Integral Theorems. September 14, We begin by recalling the Fundamental Theorem of Calculus, that the integral is the inverse of the derivative,

Similar documents
Ma 1c Practical - Solutions to Homework Set 7

Math 233. Practice Problems Chapter 15. i j k

Name: Date: 12/06/2018. M20550 Calculus III Tutorial Worksheet 11

S12.1 SOLUTIONS TO PROBLEMS 12 (ODD NUMBERS)

6. Vector Integral Calculus in Space

Vector Calculus, Maths II

MATHS 267 Answers to Stokes Practice Dr. Jones

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives.

Maxwell s equations for electrostatics

Solution to Homework 1. Vector Analysis (P201)

Math 5BI: Problem Set 9 Integral Theorems of Vector Calculus

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS

Answers and Solutions to Section 13.7 Homework Problems 1 19 (odd) S. F. Ellermeyer April 23, 2004

29.3. Integral Vector Theorems. Introduction. Prerequisites. Learning Outcomes

MATH 280 Multivariate Calculus Spring Derivatives of vector fields: divergence and curl

18.02 Multivariable Calculus Fall 2007

ENGI 4430 Gauss & Stokes Theorems; Potentials Page 10.01

McGill University April 16, Advanced Calculus for Engineers

Math 3435 Homework Set 11 Solutions 10 Points. x= 1,, is in the disk of radius 1 centered at origin

Gradient operator. In our calculation of dφ along the vector ds, we see that it can be described as the scalar product

McGill University April 20, Advanced Calculus for Engineers

MATH2000 Flux integrals and Gauss divergence theorem (solutions)

Review Sheet for the Final

Gauss s Law & Potential

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9

F ds, where F and S are as given.

One side of each sheet is blank and may be used as scratch paper.

Vector Calculus. Dr. D. Sukumar. February 1, 2016

Math 23b Practice Final Summer 2011

Math 263 Final. (b) The cross product is. i j k c. =< c 1, 1, 1 >

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt

Solutions to Sample Questions for Final Exam

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions

Sept , 17, 23, 29, 37, 41, 45, 47, , 5, 13, 17, 19, 29, 33. Exam Sept 26. Covers Sept 30-Oct 4.

Conductors and Insulators

Solutions for the Practice Final - Math 23B, 2016

HOMEWORK 8 SOLUTIONS

6 Div, grad curl and all that

The Divergence Theorem Stokes Theorem Applications of Vector Calculus. Calculus. Vector Calculus (III)

Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed.

Physics 3323, Fall 2016 Problem Set 2 due Sep 9, 2016

Attempt QUESTIONS 1 and 2, and THREE other questions. penalised if you attempt additional questions.

Magnetostatics. Lecture 23: Electromagnetic Theory. Professor D. K. Ghosh, Physics Department, I.I.T., Bombay

Line, surface and volume integrals

Ideas from Vector Calculus Kurt Bryan

Vector Calculus. Dr. D. Sukumar. January 31, 2014

18.1. Math 1920 November 29, ) Solution: In this function P = x 2 y and Q = 0, therefore Q. Converting to polar coordinates, this gives I =

Math 31CH - Spring Final Exam

free space (vacuum) permittivity [ F/m]

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is

MATH 280 Multivariate Calculus Fall Integrating a vector field over a surface

Vectors. October 1, A scalar quantity can be specified by just giving a number. Examples:

Review problems for the final exam Calculus III Fall 2003

MP204 Electricity and Magnetism

The Divergence Theorem

( ) ( ) ( ) ( ) Calculus III - Problem Drill 24: Stokes and Divergence Theorem

Math Exam IV - Fall 2011

Problem Solving 1: The Mathematics of 8.02 Part I. Coordinate Systems

4B. Line Integrals in the Plane

( ) by D n ( y) 1.1 Mathematical Considerations. π e nx Dirac s delta function (distribution) a) Dirac s delta function is defined such that

Print Your Name: Your Section:

Multivariable Calculus

Coordinates 2D and 3D Gauss & Stokes Theorems

18.02 Multivariable Calculus Fall 2007

Problem Solving: Faraday s Law & Inductance. Faraday s Law

Solutions to the Final Exam, Math 53, Summer 2012

APPENDIX 2.1 LINE AND SURFACE INTEGRALS

Math 733: Vector Fields, Differential Forms, and Cohomology Lecture notes R. Jason Parsley

18.02 Multivariable Calculus Fall 2007

Keble College - Hilary 2015 CP3&4: Mathematical methods I&II Tutorial 4 - Vector calculus and multiple integrals II

53. Flux Integrals. Here, R is the region over which the double integral is evaluated.

Stokes Theorem. MATH 311, Calculus III. J. Robert Buchanan. Summer Department of Mathematics. J. Robert Buchanan Stokes Theorem

Summary of various integrals

(a) 0 (b) 1/4 (c) 1/3 (d) 1/2 (e) 2/3 (f) 3/4 (g) 1 (h) 4/3

2. Evaluate C. F d r if F = xyî + (x + y)ĵ and C is the curve y = x 2 from ( 1, 1) to (2, 4).

Additional Mathematical Tools: Detail

CH 19-1 Magnetic Field

Section 6-5 : Stokes' Theorem

CBE 6333, R. Levicky 1. Orthogonal Curvilinear Coordinates

%#, for x = a & ' 0, for x $ a. but with the restriction that the area it encloses equals 1. Therefore, whenever it is used it is implied that

CURRENT MATERIAL: Vector Calculus.

Name: Instructor: Lecture time: TA: Section time:

Math Review for Exam 3

MATHEMATICS 317 December 2010 Final Exam Solutions

dt Now we will look at the E&M force on moving charges to explore the momentum conservation law in E&M.

Name (please print) π cos(θ) + sin(θ)dθ

MAT 211 Final Exam. Spring Jennings. Show your work!

18.02 Multivariable Calculus Fall 2007

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr.

Multipole moments. November 9, 2015

Mathematical Concepts & Notation

Name (please print) π cos(θ) + sin(θ)dθ

MP204 Electricity and Magnetism

Stokes s Theorem 17.2

MATH 2400 Final Exam Review Solutions

Maxwell s Equations in Differential Form, and Uniform Plane Waves in Free Space

Magnetostatics and the vector potential

Chapter 4. Electrostatic Fields in Matter

MATH 280 Multivariate Calculus Fall Integrating a vector field over a curve

Transcription:

Integral Theorems eptember 14, 215 1 Integral of the gradient We begin by recalling the Fundamental Theorem of Calculus, that the integral is the inverse of the derivative, F (b F (a f (x provided f (x df We apply this to the integral of a gradient, but since the gradient is a vector, we need to choose a path of integration. Let t i i dλ along a curve, C (λ {x i (λ}. Then we may integrate φ along the curve by integrating the directional derivative, t φ, b a t φdλ b 3 a i1 b dφ a dλ dλ φ (b φ (a i dλ φ dλ i Notice that the result does not depend on which path we followed to get from a to b. The gradient therefore lets us generalize the Fundamental Theorem to higher dimensions. 2 Integral of a divergence 2.1 The divergence theorem Now consider the volume integral of the divergence, v, of a vector field, v (x, y, z: d 3 x v where d 3 x dz. We begin by letting the volume be a cube with sides of length L. Writing out the divergence in coordinates and distributing, d 3 x v dz dz ( vx + v y + v z v x + 1 dz v y + dz v z

+ dz (v x (L, y, z v x (, y, z + (v z (x, y, L v z (x, y, dz (v y (x, L, z v y (x,, z Let n be the outward normal at any point on the surface of the cube. For example, for the face of the cube lying in the xy plane at z, the outward normal is k. The parallel face of the cube, lying at z L, has outward normal +k. With this in mind, consider the first of the six terms above, dz v x (L, y, z This is a surface integral over the face of the cube lying at x L, where the outward normal is n (L, y, z +î. We can therefore write this integrand as The second term in our sum is v x (L, y, z n v (L, y, z dz ( v x (, y, z and the outward normal to the cube on the face with x is n (, y, z î. This integral is therefore dz ( v x (, y, z dz n (, y, z v (, y, z In the same way, we consider the remaining pairs. With the outward normals at various points of the cube given by n (L, y, z +î n (, y, z î n (x, L, z +ĵ n (x,, z ĵ n (x, y, L +k n (x, y, k the integrand of each of the six double integrals may be written as n v evaluated on the appropriate side. Then the full integral of the divergence becomes d 3 x v + 6 sides i1 dz (n v (L, y, z + n v (, y, z + (n v (x, y, L + n v (x, y, i d 2 x (n ( i v ( i dz (n v (x, L, z + n v (x,, z 2

d 2 x n v where the final integral is over the entire surface of the cube, and the integrand is the outward component of v evaluated on that surface. The integral therefore gives us the total outward flux of v across the boundary of the cube. The circle over the integral sign indicates that the surface is closed. This is always true of the boundary of a volume. To indicate that is the boundary surface of we write δ. Now consider two cubes lying side by side and sharing a common side. On the common side the values of the vector field v are the same for the two cubes, but if the outward normal is n for the first, then it is n for the second. When we sum over all six sides of the two cubes, these two inside contributions exactly cancel so the integral of the divergence is still the integral of the outward normal component over the outer surface of the total volume. Finally, consider an arbitrary volume,. Fill the volume as completely as possible with cubes of side ε, and apply the following results. All boundaries of cubes in the interior of will face another volume with the opposite sign for the outward normal. The only non-cancelling contributions will come from the surfaces near the outer boundary of. As we make the cube size smaller and smaller, this outer boundary of our collection of cubes becomes a better and better approximation to the actual surface of the boundary of. In the limit as ε, they become identical. This establishes the divergence theorem: Let an arbitrary volume have boundary. Then d 3 x v d 2 x n v where n is the unit outward normal on the boundary of the volume. The divergence theorem tells us about the flux of some vector quantity v out of a region. 2.2 Example Let a vector field v be given by Then the divergence is v xyî + yzĵ + x2 zk v (xy + (yz + ( x 2 z y + z + x 2 Let the volume be the unit cube. Then d 3 x v dz ( y + z + x 2 (y + 12 + x2 ( 1 2 + 1 2 + x2 4 3 3

The surface integral is a sum of six terms 6 sides d 2 x n v d 2 x (n ( i v ( i i1 i 1 2 + 1 2 + 1 3 dz (v x (x 1 v x (x + dz (y + dz dz (z + (v y (y 1 v y (y + ( x 2 (v z (z 1 v z (z 4 3 3 tokes theorem: Integral of a curl Next, we consider the integral of the curl of a vector. Once again this is a vector so we again require a second vector. This time, however, we choose the second vector to be the normal to a surface. For concreteness, let the surface be a square region of side L, lying in the xy plane. The unit normal to this square is the unit vector k in the z-direction Then the integral of the curl of a vector field v dotted with k over the region is L L ( ( v k d 2 vy x v x Once again we can integrate exactly, L ( v k d 2 x L v y L v x (v y (L, y, z v y (, y, z v y (L, y, z v x (x,, z + v y (, y, z v y (L, y, z (v x (x, L, z v x (x,, z v x (x, L, z + v x (x, L, z v x (x,, z v y (, y, z where the last line is just a rearrangement of the four integrals. We can write this in a simple form. Let the border of the square have an tangent vector t dλ so that an infinitesimal displacement along the boundary is given by dl dλ dλ where we take the counterclockwise direction around the square. Notice that doing this, the right-hand rule gives us the direction of the normal, k. Following the boundary of our particular square, we have dl dl dl dl î bottom side ĵ right side î top side ĵ left side 4

In each of the four integrals above, the integrand may be written as v dl, including the signs. For example, the first integral, L v x (x,, z is the integral of the x-component of v, evaluated along the bottom of the square and integrated along that side. The four integrals together are just the integral of v dl all the way around the square back to the starting point. The full path of integration is therefore a closed loop, indicated by a circle on the integral sign, v dl and we have established square region square ( v k d 2 x square As in the case of the divergence theorem, we can add regions together to get a more general law. uppose we have an arbitrary curved surface embedded in 3-space. We can approximate the surface by small squares of side ε. For each such element of the surface at position x, we evaluate the dot product n (x ( v (x of the curl of our vector field, v (x, with the normal to the surface element at that point, n (x. Adding these up all contributions on the shared sides of squares cancel because of our counterclockwise orientation, and the total integral gives the integral over the boundary of the full region. The relationship is exact in the limit as ε. This results in tokes theorem: ( v n d 2 x v dl where is any 2-dimensional region, C δ is its boundary, and dl is an infinitesimal displacement in the clockwise direction (relative to the normal, n along the boundary. 3.1 Example Let so it has a nice ti curl, v ( vz v y ( 2 2k ( x Cδ v yî xĵ + z2k ( vx î + î + v z ( 2 v dl ( vy ĵ + ĵ + v x ( ( x k Integrate this over a hemisphere of radius R, with its boundary a circle of radius R in the xy plane. Then the surface integral is ( v n d 2 x 2 k n d 2 x A surface element of a sphere may be written in spherical coordinates as d 2 x R 2 sin θdθdφ and the dot product is k n cos θ. Therefore, ( v n d 2 x 2 cos θ R 2 sin θdθdφ 2R 2 cos θ sin θdθdφ k 5

4πR 2 cos θ sin θdθ For the boundary integral, dl Cδ ( yî + xĵ dϕ v dl Cδ Cδ Cδ 2πR 2 2πR 2 sin 2 θ π 2 2πR 2 ( ( yî xĵ + z2k yî + xĵ dϕ ( y 2 + x 2 dϕ R 2 dϕ just as we got before. Notice that the result is unchanged if we change to any surface with the same boundary. For example, let be a flat disk of radius R lying in the xy plane, centered at the origin. Then the boundary is the same, but the surface integral becomes 3.2 Example: Faraday s law ( v n d 2 x 2π 2 dφ ( 2k k rdrdφ R 2 2π R2 2 2πR 2 Faraday s law tells us that the time rate of change of magnetic flux through a surface,, is the negative of the emf around the boundary, C, of that surface, E dφ dt The emf is defined as the integral of the electric field along a curve, so we may write E E dl Cδ rdr while the magnetic flux is given by where n is normal to. Φ B n d 2 x 6

Now apply tokes theorem to the emf, E E dl Cδ ( E n d 2 x Faraday s law now becomes ( E n d 2 x d dt B n d 2 x ince t is independent of the x, y, z variables, we may interchange the order of integration and differentiation on the right, as long as we remember to change d dt to a partial derivative, d dt B n d 2 x B t n d2 x Now, bringing the magnetic field term to the left, we have ( E + B n d 2 x t ince may be any surface with the boundary C, the integrand must vanish everywhere (if it didn t, then putting a little bump in the surface to include some of the nonzero expression would change the value of the integral away from zero. We conclude E + B t This gives us Faraday s law written as a differential equation. 4 Exercises (required Work the following problems: 1. Compute the curl of the vector field v y 2î + 2xyĵ + z2k, then calculate the line integral along the following two paths from the origin to (2, 1, 1: (a (,, (,, 1 (, 1, 1 (2, 1, 1 (b (,, (2,, (2, 1, (2, 1, 1 2. Integrate f (x xy 2 over the volume with corners at the origin, (,, and the three unit vectors î, ĵ, k. 3. Compute both sides of the divergence theorem for the vector field v xyî + 2xz3ĵ + yx2k where the volume is the unit cube (i.e. with corners at, î, ĵ, k, î + ĵ, î + k, ĵ + k, î + ĵ + k. 4. Compute both sides of tokes theorem for the vector field v y 2î xyĵ + xz2k where the surface spans the triangle in the xy-plane with corners at (,,, (1, 2,, ( 1, 2,. 7