l 0 to esrie the ril wve funtion of the helium, lithium, n eryllium toms. These elementl oritls will e lle s,s,s,... for n,,,..., respetively. In oing so we re using similr nottion to the stnr one use in STO expnsion. To esrie the other toms, we nee l, oritls, whih will e enote Ž n. p n Ž n. with n,,... respetively. n The inlusion of the term r Ž n,,... to esrie the oritl Ž. nlm r llows one to get the groun-stte energy, with given ury, with smller numer of sis funtions thn tht neee in other previous GTO sis 5, 0, lthough this numer is still greter thn the one neee with STO expnsion 8. This n e seen in Tle I where we show the energy of the helium, eryllium, n neon toms in terms of the numers of elements in the sis, n we ompre these results with those otine y Prtrige 5 with those from STO lultion 8, n with others from numeril lultion 9. The sis set use in the esription of oritls with ngulr momentum l 0 will e omintion of n oritls of s type, n oritls of s type, et. tht will e enote herefter y Ž n, n,.... For the neon tom we hve to give the sis set use to esrie the single-prtile wve funtion with l 60 VOL. 65, NO.

HARTREE FOCK WAVE FUNCTIONS TABLE I Energy of the helium, eryllium, n neon toms for severl onfigurtions of the sis set s ompre with oth STO expnsion n numeril lultion. Helium Beryllium Neon Bsis Energy Bsis Energy Bsis Energy ( ).866790 4.57000 0, 6 8.5498 ( 6).866800 ( 5) 4.5707 (( ), ( 8)) 8.546677 ( 4,, ).866786 5, 5 4.57008 (( 7, ), ( 6)) 8.54577 ( 5, 5).866800 6, 6 4.570 (( 8, 5 ), ( 8)) 8.546766 7, 7 4.5708 (( 9, 5 ), ( 9)) 8.546980 STO.866800 STO 4.5706 STO 8.5470980 Num.866800 Num 4.5707 Num 8.547098 Ref. [ 5 ]. This work. Ref. [ 9 ]., n this is one y inluing seon prentheses with the numer n p of p funtions use in suh lultion. For exmple, ŽŽ 9, 5., Ž 9.. mens tht we hve expne the oritls with ngulr momentum l 0 y using nine s type funtions n five s funtions, n the oritl with ngulr momentum l y using nine p funtions. The sum n n n p gives the totl numer of oritls use in the lultion. The results for the energy for severl toms re presente in Tles II, III, n IV for the three kins of prmeteriztions stuie in this work. We lso give the oeffiient V efine s the quotient etween the potentil n the kineti energy, whih is equl to for the ext solution of the Hrtree Fok equtions. The viril rtio from the numeril Hrtree Fok lultion oes not iffer from the ext one more 0 thn 0 9. Besies inresing the onvergene, the most importnt ontriutions of the o power in the GTO sis is on oth the spherilly verge single-prtile position, Ž r., n momentum, Ž p., ensities. The former hs the goo ehvior t the origin with this new prmeteriztion of the ril wve funtion, wht it is impossile to get with the stnr GTO prmeteriztion or with TABLE II Vlues for the totl energy n for the viril onition ( V ) for ifferent expnsions for the helium, lithium, n eryllium toms. Atom Configurtion E V He S 4.866796.000000 ( 5, 5).866800.00000005 STO.866800 Num.866800 Li( S) 7.47008.9999990 ( 6, 5) 7.477.9999970 STO 7.4769 Num 7.4769 Be( S) ( 4) 4.570.9999995 ( 7, 7) 4.5708.9999985 STO 4.570 Num 4.570 Ref. [ 9 ]. TABLE III Vlues for the totl energy n for the viril onition ( V ) for ifferent expnsions for the nitrogen, neon, n silion toms. Atom Configurtion E V 4 ( ) N S, 0 54.4007.9999877 (( 8, 4 ), ( 0)) 54.400865.99999 STO 54.40094 Num 54.40094 Ne( S) (( 4 ), ( 9)) 8.54497.0000067 (( 9, 5 ), ( 9)) 8.54698.9999950 STO 8.5470 Num 8.5470 Si( P) (( 5 ), ( 0)) 88.8467.9997780 (( 0, 5 ), ( 0)) 88.8566.9999640 STO 88.8546 Num 88.8546 Ref. [ 9 ]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 6

BUENDIA, GALVEZ, AND SARSA TABLE IV Vlues for the totl energy n for the viril onition ( V ) for ifferent expnsions for the lium, snium, n titnium toms. Atom Configurtion E V ( ) C S 5, 0 676.7457.999898 (( 0, 5 ), ( 0)) 676.754.0000058 STO 676.7588 Num 676.7589 S( D) (( 4 )()()), 9, 8 759.765.9998470 (( 9,5, ) ( 9, ) ( 8)) 759.709.9999608 STO 759.757 Num 759.757 Ti( F ) (( 4 )()()), 9, 8 848.7854.999866 (( 9,5, ) ( 9, ) ( 8)) 848.974.9999880 STO 848.40600 Num 848.40600 Ref. [ 9 ]. the Hermite Gussin sis. In prtiulr the Kto usp onition, is stisfie quite well. In Tles V, VI, n VII we show, for severl toms n for ifferent sis sets, the vlue of the ensity t the origin, Ž. 0, n the vlue of the prmeter given y en Ž 0., Ž 4. en Z Ž 0. whih must e equl one ue to the Kto s usp onition. These results re ompre with those otine from STO expnsion 8 Žrell tht with the stnr GTO expnsion this oeffien TABLE VI Vlues of the single prtile eletron ensity t the origin, ( 0 ), n of the Kto usp ( ) en for ifferent expnsions for the nitrogen, neon, n silion toms. Atom Configurtion 0 n 4 ( ) N S, 0 0.68 0 (( 8, 4 ), ( 0)) 05.8 0.989 STO 05.97 0.9999 Ne( S) (( 4 ), ( 9)) 596.50 0 (( 9, 5 ), ( 9)) 69.7 0.9945 STO 69.9.0000 Si( P) (( 5 ), ( 0)) 76.4 0 (( 0, 5 ), ( 0)) 764.4 0.9906 STO 765.6.0000 [ ] Ref. 8. ient is lwys zero.. One n notie how Ž 0. n en here otine re very similr to the vlues lulte with the STO prmeteriztion of the ril wve funtion. It is known tht the ltter, Ž p., ehves for smll vlues of p s 4, 0 : Ž. Ž 4. Ž. p A A p O p. 5 0 This expression n e reproue y using STO or GTO sis. It is lso known tht the lrge p ehvior of the eletron momentum ensity is governe y the short-rnge ehvior of the ril oritl 4,. So one n see tht STO expnsion gives ensity Ž p. whih symptotilly TABLE V Vlues of the single prtile eletron ensity t the origin, ( 0 ), n of the Kto usp ( ) en for ifferent expnsions for the helium, lithium, n eryllium toms. Atom Configurtion 0 n He S 4.587 0 ( 5, 5).5959.0005 STO.5959 0.9999 Li( S).64 0 ( 6, 5).80 0.998 STO.85.000 Be( S) ( 4) 5.07 0 ( 7, 7) 5.4 0.9770 STO 5.89.000 [ ] Ref. 8. TABLE VII Vlues of the single prtile eletron ensity t the origin, ( 0 ), n of the Kto usp ( ) en for ifferent expnsions for the lium, snium, n titnium toms. Atom Configurtion 0 n ( ) C S 5, 0 504.4 0 (( 0, 5 ), ( 0)) 58.0 0.9956 STO 50.6.0009 S( D) (( 4 )()()), 9, 8 60. 0 (( 9, 5 )()()), 9, 8 676.4 0.988 STO 68.4.0008 Ti( F ) (( 4 )()()), 9, 8 7097. 0 (( 9, 5 )()()), 9, 8 7.0 0.9858 STO 74..0008 [ ] Ref. 8. 6 VOL. 65, NO.

HARTREE FOCK WAVE FUNCTIONS eys s 0 B8 B0 Ž. Ž p O p.. Ž 6. 8 0 p p A liner omintion of Gussins les to momentum ensity istriution whih eys symptotilly s Gussin, ut the inlusion of o powers in the GTO sis to esrie the ril wve funtion of the sttes with l 0 mkes tht the momentum ensity istriution hs the orret symptoti ehvior given y Eq. Ž. 6, eing the reson the following: while the Fourier trnsform of Gussin is nother Gussin, the Fourier trnsform of re r is funtion tht is proportionl to p 4 for lrge vlues of p. This n e otine, for exmple, y using some results of MKinnon. To see the qulity of the momentum ensity istriution here otine we show in Tles VIII, IX, n X the vlues of the prmeters A0 n B8 Z 5, where Z is the nuler hrge, for severl toms n for ifferent GTO n MGTO expnsions of the ril wve funtion. These results re ompre with those oth otine from STO 0 n from numeril 9 lultion. We notie how the vlues here otine ompre quite well with those of Refs. 9, 0. We lso n hek the improvement tht we otin in the vlue of the spherilly verge momentum ensity t p 0 with respet to stnr GTO lultion. TABLE VIII Stuy of the symptoti ehvior of the eletron momentum ensity istriution, oth t smll n lrge vlues of p for ifferent onfigurtions for the helium, lithium, n eryllium toms. Atom Configurtion A B /Z 5 0 8 He S 4 0.460 ( 5, 5) 0.4979.458 STO 0.4900.500 Num 0.4985.446 Li( S) 8.459 ( 6, 5) 8.744.8 STO 8.567.97 Num 8.5554.09 Be( S) ( 4) 5.8849 ( 7, 7) 5.88.46 STO 5.9508.4 Num 5.956.4080 Ref. [ 0 ]. Ref. [ 9 ]. TABLE IX Stuy of the symptoti ehvior of the eletron momentum ensity istriution, oth t smll n lrge vlues of p for ifferent onfigurtions for the nitrogen, neon, n silion toms. Atom Configurtion A B /Z 5 0 8 4 ( ) N S, 0 0.7778 (( 8, 4 ), ( 0)) 0.77986.4949 STO 0.7995.5400 Num 0.7976.59 Ne( S) (( 4 ), ( 9)) 0.46 (( 9, 5 ), ( 9)) 0.405.5606 STO 0.459.5848 Num 0.449.5786 Si( P) (( 5 ), ( 0)).8944 (( 0, 5 ), ( 0)).8069.6069 STO.905.649 Num.949.685 Ref. [ 0 ]. Ref. [ 9 ]. As we hve mentione in the introution n urte esription of the wve funtion is essentil for n greement with the experimentl results. So one oul sk for the role of the orreltions in the quntities here lulte within the Hrtree Fok frmework. It is known tht orreltions re very importnt to reproue the energy of the tomi systems n to esrie some tomi properties like the intereletroni ensity, hž. s, n TABLE X Stuy of the symptoti ehvior of the eletron momentum ensity istriution, oth t smll n lrge vlues of p for ifferent onfigurtions for the lium, snium, n titnium toms. Atom Configurtion A B /Z 5 0 8 ( ) C S 5, 0 8.50 (( 0, 5 ), ( 0)) 8.55.6778 STO 9.70.6957 Num 8.948.69 S( D) (( 4 )()()), 9, 8 5.406 (( 9, 5 ), ( 9 ), ( 8)) 5.574.678 STO 5.777.705 Num 5.968.6999 Ti( F ) (( 4 )()()), 9, 8.555 (( 9, 5 ), ( 9 ), ( 8)).64.655 STO 4.77.7085 Num 4.0.7059 Ref. [ 0 ]. Ref. [ 9 ]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 6

BUENDIA, GALVEZ, AND SARSA they re essentil to fit severl experimentl results relte to inelsti proess, 4. However, they o not ply n importnt tsk in the esription of one-oy quntities s one noties y ompring the result here otine for Ž r. n Ž p. of the helium tom with those otine inluing orreltions 5. In ition it is known tht oth Hrtree Fok n onfigurtion intertion Ž CI. lultions provie prtilly the sme results for the momentum istriution of the highest oupie oritls of the nole gses n some oritls of severl moleules 5, 6. Conlusions We woul like to emphsize the following points reltive to the effet of the inlusion of o powers in GTO sis to prmeterize the ril Hrtree Fok wve funtion. The first one is tht it oes not require ny extr omputtionl prolem to solve the Hrtree Fok equtions for toms, lthough this is not the se for moleulr systems for whih the numeril iffiulties re not voie with this type of sis. The seon point is the improvement of the onvergene of this sis with respet to the stnr GTO prmeteriztion or to the Hermite Gussin sis. Besies the energy hypersurfe is not so flt s the one in pure GTO lultion n the minimum in the energy is rehe fster. However, the most importnt fts tke ple in the single-prtile ensity funtion n in the momentum ensity istriution where the o powers in the sis provie the orret symptoti ehvior ner the origin n t lrge vlue of p, respetively, otining similr vlues to those otine with STO prmeteriztion. These lst results re not reprouile with the stnr GTO sis. ACKNOWLEDGMENTS This work hs een prtilly supporte from the Spnish Direion Generl e Investigion Cientıfi y Teni Ž DGICYT. uner ontrt PB95--A n from the Junt e Anluı. Referenes. Ch. Froese Fisher, The Hrtree Fok Metho for Atoms ŽWi- ley, New York, 977... C. C. J. Roothn, Rev. Mo. Phys., 69 Ž 95.;, 79 Ž 960... E. Clementi n C. Roetti, At. Dt Nul. Dt Tles 4, 77 Ž 974.. 4. S. Chkrvorty n E. Clementi, Phys. Rev. A 9, 90 Ž 989.. 5. H. Prtrige, J. Chem. Phys. 87, 664 Ž 987.; 90, 04 Ž 989.. 6. T. Kog, H. Ttewki, n A. J. Thkkr, Phys. Rev. A46, 450 Ž 99.. 7. C. F. Bunge, J. A. Brrientos, A. V. Bunge, n J. A. Cogorn, Phys. Rev. A46, 69 Ž 99.. 8. T. Kog, S. Wtne, K. Knym, R. Ysu, n A. J. Thkkr, J. Chem. Phys. 0, 000 Ž 995.. 9. F. E. Hrris, Rev. Mo. Phys. 5, 558 Ž 96.. 0. M. Primor n K. Kovevi, ˇ Phys. Rev. A 46, 540 Ž 99... T. Kto, Commun. Pure Appl. Mth. 0, 5 Ž 957... E. Steiner, J. Chem. Phys. 9, 65 Ž 96... T. Aerg, Phys. Rev. A, 76 Ž 970.. 4. A. J. Thkkr, J. Chem. Phys. 86, 5060 Ž 987.. 5. P. Duffy, M. E. Csi, C. E. Biron, n D. P. Chong, Chem. Phys. 59, 47 Ž 99.. 6. P. Duffy, S. A. C. Clrk, C. E. Biron, M. E. Csi, n D. P. Chong, Chem. Phys. 65, 8 Ž 99.. 7. E. Steiner, Mol. Phys., 669 Ž 97., n referenes therein. 8. W. Klopper n W. Kutzelnigg, J. Mol. Strut. ŽTheohem 8. 5, 9 Ž 986.. 9. T. Kog n A. J. Thkkr, J. Phys. B: At. Mol. Opt. Phys. 9, 97 Ž 996.. 0. A. J. Thkkr, A. L. Wonfor, n W. A. Peersen, J. Chem. Phys. 87, Ž 987... J. C. Kimll, J. Phys. A: Mth. Gen. 8, 5 Ž 975... R. F. MKinnon, Mth. Comput. 6, 55 Ž 97... J. Wng, R. O. Esquivel, n V. H. Smith, Jr., Phys. Rev. A 5, 8 Ž 995.. 4. S. Gupt n M. K. Srivstv, Phys. Rev. A5, 08 Ž 995.. 5. F. Aris e Sver, E. Buenı, n F. J. Glvez, Z. Physik D8, 5 Ž 996.. 64 VOL. 65, NO.