Testing for seasonal unit roots in heterogeneous panels

Similar documents
A Comparative Study for Estimation Parameters in Panel Data Model

Durban Watson for Testing the Lack-of-Fit of Polynomial Regression Models without Replications

A Monte Carlo Study for Swamy s Estimate of Random Coefficient Panel Data Model

PPP TESTS IN COINTEGRATED PANELS: EVIDENCE FROM ASIAN DEVELOPING COUNTRIES

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

Question 1 carries a weight of 25%; question 2 carries 20%; question 3 carries 25%; and question 4 carries 30%.

2016 Wiley. Study Session 2: Ethical and Professional Standards Application

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

x i1 =1 for all i (the constant ).

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

On the testing of heterogeneity effects in dynamic unbalanced panel data models

DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR. Introductory Econometrics 1 hour 30 minutes

Econometrics of Panel Data

Tests of Single Linear Coefficient Restrictions: t-tests and F-tests. 1. Basic Rules. 2. Testing Single Linear Coefficient Restrictions

Statistics for Economics & Business

Are Health Expenditure and GDP Cointegrated: A Panel Analysis

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6

ECONOMETRICS - FINAL EXAM, 3rd YEAR (GECO & GADE)

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

Professor Chris Murray. Midterm Exam

Lecture 4 Hypothesis Testing

Testing for Granger Non-causality in Heterogeneous Panels

A Simple Panel Unit Root Test in the Presence of Cross Section Dependence

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics

Chapter 11: Simple Linear Regression and Correlation

Statistics for Business and Economics

/ n ) are compared. The logic is: if the two

UNR Joint Economics Working Paper Series Working Paper No Further Analysis of the Zipf Law: Does the Rank-Size Rule Really Exist?

An (almost) unbiased estimator for the S-Gini index

Simulated Power of the Discrete Cramér-von Mises Goodness-of-Fit Tests

Module Contact: Dr Susan Long, ECO Copyright of the University of East Anglia Version 1

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

Introduction to Regression

Chapter 13: Multiple Regression

Econ Statistical Properties of the OLS estimator. Sanjaya DeSilva

Chapter 12 Analysis of Covariance

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

A Bias-Adjusted LM Test of Error Cross Section Independence

January Examinations 2015

Economics 130. Lecture 4 Simple Linear Regression Continued

Modeling and Simulation NETW 707

First Year Examination Department of Statistics, University of Florida

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore

A dummy variable equal to 1 if the nearby school is in regular session and 0 otherwise;

NUMERICAL DIFFERENTIATION

Comparison of Regression Lines

LECTURE 9 CANONICAL CORRELATION ANALYSIS

[The following data appear in Wooldridge Q2.3.] The table below contains the ACT score and college GPA for eight college students.

Chapter 15 Student Lecture Notes 15-1

Statistical Evaluation of WATFLOOD

Improvement in Estimating the Population Mean Using Exponential Estimator in Simple Random Sampling

Asymptotic Properties of the Jarque-Bera Test for Normality in General Autoregressions with a Deterministic Term

Online Appendix to: Axiomatization and measurement of Quasi-hyperbolic Discounting

Structural Breaks and Unit Root Tests for Short. Panels

RELIABILITY ASSESSMENT

PANEL UNIT ROOT TESTS UNDER CROSS-SECTIONAL DEPENDENCE: AN OVERVIEW

where I = (n x n) diagonal identity matrix with diagonal elements = 1 and off-diagonal elements = 0; and σ 2 e = variance of (Y X).

Global Sensitivity. Tuesday 20 th February, 2018

Number of cases Number of factors Number of covariates Number of levels of factor i. Value of the dependent variable for case k

x = , so that calculated

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y)

Computing MLE Bias Empirically

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

a. (All your answers should be in the letter!

A Robust Method for Calculating the Correlation Coefficient

JAB Chain. Long-tail claims development. ASTIN - September 2005 B.Verdier A. Klinger

Discussion of Extensions of the Gauss-Markov Theorem to the Case of Stochastic Regression Coefficients Ed Stanek

Chapter 8 Indicator Variables

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation

Negative Binomial Regression

Statistical Hypothesis Testing for Returns to Scale Using Data Envelopment Analysis

Chapter 15 - Multiple Regression

Correlation and Regression. Correlation 9.1. Correlation. Chapter 9

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.

III. Econometric Methodology Regression Analysis

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Lena Boneva and Oliver Linton. January 2017

LINEAR REGRESSION ANALYSIS. MODULE VIII Lecture Indicator Variables

REGRESSION ANALYSIS II- MULTICOLLINEARITY

Panel cointegration rank test with cross-section dependence

Chapter 6. Supplemental Text Material

A nonparametric two-sample wald test of equality of variances

Chapter 5 Multilevel Models

STAT 3008 Applied Regression Analysis

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Lecture 3 Stat102, Spring 2007

Polynomial Regression Models

LOW BIAS INTEGRATED PATH ESTIMATORS. James M. Calvin

Factor models with many assets: strong factors, weak factors, and the two-pass procedure

NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER I EXAMINATION MTH352/MH3510 Regression Analysis

Simulation and Probability Distribution

Efficient nonresponse weighting adjustment using estimated response probability

Nonlinear IV unit root tests in panels with cross-sectional dependency

e i is a random error

This column is a continuation of our previous column

Lecture 10 Support Vector Machines II

On the Influential Points in the Functional Circular Relationship Models

Assignment 5. Simulation for Logistics. Monti, N.E. Yunita, T.

Transcription:

Testng for seasonal unt roots n heterogeneous panels Jesus Otero * Facultad de Economía Unversdad del Rosaro, Colomba Jeremy Smth Department of Economcs Unversty of arwck Monca Gulett Aston Busness School Unversty of Aston January 004 ABSTRACT Ths paper uses the approach of Im, Pesaran Shn (003) to propose seasonal unt root tests for dynamc heterogeneous panels based on the means of the ndvduals HEGY test statstcs. The stardsed t-bar F-bar statstcs are smply averages of the HEGY tests across groups. These statstcs converge to stard normal varates. Keywords: Heterogeneous dynamc panels; Monte Carlo; seasonal unt roots; JEL classfcaton: C; C; C; C3 Contact Address: Jesus Otero Facultad de Economía Unversdad del Rosaro Calle 4 # 4-69 Bogota, Colomba Phone: (+) 9 0 00 Ext. 66 E-mal: jotero@urosaro.edu.co *Ths paper was started whle the frst author was a vstng research fellow n the Department of Economcs at the Unversty of arwck. The frst author would lke to thank the Unversdad del Rosaro for ts fnancal assstance.

. Introducton Im, Pesaran Shn (003) (IPS) proposed a test for the presence of unt roots n panels, that combnes nformaton from the tme-seres dmenson wth that from the cross-secton dmenson, such that fewer tme observatons are requred for the test to have power. Many economc tme seres contan mportant seasonal components a varety of tests have been proposed to test for seasonal unt roots see Osborn Ghysels (00) for a revew of these tests. Of these tests the one proposed by Hylleberg, Engle, Granger Yoo (990) (HEGY) has proved to be the most popular. In ths paper, we look at usng the approach of IPS to nvestgate the performance of the HEGY test n dynamc heterogeneous panels. Based on Monte Carlo smulatons we fnd that the stardsed averaged test statstcs from the HEGY auxlary regresson follow a stard normal dstrbuton even for a relatvely small number of data ponts. The plan of the paper s as follows. Secton brefly revews the IPS approach to unt root testng n panels sets up the model used to develop the HEGY panel seasonal unt root tests. Secton 3 presents the Monte Carlo results.. IPS unt root test basc framework IPS presented a method to test for the presence of unt roots n dynamc heterogeneous panels. They consder a sample of N cross secton unts observed over T tme perods. The IPS test averages the (Augmented) Dckey-Fuller statstc obtaned across the N cross-sectonal unts of the panel (denoted as NT N tt N tbar, where t T s the ADF test for the th cross-sectonal unt). show that a sutable

stardsaton of the tbar NT statstc, denoted as Z tbar, follows a stard normal dstrbuton. Generalsng the HEGY test for seasonal unt roots, to a panel n whch there s sample of N cross sectons (ndustres, countres) observed over T tme perods: ( L) y y y y y,,, N, t,, T () 4t t t t 3 3t 4 3t t s where t D, t s st j D st n season s, ( L) s a 0 otherwse th p ordered polynomal n the lag operator, L, y t y t y t y t y t 3, t ~ N(0, ) yt yt yt yt yt3, y3 t yt yt y4t 4yt yt yt 4. HEGY test for the exstence of a unt root by testng H 0 : 0 aganst H: 0, for the exstence of a seasonal unt root by testng H0 : 0 aganst H: 0 smultaneously testng H0 : 3 4 0 aganst H: 3 0, 4 0. A null hypothess of a seasonal unt root s only rejected when both the t-test for the jont F-test for 3 4 are rejected. Subsequently, Ghysels et. al. (994) suggest usng a test of H0 : 3 4 0 aganst H: 0, 3 0, 4 0. In a panel context, the null hypothess to test the presence of a unt root, for example, becomes H 0 : 0 aganst H 0 : 0 for,, N, 0, for N, N,, N. Ths allows some, but not all, of the ndvdual seres to have a unt root, but assumes that a non-zero fracton of the processes are statonary. 3. Monte Carlo smulaton results In ths secton we undertake Monte Carlo smulaton to examne the fnte sample propertes of the HEGY-IPS test. Smulatons are undertaken under the null hypothess, 3 4 0 n equaton (): 3

y y y,,, N, t,, T () t t4 t j 4 t t j p where t ~ N(0, ) ~ U[0.,.], are generated ndependently of t are fxed for all replcatons, where N (,,0,,,40) T (0,3,40,60,00). The HEGY statstcs from estmatng equaton () for the th group are gven by the t-ratos on j, j, the F-tests of the jont sgnfcance of, 3,, 3 4. Denote the estmated t-rato as jt t, t jt ˆ j 0 se( ˆ ) j j, the F-test as F jt, F ( ˆ ) ˆ ˆ ( ˆ jt Rj RV j R )/,,3 j Rj j j where 0 0 0 0 0 0 R, 0 0 0 R 3 0 0 0 0 0 0 the, ˆ ˆ ˆ ˆ ˆ 3 4 estmated varance-covarance matrx from equaton (), s wrtten n parttoned form Vˆ Cˆ Cˆ as: Vˆ ˆ ˆ ˆ C V C Cˆ Cˆ Vˆ, where, for example, V ˆ s the estmated (4 4) varance-covarance matrx for the coeffcents on, C ˆ s the estmated varance-covarance matrx between the terms. For a fxed T defne the average statstcs: 4

N tbar t j, j NT jt N N F bar F, j,3. j NT jt N Followng IPS, consder the stardsed statstcs: N N t jbarnt E t jt( p,0 0) N t (0,),, jbar N j N Var t jt ( p,0 0) N N N F jbarnt E F jt ( p,0 0) N N(0,), j,3 Fbar j N Var F jt ( p,0 0) N EF (,0 0) jt p where E tjt ( p,0 0) Var t (,0 0) jt p Var F jt ( p,0 0) are the mean varance of t ( F jt jt ) n the HEGY model, when 3 4 0. Table reports the values of Et jt ( p,0 0) Var t jt ( p,0 0), j, E F jt ( p,0 0) Var F (,0 0) jt p, j,3, for dfferent values of T p, for dfferent combnatons of determnstc components n the HEGY model. These results are based upon 0,000 replcatons. Through smulatons t appears that n the HEGY model (when p 0 ), the second moment of t jt exsts only for T 6 (when there s a constant trend) for T 0 (when there are seasonal dummy varables). In addton, for the second

moment of F jt to exst requres at least T 0 for all combnatons of the determnstc components. e now consder three Monte Carlo experments to examne the sze power (at the % sgnfcance level) of the HEGY-IPS test, usng,000 replcatons. Table reports the sze of the tests when there s no seral correlaton the model ncludes a constant a constant trend as determnstc components. The tests for both the tbar tbar are approxmately correctly szed. However, both the Fbar tests are slghtly over-szed especally for smaller N T. Ths table also reports the power of the HEGY-IPS test, when the data s generated as y 0.9 y,,, N, t,, T. t t4 t In a second set of experments, we allow for the presence of heterogeneous AR() seral correlaton n t, such that, t t t,, N, t,, T where t ~ N(0, ), ~ U[0.,0.4] s generated ndependently of t. Table 3 reports the sze of the HEGY-IPS test for p=0,,,3,4, when there s only a constant n the HEGY model. The table demonstrates the mportance of not underestmatng the order of the lag length, wth the emprcal sze for p=0, substantally dfferent from the nomnal %, wth tbar markedly under-szed, but all of the other tests becomng ncreasngly over-szed as T ncreases. There are lttle costs n terms of sze to over-specfyng the lag length, wth the emprcal sze of Fbar actually mprovng. However, the power of all of the tests falls wth an over-specfed lag length. In a thrd set of experments, we allow for the presence of heterogeneous MA() seral correlaton n t, such that, 6

t t t,, N, t,, T where t ~ N(0, ), ~ U[ 0.4, 0.] s generated ndependently of t. Table 4 reports the sze of the HEGY-IPS test for p=0,,,3,4. In ths case there are severe sze dstortons for p=0, wth tbar massvely over-szed. The other tests are also over-szed ths becomes ncreasngly so as both T N ncrease. Increasng p mproves the sze of these tests, but even for p=3 there s consstent evdence that tbar, Fbar are all stll margnally over-szed. References Ghysels, E., Lee, H. S. Noh, J. (994), Testng for unt roots n seasonal tme seres some theoretcal extensons a Monte Carlo nvestgaton, Journal of Econometrcs, 6, 4-44. Ghysels, E. Osborn, D. R. (00), The econometrcs analyss of seasonal tme seres, Cambrdge Unversty Press. Hylleberg, S., Engle, R. F., Granger, C.. J. Yoo, B. S. (990), Seasonal ntegraton contegraton, Journal of Econometrcs, 69, -. Im, K. S., Pesaran, M. H. Shn, Y. (003), Testng for unt roots n heterogeneous panels, Journal of Econometrcs,, 3-4. Maddala, G. S. u, S. (999), A comparatve study of unt root tests wth panel data a new smple test, Oxford Bulletn of Economcs Statstcs, 6, 63-6.

Table : Mean varance correcton for t bar t bar tbar tbar p T=0 T=3 T=40 T=60 T=00 T=0 T=3 T=40 T=60 T=00 Constant, seasonal dummes, trend 0 varance -.86 0. -.004 0.6 -.04 0.604 -.09 0. -.30 0.6 -.30 0.0 -.46 0.66 -.443 0.66 -.44 0.63 -.0 0.684 mean -. -.9 -.9 -.044 -.0 -.0 -. -.330 -.398 -.44 varance 0. 0.69 0.6 0.8 0.6 0.34 0.683 0.69 0.68 0.693 mean -.69 -.903 -.96 -.04 -.0 -.8 -.33 -.36 -.43 -.4 varance 0.848 0.666 0.64 0.9 0. 0.93 0.0 0. 0.00 0.06 3 mean -.6 -.80 -.898 -.996 -.03-0.994 -.0 -.3 -.360 -.43 3 varance 0.900 0.68 0.66 0.60 0.80 0.8 0.38 0.3 0.3 0.9 4 mean -. -.8 -.903 -.00 -.084 -.04 -.64 -.36 -.40 -.49 4 varance.00 0.3 0.684 0.63 0.9 0.890 0.66 0.6 0.4 0.4 Constant, seasonal dummes, no trend 0 varance -.34 0.3 -.406 0.69 -.43 0.68 -.40 0.68 -.493 0.688 -.3 0.39 -.40 0.68 -.43 0.690 -.468 0.68 -.496 0.690 mean -.0 -.339 -.38 -.434 -.4 -.0 -.340 -.380 -.43 -.4 varance 0.66 0.0 0.0 0.69 0.694 0.64 0.04 0.0 0.69 0.00 mean -.84 -.3 -.369 -.49 -.468 -.83 -.3 -.3 -.46 -.4 varance 0.88 0.0 0.4 0. 0.03 0.84 0.3 0.3 0.0 0.3 3 mean -.093 -.66 -.30 -.39 -.44 -.093 -.6 -.3 -.39 -.4 3 varance 0.86 0. 0.46 0. 0. 0.860 0.8 0.3 0.4 0.6 4 mean -.00 -.6 -.3 -.400 -.4 -.0 -.63 -.33 -.39 -.46 4 varance 0.99 0.804 0.68 0.44 0.6 0.9 0.93 0. 0.36 0.3 Constant, no seasonal dummes, tend 0 varance -.886 0.0 -.00 0.6 -.044 0.63 -.093 0.8 -.34 0. -0.3 0.89-0.300 0.90-0.39 0.98-0.34 0.94-0.3 0.96 mean -.893 -.0 -.0 -.096 -.33-0.9-0.46-0.0-0.308-0.349 varance 0.46 0.6 0.640 0.9 0.8.036 0.99 0.99 0.986 0.98 mean -.88 -.09 -.0 -.0 -.36-0. -0.34-0.330-0.34-0.380 varance 0.86 0.694 0.6 0.6 0.9 0.839 0.886 0.93 0.939 0.964 3 mean -.960 -.00 -.0 -.09 -.38-0.8-0.0-0. -0.33-0.3 3 varance 0.9 0.4 0.06 0.638 0.600 0.969 0.966 0.9 0.98 0.98 4 mean -.64 -.8 -.96 -.09 -.09-0.89-0.4-0.8-0.3-0.39 4 varance 0.99 0.8 0. 0.64 0.603 0.94 0.949 0.98 0.966 0.9 Constant, no seasonal dummes, no trend 0 varance -.3 0.6 -.40 0.3 -.433 0.9 -.4 0. -.49 0.06-0.4 0.98-0.90 0.96-0.309 0.90-0.339 0.9-0.3 0.98 mean -.33 -.4 -.436 -.4 -.493-0.4-0.66-0.88-0.3-0.39 varance 0.8 0.6 0.44 0.6 0.4.044.003.000 0.990 0.988 mean -.36 -.409 -.43 -.4 -.493-0.6-0.30-0.39-0.346-0.34 varance 0.860 0.9 0.66 0.43 0.3 0.94 0.940 0.9 0.966 0.980 3 mean -.34 -.40 -.44 -.4 -.49-0. -0.4-0.9-0.38-0.36 3 varance 0.934 0.89 0.9 0.8 0.36 0.969 0.90 0.980 0.983 0.99 4 mean -.8 -.84 -.33 -.408 -.4-0.80-0.4-0. -0.33-0.33 4 varance 0.96 0.863 0.88 0.8 0.4.030.00.004 0.994 0.993 No constant, no seasonal dummes, no trend 0 varance -0.3.0-0.8.034-0.99.0-0.33.00-0.36 0.99-0.6.089-0.8.00-0.99.04-0.33 0.999-0.36 0.993 mean -0.40-0.90-0.306-0.336-0.368-0.4-0.8-0.306-0.334-0.36 varance.030.08.0.00 0.99.04.008.00 0.996 0.994 mean -0.4-0.93-0.309-0.339-0.30-0.44-0.90-0.309-0.338-0.30 varance.004.008.0.00 0.994.04 0.999 0.999 0.993 0.99 3 mean -0.4-0.300-0.3-0.34-0.3-0.6-0.9-0.3-0.34-0.30 3 varance 0.98 0.986.00 0.99 0.994 0.94 0.98 0.988 0.990 0.99 4 mean -0.69-0.39-0.6-0.308-0.30-0. -0.3-0.64-0.30-0.349 4 varance.4.06.06.033.009.40.069.00.0.008 8

Table (cont d): Mean varance correcton for Fbar Fbar p T=0 T=3 T=40 T=60 T=00 T=0 T=3 T=40 T=60 T=00 Constant, seasonal dummes, trend 0 varance.83.433.8 4..84 3.98.86 3.903.94 3.38.4 4.8.839 3.94.86 3.0.96.8.90.603 mean.48.63.3.8.899..64.40.83.9 varance.36 3.98 3.80 3.84 3.03 4.34.98.8.68.8 mean.3.4.8.66.808.9.668.34.8.909 varance.04 3.668 3.6 3.64 3.603 4..980.83.684.6 3 mean.08.33.4.63.83.4.46.8.3.848 3 varance.3 3. 3.3 3.96 3.83 4.48..638.49.46 4 mean.86.48.33.69.88.39.30.69.6.88 4 varance 6.49 3.93 3.666 3.6 3.636.89 3.03.803.649. Constant, seasonal dummes, no trend 0 varance.643.8.63 4.8.83 4.06.88 3.983.93 3.8.88 4.60.86 3.309.894 3.08.93.80.96.64 mean.3.680.46.838.90.6.0.804.8.94 varance.9 4.066 3.94 3.90 3.48 4.368 3.36.93.68.9 mean.99.6.66.4.83.609.4.9.8.938 varance 4.96 3.890 3.9 3.80 3.689 4. 3.09.94.4.6 3 mean..48.6.06.830.463.636.0.83.904 3 varance 4.983 3.8 3.0 3.38 3.64 4.0.98.83.64.4 4 mean.43.466..9.84.388..660.8.88 4 varance.663 3.8 3.3 3.9 3.690.09 3.03.844.690.4 Constant, no seasonal dummes, trend 0 varance 0.96.44 0.9.034 0.9.09 0.99.04.0.03 0.980 0.88 0.990 0.39.006 0.30.09 0.8.0 0.8 mean 0.96 0.94 0.964 0.989.06 0.993.00.04.033.0 varance.8.0.09.00.03 0.9 0.68 0.46 0.3 0. mean.09.03.0.09.039.09.034.046.06.00 varance.43.6.4.08.068.040 0.8 0.96 0.6 0.4 3 mean.09.049.04.039.04.9.0.03.068.0 3 varance.90.9.00.8.04.30 0.89 0.840 0. 0.46 4 mean.0.0.008.0.0.00.03.038.04.09 4 varance.63.8.09.09.033. 0.808 0. 0.36 0.4 Constant, no seasonal dummes, trend 0 varance.006.33 0.999.8.008..09.08.034.0.03 0.969.034 0.80.044 0.8.0 0.4.00 0.48 mean.04.008.0.03.03.06.00.04.060.0 varance.44.60.3.088.069.06 0.838 0.803 0.8 0.4 mean.09.03.0.030.040.06.0.08.064.0 varance.38..3.06.0.049 0.83 0.809 0.69 0.49 3 mean.04.09.03.03.04.093.068.00.00.06 3 varance.4.00.66.6.03.6 0.863 0.830 0.8 0.0 4 mean.00.0.04.038.039.8.080.06.0.04 4 varance.64.43.80.8.066.9 0.84 0.83 0.3 0.44 No constant, no seasonal dummes, no trend 0 varance.099..08.60.06.4.00.48.0.04.30.49.09 0.896.089 0.8.084 0.94.086 0.68 mean.3.0.06.0.03.46.0.09.08.08 varance.8.3.46.8.04.99 0.94 0.863 0.9 0.68 mean.006.0.0.03.043.09.066.0.03.08 varance.9.3.9.09.08.03 0.848 0.8 0.80 0.6 3 mean.04.0.09.036.044.08.069.04.06.08 3 varance.364.63.0..09.06 0.80 0.830 0.84 0.8 4 mean.84.08.09.068.06..38..099.090 4 varance.844.369.8.8.099.349 0.964 0.903 0.8 0.64 9

Table : Sze power of the HEGY-IPS test: No seral correlaton N T=0 T=3 T=40 T=60 T=00 tbar tbar Fbar tbar t bar F bar F 3 bar tbar t bar SIZE Constant, no seasonal dummes, no trend 4. 4.6 6.88 6.0 4.68.0.0 6.6.00 4.84 6.44 6.4.8 4.94 6.64 6.4 4. 4.96 6.4.4 4.0 4.34 6.98.0.8 4.98 6.0 6.44.38. 6.6 6.48 4.90 4.94 6.0 6.08 4.60 4. 6.86 6.04 0.04 4.6 6.8 6.0. 4.4 6.88 6.4 4.90 4.90 6.0.90 4.68 4.60 6.36.80 4. 4.8 6.8 6.6.6 4.4 6.8 6.8.40 4. 6.90 6.3.4. 6.34.8 4.68 4.8.88.9 4.6 4.44 6. 6.30.04 4.68 6.3.98 4.90 4.66 6.36 6.00. 4.46 6.06 6.0 4.94 4.40 6.30 6.4 4.66 4.4 6.0.88 40.08 4.90.88.80. 4.38 6.0.60.44 4.4..66 4.86.06 6.30 6.0 4.8 4.8.8.8 Constant, no seasonal dummes, trend.06 4.6 6.86 6.6.44.8.06 6.6.34 4.9 6.30 6..46.6 6.68 6.68.0 4.9 6..8.00 4.34.06.36.30.0 6.86 6.6.8.46 6. 6.4.38.0 6.60 6.4 4.38 4.0 6.94 6.8 0 4.6 4.66 6.44 6.. 4.80 6.66 6.36.9 4.88.6.96.4 4.68 6.48.96 4.94 4.8 6.6 6.36.38 4.9 6.68 6.6.0. 6.90 6.38.66.06 6.00.66.40 4.86 6.04.98 4.4 4.48 6.80 6.36.64 4. 6.6 6.30 4.6 4.86 6.6.94.44 4.48.96..36 4.36 6.4 6.0 4.6 4.6.96.88 40.08 4.80.9.88 4.6 4.34 6..4.66 4.68.66...00 6.8 6.06. 4.6.9.84 POER Constant, no seasonal dummes, no trend 6.94 4.0.94 4.0 8.00 34.0 0.36 4.44 9.00 40.90.94 3.4.0.6 43.96 3.4.44 8.6 6. 8.34 8.40 3.9.98.66 9.06 46.40 3.88 9.08.4.34 30.44 3.98.66 4. 3.0 6.8 3.8 94.60 8.86 9.0 0 9.46 4..34 8.08 0.8 6.4 9.34 3.88 3.30. 38.48 4.88 6.04 89.6 6.66.48 3.0 99.0 9.6 99.0 0.68 9.96.4.4.8 8.0 36.4 46. 6.46 89.8 49.06 60.94.04 9.60 9.48 89.44 43.00 00.0 99.44 99.96 3.4 8.4.4 9.44 6.40 96.0 49.90 6.9.6 98.66 6.4 9.06 3.00 99.9 94.8 98.46 6.8 00.0 00.0 00.0 40.0 9.4 8.0 40.6.94 99.66 66. 9.4 9.0 99.90 84.0 9.80 44.66 00.0 99.6 99.8 84.04 00.0 00.0 00.0 Constant, no seasonal dummes, trend.08 4..4.9.8 3.44.0 6.6. 4..0 33..8.0 4.90 6.0 8.86 8.38.84 88.8.4 33.40 3..34.6 4.98.48 3.6 8.34 6.6 3. 40.0 8.04 4.90 6.8 6.80 0. 94.8 88.80 9.68 0 8.0 44.40.68 0.36 8.8 63.8 3.38 39.98 8.44.06 40.64.4 9.4 89. 68.0 80.8.8 99.8 96.8 99.8 9.4 6.6 8.34.4 9.8 8.0 40.06. 9. 89.34.6 6.30 0.44 9.4 8.8 9. 4.60 00.0 99.48 99.98 0.44 83.0.0 33.3 0.6 96.0 4.0 6.38 0.90 98.0 0.80 83.6.08 99.9 9.4 98.88 9.6 00.0 00.0 00.0 40.30 9.8 9.8 4.8.64 99. 0.6 83.8 3. 99.9 86.68 9.0 4.8 00.0 99. 99.9.08 00.0 00.0 00.0 NOTE: For power the DGP s wrtten as yt yt t, where 0.9, ( ), ~ N(0,), t ~ N(0, ) ~ U[0.,.]. F bar F 3 bar tbar t bar F bar F 3 bar tbar t bar F bar F 3 bar 0

Table 3: Sze of the HEGY-IPS test: AR() errors ~ U[0.,0.4], constant, no seasonal dummes, no trend N p T=0 T=3 T=40 T=60 T=00 tbar tbar Fbar tbar t bar F bar F 3 bar tbar t bar 0 0.4.0.36 8. 6.4.96 6.04 6.4.08 9.98 0.8.0 6.68 6.60.6.8 0.9 0.68.00 3.44 6.8 6.8 8.3 9.0 0. 4.0 0.6 6. 8.46.96 0.80 0..00 0.6 6.40 9.6 4.0 0.8 0.6.00 0 0 0.4 0.8.0. 0.40 3.6 6.08 6.94 0.3.66 6.8 8.64 0.8 9.84 8.6 0.80 0.4.3 0.44 6.8 0 0.40.8. 4.90 0...4 6.36 0. 0.4 6.8 9.0 0.8.3.98.40 0.0 33.34.0.60 0 0.6.6.04 4.6 0.04 4.34.0 6.6 0.04 9.08 6.30 8.84 0.04 3.4 8.64.6 0.00 48.00.8.34 40 0 0.04.6 4.48 3.86 0.00 34.4 4.8 6.4 0.00 4.04.86 8.90 0.00 3.6 8.0 4.8 0.00 66.04 3.46.46 6.4 6.84 4.0 4.44.4.08 6.6.04.94.96 4.8 4.36.6 6.80 6.90 6.0.0.30 4.96 4.9.0 6.88.00 6.0 4.96.3.3 4.84.6 6.6 6.6 6.46.36.34 4.46 4. 6.0 6.64 6.40 6.30 0 6.90 4.8.8 6.4 6.8 4.44 6.80 6.0.40 4.98.44 6.0.8 4.68 6.84 6.3.46 4.84 6.48.66.8 4.46.3 6.66 6.9 4.40 6.36.96.48.4 6.98 6.64.48 4.84 6.90 6.40.60 4.8 6.08.94.96 4.6. 6.34 6.98 4.6 6.06.68 6.8 4.68.06 6.8 6.00 4.8 6.48.0 6.0 4.0 6.0.90 40 8.4 4.48.94 6.6.06 4.8 6.38.46.36.64 6. 6.8.86 4.96.86 6.6 6. 4.8 6.6.4.60.8 4.46 4.34..3 6.68 6.88.0.48 4.60 4.0.48.06.44.4 4.8.6.6 4.84 6.6.04 6.86 6.68 4.66.8.34 4.80 6.8 6. 6.6 6.34.30.0.08.08 6.6 6.64 6.34.96 0. 4.80.8 6.4.90 4.0 6.6 6.0.8.4 6.90 6.88.4 4.64.04 6.4.06.03 6.6.8 6.04 4.6.34 6.6.96 4.8 6.3.98.06.0 6.96 6.0 4.98 4.80 6..9.6 4.9 6.6.6 6.36 4.8.60 6.8. 4.8 6.38.38.4 4. 6.38 6..36 4.8 6.34.4.68 4.94 6.0.4 40 6.40 4.8. 6.96 6.36 4.44 6.68.6 6.64. 6.6.80.4 4.64.80.0.96 4.88 6.6. 3 3 4.6 4.8 4.4 4..4.6.68.48 4.4 4.44 4.84 4. 6.38.94 6.46.90 4. 4..6.4 6.0.98 6.36 6.30 4.6 4.88. 4.84 6.44 6.6 6.38.90.08 4..09. 6.46 6.0.90.6 0 3 4.08.0 4.8.36 4.80 4.66.30.0 4.3.60.6.96 4.48 4.94 6.48. 4.98.09 6.08.8 3 3.6.08.0 4.98 4.6.00 4.4 4. 3..40.4. 4.4.06.60.4.46.06.84.44 3 3..4 4.0 4.34 3.64.6 4.8 4. 4..8 4.9. 4.3.4.44 4.68.0.06.6.6 40 3 3.6.68 3.48 4.0 3.0.6 4.8 3.94 4.40.84 4.68 4.4 4.4.46 4.6 4.8..0.86.04 4 4 4.44 4.0 4.4 4.90 6.08.6.96.4 4.36 4.8 4.6 4.3 6.64.80.88.6 4.00 4.34.4 4.98 6..0 6.0 6.4 4.4.04.4 4.9 6.6 6.0 6.44 6.00.00 4.6 4.68 4.34 6. 6.38 6.3.6 0 4 4.3.44.34. 4.6.00.4.30 4.44.0.84.4 4.0 4.9 6.8.96.0 4.80 6.4.88 4 4.40 4.80.4.4 4.64.06.00 4.68 4.0.36.8.48 4.3.8.66.44.4 4.0.4. 4 4.46.6.00 4.80 4.0. 4.6 4. 4.64.0.6.4 4.30.4.4 4.98.38 4.8.66.4 40 4 4.06.64 4.4 4.38 4..64 4.6 4.8.8.9 4. 4.0 4.6.8 4.9 4.80.36 4.4.4.00 F bar F 3 bar tbar t bar F bar F 3 bar tbar t bar F bar F 3 bar

Table 4: Sze of the HEGY-IPS test: MA() errors ~ U[ 0.4, 0.], constant, no seasonal dummes, no trend N p T=0 T=3 T=40 T=60 T=00 tbar tbar Fbar tbar t bar F bar F 3 bar tbar t bar 0 0 3.0 4.88 44.0 4.90 6.6 6.08 9.3 44.04 9.0 4.38 4. 3.98. 6.8 9.8 46.68 0.00 8.8 4.0 3. 6.46 6. 9.08 8.96.6 3.6 63.6 3.6 8. 8.4 0.0.04 0.8 68.34.34.84 9.64 9.80 0.68.0 0 0 6.06 3.98 6.08 9.64 6.48 3.34 6.88 0.0.08 3.38 6.3 9.66 6.84.68 8.88.60 8.6.04 0.8.4 0.6 3.94 6.0 0.34 8.9.90 6.6.04 8.0.6 6.44 0.34 89..3 9.0.96 9.04.34.06.6 0 88.6 3.04.88 0.84 94.4.38 6.48.34 96.6.00 6.48.08 9.66.38 9.68 4.0 98.9.0..6 40 0 9.0.84.08. 99.46.86 6.04 3.8 99.6.44 6.6.84 99.8 0.94 0.6. 99.96 0.4 4.36.8.6 8.06.34.8.88.8.0 9.08 6.94 0.8.8.94.86 6.48 9.0 9.04 9.4.6 6.00 6. 6.4 6.64 8. 9.06 0.4.88.94 6.68 6.80.4 9.80.44 0.36 4.46 6. 6.6.4.4 9.86 0.8 0 9.0. 6.4..64 6.8 6.46 9.44 3.34 6.8 6.46 9.4 4.34 6.84.04.6..4.3 0.4 0.90 6.0..80 4.40 6.6 6.84 9.0.86.30 6.36 9.6.6.0.0.44.4.0.64.98 3.48.9 6.8 8.4 8.60.08.6.6 0.8.60.44 0. 4.4 9.4.34 4.00 9.64 8.36.8 3. 40 6.80.08 6.6 8.34.4.8.8. 8.6 8.8.64.80 33.0 9. 8.30.46 39.6 9.0 8.34. 4.6 4.46.06 4.96.6.6 6.98 6.0.3.38.6.06.4 6.4.08 6.60.4.4.46. 6.6.96 6.0 6.0.3 6.0 4.96 4.88 6.6 6.. 6.96 6.6 6.88 4.9 4.9.8 6.8 6.84 6.0 0 4.06.8.86 6.68.04.08 6.8.8.4.30.90 6.40 6.08 4.8.4.4 6.9 4.84.0 6.3 4.8.34.6 6.8.6 4.0 6.06 6.0 6.30.4..90 6.8.38 6...4 4.4 6.60 6.4 4.0 4.66.30 6.0.94.6 6.38 6.6 6.04 4.90.48 6.6.6.8 6.8.36 9.96 4.8 6.90 6.38 40 4.44 4.96.0 6.06 6.86.40.34 6. 6.68.04.6.9 8.46 4.44 6.66 6.94 0.4 4.6 6.6 6.0 3 3 4.0.8..04 6.60 6.6.0.8.3.8 4.8 4.96.94.64.0.6.08.4.6.0 6.90 6.84 6.4 6.4 4.60..4. 6.64 6.84 6.80.00.34.80.03. 6.0.6 6.9 6.44 0 3.30.8.0.0.6 4.4...6.48 6.46 6.94.38 4.4.04 6.98.66.0 6.4 6.6 3.64.0.66 8.8.9 4. 6.96.4 6.0.8 6.8 6.38.0.8 6.6 6..98 4.99 6.4 6.8 3.66 4.40.6 8.8 6..0.0. 6.4 4.8 6.34 6.8 6.8.8.08 6.88. 4.94 6.00 6.6 40 3 6.86 4.44 8.34 8.6.4 4.94..0.06.3.0 6.6 6.60.8 6.4 6.60.4.0.6 6.30 4 4.06.6.8.4 6.4 6.0.30.00.0 4.98. 4.9 8.0.6.4.4 4.80.3.44.6 6.96 6.96 6.84.0 4.66.0.8. 6.6 6.94.34.00.04.48 4.46 4..0 6.46 6.88 6.94 0 4.44.06 6.98.48.4 4.8.4.38..38 6.94.8 4.88 4.94.30..4 4.96 6.0 6.6 4.6..66.90 6.0 4.8.3.4 6.8. 6.4.08 4.64.38 6.66.6.0 4.6 6.0 6.90 4 6.06 4.68.64 8. 6. 4.88.4.4 6.04.00 6.96 6.8.4..0.8 6.64 4.38 6.48.04 40 4.8 4.86 8.8 8.8.0. 6.98.6 6..00.6.00.9 4.84.34.00 6. 4.44 6.6 6.90 F bar tbar t bar F bar F 3 bar tbar t bar F bar F 3 bar