APBS electrostatics in VMD - Software. APBS! >!Examples! >!Visualization! >! Contents

Similar documents
Lysozyme pka example - Software. APBS! >!Examples! >!pka calculations! >! Lysozyme pka example. Background

Lysozyme pka example. Background

Pymol Practial Guide

Dock Ligands from a 2D Molecule Sketch

Tutorial. Getting started. Sample to Insight. March 31, 2016

Introduction to Structure Preparation and Visualization

Tutorial: Structural Analysis of a Protein-Protein Complex

Introduction to Spark

Version 1.2 October 2017 CSD v5.39

SeeSAR 7.1 Beginners Guide. June 2017

Chem 253. Tutorial for Materials Studio

Molecular Visualization. Introduction

Creating a Pharmacophore Query from a Reference Molecule & Scaffold Hopping in CSD-CrossMiner

Preparing a PDB File

Performing a Pharmacophore Search using CSD-CrossMiner

Molecular modeling with InsightII

v Prerequisite Tutorials GSSHA WMS Basics Watershed Delineation using DEMs and 2D Grid Generation Time minutes

Athena Visual Software, Inc. 1

Section III - Designing Models for 3D Printing

Technical Note Calculations of Orbital Overlap Range Function EDR( r ; d) and Overlap Distance D(r )using Multiwfn

Physical Chemistry Final Take Home Fall 2003

Autodock tutorial VINA with UCSF Chimera

Application Note. U. Heat of Formation of Ethyl Alcohol and Dimethyl Ether. Introduction

SuperCELL Data Programmer and ACTiSys IR Programmer User s Guide

Development of Software Package for Determining Protein Titration Properties

1 Introduction. command intended for command prompt

SteelSmart System Cold Formed Steel Design Software Download & Installation Instructions

The Geodatabase Working with Spatial Analyst. Calculating Elevation and Slope Values for Forested Roads, Streams, and Stands.

Ligand Scout Tutorials

MERGING (MERGE / MOSAIC) GEOSPATIAL DATA

BIOINF527: STRUCTURAL BIOINFORMATICS LAB SESSION

PDBe TUTORIAL. PDBePISA (Protein Interfaces, Surfaces and Assemblies)

3D Molecule Viewer of MOGADOC (JavaScript)

ON SITE SYSTEMS Chemical Safety Assistant

Computational Chemistry Lab Module: Conformational Analysis of Alkanes

Chapter 2 Introduction to Aqueous Speciation

Multiphysics Modeling

Moving into the information age: From records to Google Earth

Calculating Bond Enthalpies of the Hydrides

ST-Links. SpatialKit. Version 3.0.x. For ArcMap. ArcMap Extension for Directly Connecting to Spatial Databases. ST-Links Corporation.

MENA 9520 FME Modelling Tutorial 5 ( )

Let s continue our discussion on the interaction between Fe(III) and 6,7-dihydroxynaphthalene-2- sulfonate.

Comparing whole genomes

Silica surface - Materials Studio tutorial. CREATING SiO 2 SURFACE

Building small molecules

Visualization of Macromolecular Structures

GIS Workshop UCLS_Fall Forum 2014 Sowmya Selvarajan, PhD TABLE OF CONTENTS

Exercises for Windows

Bonds and Structural Supports

New SPOT Program. Customer Tutorial. Tim Barry Fire Weather Program Leader National Weather Service Tallahassee

Online Protein Structure Analysis with the Bio3D WebApp

Introduction to AutoDock and AutoDock Tools

Contour Line Overlays in Google Earth

Part 7 Bonds and Structural Supports

Introduction to Hartree-Fock calculations in Spartan

Search for the Gulf of Carpentaria in the remap search bar:

Experiment 0 ~ Introduction to Statistics and Excel Tutorial. Introduction to Statistics, Error and Measurement

Conformational Analysis of n-butane

Synteny Portal Documentation

This tutorial is intended to familiarize you with the Geomatica Toolbar and describe the basics of viewing data using Geomatica Focus.

Lesson Plan 2 - Middle and High School Land Use and Land Cover Introduction. Understanding Land Use and Land Cover using Google Earth

Tutorial 11. Use of User-Defined Scalars and User-Defined Memories for Modeling Ohmic Heating

HOW TO GUIDE. Loading climate data from online database

Docking with Water in the Binding Site using GOLD

NEW HOLLAND IH AUSTRALIA. Machinery Market Information and Forecasting Portal *** Dealer User Guide Released August 2013 ***

ICM-Chemist How-To Guide. Version 3.6-1g Last Updated 12/01/2009

Esri UC2013. Technical Workshop.

Jaguar DFT Optimizations and Transition State Searches

OECD QSAR Toolbox v.4.1. Tutorial illustrating new options for grouping with metabolism

Planning Softproviding Meat User Documentation

How to Make or Plot a Graph or Chart in Excel

Assignment A02: Geometry Definition: File Formats, Redundant Coordinates, PES Scans

Migrating Defense Workflows from ArcMap to ArcGIS Pro. Renee Bernstein and Jared Sellers

POC via CHEMnetBASE for Identifying Unknowns

Hands-on Course in Computational Structural Biology and Molecular Simulation BIOP590C/MCB590C. Course Details

Hands- On on geometries

Projection and Reprojection

WindNinja Tutorial 3: Point Initialization

CE 365K Exercise 1: GIS Basemap for Design Project Spring 2014 Hydraulic Engineering Design

QuantumWise. QuantumWise is now part of Synopsys

CityGML XFM Application Template Documentation. Bentley Map V8i (SELECTseries 2)

Applications of Molecular Dynamics

(THIS IS AN OPTIONAL BUT WORTHWHILE EXERCISE)

Designing a Quilt with GIMP 2011

User Guide. Affirmatively Furthering Fair Housing Data and Mapping Tool. U.S. Department of Housing and Urban Development

Section II Understanding the Protein Data Bank

BUILDING BASICS WITH HYPERCHEM LITE

VCell Tutorial. Building a Rule-Based Model

Identifying Interaction Hot Spots with SuperStar

AMS 132: Discussion Section 2

Winmostar tutorial LAMMPS Polymer modeling V X-Ability Co,. Ltd. 2017/7/6

POC via CHEMnetBASE for Identifying Unknowns

Preparing Spatial Data

----- Ver October 24, 2014 Bug about reading MOPAC2012 Ver.14 calculations of 1 atom and 2 atoms molecule was fixed.

PQSMol. User s Manual

Lab 1 Uniform Motion - Graphing and Analyzing Motion

WMS 9.0 Tutorial GSSHA Modeling Basics Infiltration Learn how to add infiltration to your GSSHA model

Using Gabriel Package under Microsoft Vista or Microsoft 7

Watershed Modeling Orange County Hydrology Using GIS Data

Within this document, the term NHDPlus is used when referring to NHDPlus Version 2.1 (unless otherwise noted).

Transcription:

Software Search this site Home Announcements An update on mailing lists APBS 1.2.0 released APBS 1.2.1 released APBS 1.3 released New APBS 1.3 Windows Installer PDB2PQR 1.7.1 released PDB2PQR 1.8 released The APBS mailing lists have moved to Google Groups APBS Citing your use of APBS Contributors Downloads Examples Binding energies Parallel execution for large problems pka calculations Potentials of mean force Solvation energies Visualization APBS electrostatics in PyMOL APBS electrostatics in VMD APBS electrostatics on the web Frequently-asked questions Getting help License Programmer's guide Related software Release history Supporting organizations User guide Developers Documentation sandbox Task lists File formats Matrices APBS! >!Examples! >!Visualization! >! APBS electrostatics in VMD The VMD molecular graphics software package provides support for both the execution of APBS and the visualization of the resulting electrostatic potentials. Documentation on the APBS interface has been provided by the VMD developers at http://www.ks.uiuc.edu/research/vmd/plugins/apbsrun/. We will supplement this with a basic demonstration of how go from a PDB entry to a plot of structure and potential in VMD using APBS. Note: This tutorial was written using VMD 1.8.5. Contents 1 Generating the PQR 2 Loading the PQR 3 Running the electrostatics calculation 4 Electrostatics visualization 4.1 Isocontour visualization 4.2 Visualizing surface potentials 4.3 Visualizing field lines Generating the PQR We'll perform this example with arc repressor (PDB ID 1MYK), a DNA binding protein. The first step in the visualization process is generating a PQR file for use with VMD and APBS. Please follow the directions in the How do I get my structures ready for electrostatics calculations? section to generate a PQR file for this structure. Loading the PQR Load the PQR file you just created into VMD (File! New molecule... in the VMD Main window). Adjust the molecule to the desired view. Depending on the force field you used in Page 1 of 7

Mesh and data Molecular structure Parameter files Further reading PDB2PQR Citing your use of PDB2PQR Contributors Downloads and web servers Examples Frequently-asked questions Getting help License Programmer's guide Related software Release history Supporting organizations User guide Tutorials Assigning titration states with PROPKA Born ion solvation energy Parameterizing ligands in electrostatics calculations Parameterizing PDB files Running APBS through the PDB2PQR web portal Running electrostatics calculations in parallel Visualizing and calculating APBS electrostatics in PyMOL Visualizing and calculating APBS electrostatics in VMD Workshops and courses BII workshop tutorials CCPB workshop tutorials NBCR workshop tutorials Sitemap Recent site activity PDB2PQR 1.8 released created by Nathan Baker Version 1.8 edited by Nathan Baker What does the message "WARNING! Unusually large potential values detected on the focusing boundary!" PDB2PQR, you may notice that VMD is displaying some strange bonds. When a PQR file is loaded into VMD, bond distances are inferred from the PQR radii. These radii were chosen for continuum electrostatics calculations, not visualization, and therefore some of the radii are artificially small. Don't worry if some of the bonds appear a bit strange (hide the hydrogens if it really bothers you). Running the electrostatics calculation 1. Choose Extensions! Analysis! APBS electrostatics in the VMD Main window. A new APBS Tool window should appear. 2. Choose Edit! Settings... in the APBS Tool window and set the path to your local copy of the APBS executable. Hit OK to close this window. 3. Select the "0" calculation from the "Individual PB calculations (ELEC):" window. Hit the Edit button. Adjust the APBS settings here as you desire. The defaults are usually fine, although it may be useful to edit the ions to adjust the ionic strength used in the calculation. Hit OK when you're done. 4. You're now ready to run the calculation. Hit Run APBS in the APBS Tool window. Check the VMD Console window for information about the job while it's running. When the job is finished, a "APBSRun: Load APBS Maps" window should appear. Select "Load files into top molecule" and hit OK. You're now ready for electrostatics visualization. Electrostatics visualization Isocontour visualization One popular visualization method is the isocontour. 1. First, choose Graphics! Representations... from the VMD Main window. 2. Hit the Create Rep button and change Drawing Method to "Isosurface". 3. Change Draw from "Points" to "Solid Surface" and Material to "Transparent". 4. Note that the current isovalue is 0; change this to 1 (or 5 or Page 2 of 7

mean? edited by Nathan Baker New APBS 1.3 Windows Installer created by Nathan Baker parm edited by Nathan Baker View All 10 or whatever) depending on your personal preferences. 5. To continue the lonstanding tradition of electrostatic potential coloring, choose "ColorID 0" for the Coloring Method. 6. For the negative isocontour, hit "Create Rep" and select the newly created representation. Change the isocontour value to -1 (or 5 or 10...) and the ColorID to 1. At this point, you probably have an image that looks something like this (note that I changed the surface to points to make the figure a bit cleaner): Visualizing surface potentials Another popular method of electrostatic potential visualization maps the electrostatic potential to the biomolecular surface. Before proceeding, you may want to delete the two isocontours you just created using the Delete Rep in the Graphical Representations window. 1. Go to the Graphical Representations window (Graphics! Representations... from the VMD Main window) Page 3 of 7

and create a new representation of the molecule with the Create Rep button. 2. Go to the "Draw style" tab of the Graphical Representations window and change Drawing Method to "Surf" and Coloring Method to "Volume". 3. Go to the "Trajectory tab" of the Graphical Representations window and change the "Color Scale Data Range:" to -10 to 10 (or whatever your favorite values are). 4. Based on your version of VMD and your personal preferences, you might want to change the color scale for this image. Go to Graphics! Colors... in the VMD Main window and select the "Color Scale" tab from the new "Color Controls" window. The traditional coloring scheme for electrostatics is "RWB" (in the Method menu). Your molecule now probably looks like this: For your information, VMD appears to generate a molecular or Connolly type of surface rather than the solvent-accessible or Lee- Richards surface I personally prefer for this type of visualization... It is usually more useful to plot the surface potential on a more inflated surface than the molecular surface; for example, use an inflated van der Waals surface or the solvent-accessible surface. If Page 4 of 7

you use the molecular (e.g. Connolly) surface, it is not far from just plotting positively- and negatively-charged residues. Visualizing field lines Field line visualization can be a very informative way to examine the local intensity of electric fields and related gradient quantities in the context of the biomolecular structure. For this example, we'll use the mouse acetylcholinesterase (mache; PDB ID 1MAH) since the field lines around this molecule are often used to interpret preferred mechanisms of binding for the positively-charged substrate. The APBS distribution comes with a pre-processed PQR file for the mache structure available in the examples/misc/ directory of the distribution; this file can also be found attached below. As in previous examples, we start by loading the mache.pqr file into VMD as a PQR file. Once this is loaded, go to the Graphics " Representations window and change the Drawing Method to NewCartoon or some other view that's a bit less cluttered. At this point, your VMD window might look something like this: Page 5 of 7

The APBS electrostatics calculation is performed essentially as described in the above examples. However, for field lines, it is generally useful to increase the calculation box dimensions before running APBS. After setting up the APBS calculation as described above, select the "0" calculation from the "Individual PB calculations (ELEC):" window. Press the Edit button and set Coarse Grid to: 170 170 170 Center: 0 mache.pqr Fine Grid to: 105 105 105 Center: -24.29 6.6 1.7 You should vary these settings for different problems or to further explore field lines for the mache system. You're now ready to run the calculation. Press Run APBS in the APBS Tool window. Check the VMD Console window for information about the job while it's running. When the job is finished, a "APBSRun: Load APBS Maps" window should appear. Select "Load files into top molecule" and press OK. We're now ready to visualize the electric field lines around mache: 1. Choose Graphics " Representations from the VMD Main window and press the Create Rep button. 2. Change Drawing Method to "FieldLines" 3. The default parameters for field lines are reasonable but it might be useful to increase the size of the lines and change the density of these lines for easier visualization through the following settings: Size: 2 GradientMag: 8.3 Min Length: 1.00 Max Length: 200.00 4. We're now going to color the field lines by the electrostatic potential value: 5. Set the Coloring Method to Volume. 6. Navigate to the Trajectory tab and set the Color Scale Range from -0.5 to 0.5 (or to different values if you want to change the distribution of color along the field line). 7. Press the Set button for the changes to take effect. Your VMD window should now show the mache molecule with the electric field lines: Page 6 of 7

" # Mache.pqr (550k) Nathan Baker, Ma v.1! Sign in Report Abuse Print Page Remove Access Powered By Google Sites Page 7 of 7