Research Article The General Solution of Differential Equations with Caputo-Hadamard Fractional Derivatives and Noninstantaneous Impulses

Similar documents
Citation Abstract and Applied Analysis, 2013, v. 2013, article no

Positive and negative solutions of a boundary value problem for a

Research Article New General Integral Inequalities for Lipschitzian Functions via Hadamard Fractional Integrals

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals

Research Article Generalized Fractional Integral Inequalities for Continuous Random Variables

LAPLACE TRANSFORMS. 1. Basic transforms

On Hadamard and Fejér-Hadamard inequalities for Caputo k-fractional derivatives

Contraction Mapping Principle Approach to Differential Equations

4.8 Improper Integrals

GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM

Fractional operators with exponential kernels and a Lyapunov type inequality

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

graph of unit step function t

Application on Inner Product Space with. Fixed Point Theorem in Probabilistic

e t dt e t dt = lim e t dt T (1 e T ) = 1

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX

Green s Functions and Comparison Theorems for Differential Equations on Measure Chains

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

CALDERON S REPRODUCING FORMULA FOR DUNKL CONVOLUTION

Some New Dynamic Inequalities for First Order Linear Dynamic Equations on Time Scales

On The Hermite- Hadamard-Fejér Type Integral Inequality for Convex Function

Procedia Computer Science

Applications of Prüfer Transformations in the Theory of Ordinary Differential Equations

ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS

Exponential Decay for Nonlinear Damped Equation of Suspended String

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX.

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).

Research Article The General Solution of Impulsive Systems with Caputo-Hadamard Fractional Derivative of Order

Analytic solution of linear fractional differential equation with Jumarie derivative in term of Mittag-Leffler function

Research Article An Expansion Formula with Higher-Order Derivatives for Fractional Operators of Variable Order

Research Article On Double Summability of Double Conjugate Fourier Series

Weighted Inequalities for Riemann-Stieltjes Integrals

2k 1. . And when n is odd number, ) The conclusion is when n is even number, an. ( 1) ( 2 1) ( k 0,1,2 L )

Yan Sun * 1 Introduction

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces

Research Article Existence and Uniqueness of Solutions for a Class of Nonlinear Stochastic Differential Equations

SOLUTION FOR A SYSTEM OF FRACTIONAL HEAT EQUATIONS OF NANOFLUID ALONG A WEDGE

On Tempered and Substantial Fractional Calculus

LAGRANGIAN AND HAMILTONIAN MECHANICS WITH FRACTIONAL DERIVATIVES

NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model

FRACTIONAL EULER-LAGRANGE EQUATION OF CALDIROLA-KANAI OSCILLATOR

Solutions for Nonlinear Partial Differential Equations By Tan-Cot Method

Mathematics 805 Final Examination Answers

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

5.1-The Initial-Value Problems For Ordinary Differential Equations

Optimality of Myopic Policy for a Class of Monotone Affine Restless Multi-Armed Bandit

A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR IAN KNOWLES

LAPLACE TRANSFORM OVERCOMING PRINCIPLE DRAWBACKS IN APPLICATION OF THE VARIATIONAL ITERATION METHOD TO FRACTIONAL HEAT EQUATIONS

HUI-HSIUNG KUO, ANUWAT SAE-TANG, AND BENEDYKT SZOZDA

Fractional Calculus. Connor Wiegand. 6 th June 2017

0 for t < 0 1 for t > 0

Numerical Approximations to Fractional Problems of the Calculus of Variations and Optimal Control

New Inequalities in Fractional Integrals

can be viewed as a generalized product, and one for which the product of f and g. That is, does

Research Article An Upper Bound on the Critical Value β Involved in the Blasius Problem

3. Renewal Limit Theorems

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

Journal of Mathematical Analysis and Applications. Two normality criteria and the converse of the Bloch principle

( ) ( ) ( ) ( ) ( ) ( y )

MTH 146 Class 11 Notes

A new model for solving fuzzy linear fractional programming problem with ranking function

FRACTIONAL-order differential equations (FDEs) are

Research Article Fejér and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions

Asymptotic relationship between trajectories of nominal and uncertain nonlinear systems on time scales

Math Week 12 continue ; also cover parts of , EP 7.6 Mon Nov 14

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform

REAL ANALYSIS I HOMEWORK 3. Chapter 1

Stability in Distribution for Backward Uncertain Differential Equation

EECE 301 Signals & Systems Prof. Mark Fowler

..,..,.,

Network Flows: Introduction & Maximum Flow

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.

FUZZY n-inner PRODUCT SPACE

Non-oscillation of perturbed half-linear differential equations with sums of periodic coefficients

How to Prove the Riemann Hypothesis Author: Fayez Fok Al Adeh.

Approximation and numerical methods for Volterra and Fredholm integral equations for functions with values in L-spaces

How to prove the Riemann Hypothesis

FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER

International ejournals

Hermite-Hadamard and Simpson Type Inequalities for Differentiable Quasi-Geometrically Convex Functions

Systems Variables and Structural Controllability: An Inverted Pendulum Case

Research Article On Hermite-Hadamard Type Inequalities for Functions Whose Second Derivatives Absolute Values Are s-convex

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY

FURTHER GENERALIZATIONS. QI Feng. The value of the integral of f(x) over [a; b] can be estimated in a variety ofways. b a. 2(M m)

A Simple Method to Solve Quartic Equations. Key words: Polynomials, Quartics, Equations of the Fourth Degree INTRODUCTION

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation

Some Inequalities variations on a common theme Lecture I, UL 2007

1.0 Electrical Systems

Lower and Upper Approximation of Fuzzy Ideals in a Semiring

New Energy-Preserving Finite Volume Element Scheme for the Korteweg-de Vries Equation

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship

An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples.

Probability, Estimators, and Stationarity

1. Introduction. 1 b b

Fractional Ornstein-Uhlenbeck Bridge

Temperature Rise of the Earth

Algorithmic Discrete Mathematics 6. Exercise Sheet

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

Transcription:

Hindwi Advnce in Mhemicl Phyic Volume 207, Aricle ID 309473, pge hp://doi.org/0.55/207/309473 Reerch Aricle The Generl Soluion of Differenil Equion wih Cpuo-Hdmrd Frcionl Derivive nd Noninnneou Impule Xinzhen Zhng, Zuohu Liu, 2 Hui Peng, 3 Xinmin Zhng, 3 nd Shiyong Yng 3 School of Chemicl nd Environmenl Engineering, Jiujing Univeriy, Jiujing, Jingxi 332005, Chin 2 School of Chemiry nd Chemicl Engineering, Chongqing Univeriy, Chongqing 400044, Chin 3 School of Elecronic Engineering, Jiujing Univeriy, Jiujing, Jingxi 332005, Chin Correpondence hould be ddreed o Xinmin Zhng; z6x2m@26.com Received 25 Sepember 206; Acceped 22 November 206; Publihed 9 Februry 207 Acdemic Edior: Kliyperuml Nkkeern Copyrigh 207 Xinzhen Zhng e l. Thi i n open cce ricle diribued under he Creive Common Aribuion Licene, which permi unrericed ue, diribuion, nd reproducion in ny medium, provided he originl work i properly cied. Bed on ome recen work bou he generl oluion of frcionl differenil equion wih innneou impule, Cpuo- Hdmrd frcionl differenil equion wih noninnneou impule i udied in hi pper. An equivlen inegrl equion wih ome undeermined conn i obined for hi frcionl order yem wih noninnneou impule, which men h here i generl oluion for he impulive yem. Nex, n exmple i given o illure he obined reul.. Inroducion Impulive differenil equion re ued in modeling of biology nd phyic nd engineering nd o forh o decribe brup chnge of he e cerin inn. However, he clicl impulive model in which innneou impule were minly conidered in mo of he exiing pper cn no decribe ome procee uch evoluion procee in phrmcoherpy. Hence, Hernández nd O Regn [] nd Pierri e l. [2] preened nd udied kind of differenil equion wih noninnneou impule. Nex, he frcionl differenil equion wih noninnneou impule were conidered in [3, 4]. Recenly, Hdmrd frcionl clculu i geing enion which i n imporn pr of heory of frcionl clculu [5]. The work in [6 ] mde developmen in fundmenl heorem of Hdmrd frcionl clculu. A Cpuoype modificion of Hdmrd frcionl derivive which i clled Cpuo-Hdmrd frcionl derivive w given in [2], nd i fundmenl heorem were proved in [3, 4]. Furhermore, ome work in [5 2] uncover h here i generl oluion for everl frcionl differenil equion wih innneou impule. Therefore, we will ry o conider he generl oluion for differenil equion wih Cpuo-Hdmrd frcionl derivive nd noninnneou impule: C-HD q + u () =f(, u ()), u () =g k (, u ()), u () =u C, (, k+ ], k=0,,...,n, ( k, ], k=,2,...,n, where q C, R(q) (0, ), nd>0nd C-H D q i he + lef-ide Cpuo-Hdmrd frcionl derivive of order q. f:[,t] C C nd g k :( k, ] C C (here k=,2,...,n) re ome pproprie funcion, nd g k denoe noninnneou impule. = 0 = 0 < 2 N N N+ =T. ()

2 Advnce in Mhemicl Phyic Firly, we only conider C-H D q + u() = f(, u()) in ech inervl (, k+ ] (k=0,,...,n)in (), nd hen C-HD q + u () =f(, u ()), for (, k+ ] = C-H D q + k u () =f(, u ()), for (, k+ ] (2) u () =u( )+ (ln )q d f (, u ()), for (, k+ ]. Subiuing (2) ino (), we obin u + u () = g k (, u ()), (ln )q f (, u ()) d, for (, ], for ( k, ], k=,2,...,n, (3) g k (,u( )) + (ln )q d f (, u ()), for (, k+ ], k=,2,...,n. In fc, u() ifie condiion of frcionl derivive nd noninnneou impule in yem (). However, we will illure h u() inonequivleninegrlequionof yem (). For yem (), we hve yem ()} g k(,u())=u +(/Γ(q)) (ln(/))q f(,u())(d/) for ( k, ], k,2,...,n} C-HD q + u () =f(, u ()), u () =u + u () =u C, (ln )q f (, u ()) d, (, k+ ], k=0,,...,n, ( k, ], k=,2,...,n (4) C-HD q u () =f(, u ()), (, T], + u () =u C, (uing Lemm 5) u () =u + (ln )q g (, u ()) d, for (, T]. (5)

Advnce in Mhemicl Phyic 3 On he oher hnd, leing g k (, u()) = u +(/Γ(q)) (ln(/ )) q f(, u())(d/) for ( k, ] nd ll k,2,...,n} in (3), we ge u () u + = u + (ln )q f (, u ()) d, for (, ], (ln )q f (, u ()) d for ( k, ], k=,2,...,n, (6) u + k Γ(q) [ (ln )q f (, u ()) d + (ln )q f (, u ()) d ], for (, k+ ], k=,2,...,n. If u() i equivlen o yem (), hen (5) i equivlen o (6). Therefore, ome unfi equion cn be obined + (ln )q d f (, u ()), (7) (ln )q f (, u ()) d = (ln )q d f (, u ()) nd here (, k+ ], k =,2,...,N.Therefore, u() i no equivlen wih yem (), nd u() will be regrded n pproxime oluion of yem (). Nex, conidering C-H D q + u() = f(, u()) for (, k+ ] (k=0,,...,n)inwholeinervl[, T],wehve C-HD q + u () =f(, u ()), for (, k+ ] [, T] u () =C k +u + (ln )q f (, u ()) d, for (, k+ ] [, T], here C k reomeconn. (8) Subiuing (8) ino (), we obin C 0 =0nd Hence, ubiuing (8) nd (9) ino (), we ge C k =g k (,u( )) u k (ln )q f (, u ()) d, (9) k=,2,...,n. u () u + = g k (, u ()), (ln )q f (, u ()) d, for (, ], for ( k, ], k=,2,...,n, (0) g k (,u( )) + Γ(q) [ (ln )q f (, u ()) d k (ln )q f (, u ()) d ] for (, k+ ], k=,2,...,n.

4 Advnce in Mhemicl Phyic Obviouly, (0) ifie he condiion in yem () nd Eq. (0)} g k (,u())=u +(/Γ(q)) (ln(/))q f(,u())(d/) for ( k, ], k,2,...,n} yem ()}. g k (,u())=u +(/Γ(q)) (ln(/))q f(,u())(d/) for ( k, ], k,2,...,n} Therefore, (0) i oluion of yem (). () Definiion 3 (ee [2, p. 4]). Le R(α) 0 nd n=[r(α)] + nd φ φ : [, b] C :δ (n ) φ(x) AC[, b]}, 0<< b<.then C-H D α +φ(x) exi everywhere on [, b] nd if α N 0, C-HD α x +φ (x) = Γ (n α) = H J n α + δn φ (x), (ln x )n α δ n φ () d (3) Remrk. Equion (0) i only priculr oluion of yem () becue i doe no conin he imporn pr (ln(/)) q f(, u())(d/) of he pproxime oluion u(). Nex, ome definiion nd concluion re inroduced in Secion 2, he equivlen inegrl equion will be given for differenil equion wih Cpuo-Hdmrd frcionl derivive nd noninnneou impule in Secion 3, nd n exmple will how h here exi he generl oluion for hi frcionl differenil equion wih noninnneou impule in Secion 4. 2. Preinrie Definiion 2 (ee [5, p. 0]). Le 0 b be finie or infinie inervl of he hlf-xi R +.Thelef-idedHdmrd frcionl inegrl of order α C (R(α) > 0) of funcion φ(x) i defined by H Jα +φ (x) = Γ (α) x (ln x )α φ () d, where Γ( ) i he Gmm funcion. ( <x<b), (2) The lef-ided Cpuo-Hdmrd frcionl derivive +φ(x) i preened in [2] by he following. C-HD α where differenil operor δ = x(d/dx) nd δ 0 y(x) = y(x). Lemm 4 (ee [2, p. 5]). Le R(α) > 0, n=[r(α)] +,nd φ C[, b].ifr(α) =0or α N,hen C-HD α ( + H Jα +φ) (x) =φ(x). (4) Lemm 5 (ee [2, p. 6]). Le φ AC n δ [, b] or Cn δ [, b] nd α C,hen H Jα ( C-HD α n + +φ) (x) =φ(x) δ k φ () k! k=0 (ln x )k. (5) Lemm 6 (ee [5, p 4]). Le 0<R(q) < nd ξ i conn. Afuncionu() : [, T] C igenerloluionofheyem C-HD q + u () =h(, u ()), (, T], = k (k=,2,...,m), Δu =k =u( + k ) u( k )=Δ k (u ( k )) C, u () =u, u C, k=,2,...,m, if nd only if u() ifie he frcion inegrl equion (6) u () u + = u + k i= (ln )q h d, for (, ], Δ i (u ( i )) + (ln )q h d (7) +ξ k i= Δ i (u ( i )) Γ(q) i [ (ln q i ) h d + (ln )q d h i (ln )q h d ] for ( k, k+ ], k=,2,...,m.

Advnce in Mhemicl Phyic 5 provided h he inegrl in (7) exi, nd here h = h(, u()). 3. Min Reul Theorem 7. Le ξ k (here k =,2,...,N)beomerbirry conn. Syem () i equivlen o g k (,u( )) k u () = u + g k (, u ()) (ln )q f d (ln )q f d + + ξ k Γ(q) [g k (,u( )) u k [ (ln )q d f + (ln )q d f (ln )q f d ] (ln )q f d (ln )q f d ] for (, ], for ( k, ], k=,2,...,n, for (, k+ ], k=,2,...,n, (8) provided h he inegrl in (8) exi, nd here f = f(, u()). Proof. Sep (Neceiy). We will verify h (8) ifie ll condiion of yem (). For convenience, we divide hi ecion ino hree ep. Sep.. Equion (8) ifie he frcionl derivive in yem (). By (8), for (, k+ ] (here k=0,,...,n), we ge C-HD q + u () = C-H D q + g k (,u( )) Γ(q) (ln )q d f + + ξ k Γ(q) (g k (,u( )) u k (ln )q f d ) (ln )q f d [ (ln )q d f + (ln )q d f (ln )q f d ]} = f (, u ()) (, k+ ] + ξ k Γ(q) (g k (,u( )) u Γ(q) (ln )q d f ) [ C-H D q ( (ln )q d f + k ) C-H D q ( (ln + )q f d )] (, k+ ] =f(, u ()) (k, k+ ]. (9) So, (8) ifie he frcionl derivive in yem (). Sep.2. We cn verify h (8) ifie noninnneou impulendiniilvlueinyem(). Sep.3. Verify h (8) ifie hidden condiion of yem (). Leing g k (, u()) = u +(/Γ(q)) (ln(/))q f(d/) for ( k, ] nd ll k,2,...,n}in (8), we obin g k (,u())=u +(/Γ(q)) (ln(/))q f(d/) k,2,...,n}, ( k, ] u () = g k (,u())=u +(/Γ(q)) (ln(/))q f(d/) k,2,...,n}, ( k, ] u + (ln )q f d, for (, ], g k (, u ()), for ( k, ], k=,2,...,n, g k (,u( )) k + ξ k Γ(q) (g k (,u( )) u (ln )q f d + k [ (ln )q d f + (ln )q d f (ln )q f d (ln )q f d ) (ln )q f d ] for (, k+ ], k=,2,...,n,

6 Advnce in Mhemicl Phyic u + (ln )q f d = u + (ln )q f d u + (ln )q f d for (, ], for ( k, ], k=,2,...,n, for (, k+ ], k=,2,...,n. (20) Moreover,iiureh(20)iheoluionofyem(4)by Lemm 5. Thu, (8) ifie ll condiion of yem (). Sep 2 (Sufficiency).Wewillverifyhheoluionofyem () ifie (8). For convenience, we divide hi ecion ino hree ep. Sep 2.. Verify h he oluion of yem () ifie (8) in inervl (, ] nd (, ]. By Lemm 5, he oluion of () ifie u () =u + (ln )q f d nd u() = g (, u()) for (, ]. for (, ], (2) Sep 2.2. Verify h he oluion of yem () ifie (8) in inervl (, 2 ] nd ( 2, 2 ]. For (, 2 ], he pproxime oluion (by he bove dicuion bou u())i given u () =g (,u( )) + (ln )q d f for (, 2 ], (22) u ()} = Γ(q) [ (ln )q f d (ln )q d f (ln )q d f ]. (24) Therefore, uppoe e () = Γ(q) γ(g (,u( )) u (ln )q f d ) [ (ln )q f d (ln )q d f (ln )q d f ], where γ i n undeermined funcion wih γ(0) =.Thu, (25) wih error e () = u() u() for (, 2 ].Byhepriculr oluion (0), he exc oluionu() of yem () ifie [g (,u( )) u (/Γ(q)) Thu, =u + (ln( /)) q f(d/)] 0 (ln )q f d [g (,u( )) u (/Γ(q)) = [g (,u( )) u (/Γ(q)) u () (ln( /)) q f(d/)] 0 for (, 2 ]. e () (ln( /)) q f(d/)] 0 u () (23) u () = u () +e () =g (,u( )) Γ(q) (ln )q d f + + Γ(q) [ γ (g (,u( )) u (ln )q f d )] (ln )q f d [ (ln )q d f + (ln )q d f (ln )q f d ] for (, 2 ]. (26)

Advnce in Mhemicl Phyic 7 On he oher hnd, leing,wege ( C-H D q + u) () =f(, u ()), (, k+ ], k=0,, u () =g (, u ()), (, ], u () =u C, ( C-H D q + u) () =f(, u ()), (, k+ ], k=0,, = u( )=g (,u( )), u () =u C, ( C-H D q + u) () =f(, u ()), (, k+ ], k=0,, = u( + ) u( )=g (,u( )) u (ln )q d f, u () =u C. (27) By uing Lemm 6 o (27), we ge γ(z)=ξ z, z C,nd here ξ i n rbirry conn. Thu, u () =g (,u( )) + u (ln )q d f (ln )q f d + ξ Γ(q) (g (,u( )) (ln )q f d ) [ (ln )q d f + (ln )q d f (ln )q f d ] for (, 2 ]. And u() = g 2 (, u()) for ( 2, 2 ]. (28) Sep 2.3. Verify h he oluion of yem () ifie (8) in inervl (, k+ ] nd ( k+,+ ]. The pproxime oluion (, k+ ] i given by u () =g k (,u( )) + (ln )q d f for (, k+ ], k=,2,...,n, (29) wih error e k () = u() u() for (, k+ ].Moreover,by he priculr oluion (0), he exc oluion of yem () ifie [g k (,u( )) u (/Γ(q)) =u + (ln(/)) q f(d/)] 0 (ln )q f d u () for (, k+ ]. (30) Thu, [g k (,u( )) u (/Γ(q)) = [g k (,x( )) u (/Γ(q)) u ()} = Γ(q) [ (ln(/)) q f(d/)] 0 e k () (ln(/)) q f(d/)] 0 (ln )q f d u () (ln )q d f (ln )q d f ]. Therefore, uppoe e k () =π(g k (,u( )) u k (ln )q f d ) [g k (,u( )) u (/Γ(q)) = Γ(q) π(g k (,u( )) u k (ln )q f d ) (ln(/)) q f(d/)] 0 e k () [ (ln )q d f + (ln )q d f (ln )q f d ], (3) (32)

8 Advnce in Mhemicl Phyic where π i n undeermined funcion wih π(0) =. Therefore, u () = u () +e k () =g k (,u( )) Γ(q) (ln )q d f + + Γ(q) π (g k (,u( )) u (ln )q f d k (ln )q f d )} [ (ln )q d f + (ln )q d f (ln )q f d ] for (, k+ ]. On he oher hnd, conider pecil ce of yem () (33) k C-HD q + u () =f(, u ()), ( i, i+ ], i=0,,...,k, u () =u + (ln )q f (, u ()) d, ( i, i ], i=,2,...,k, u () =g k (, u ()), ( k, ], u () =u C, ( C-H D q + u) () =f(, u ()), ( i, i+ ], i=0,,...,k, u () =u + = (ln )q f (, u ()) d, u( )=g k (,u( )), u () =u C, ( i, i ], i=,2,...,k, (34) ( C-H D q + u) () =f(, u ()), ( i, i+ ], i=0,,...,k, u () =u + = (ln )q f (, u ()) d, u( + k ) u( k )=g k (,u( )) u k u () =u C. (ln )q f (, u ()) d, ( i, i ], i=,2,...,k, Uing Lemm 6 for yem (34), we obin π(z) = ξ k z, z C,ndhereξ k i n rbirry conn. Thu By Sufficiency nd Neceiy, yem () i equivlen o (8). The proof i compleed. u () =g k (,u( )) k + u k (ln )q f d + (ln )q f d ) (ln )q d f ξ k Γ(q) (g k (,u( )) [ (ln )q d f + (ln )q d f (ln )q f d ] for (, k+ ]. (35) 4. Exmple In hi ecion, we will give n impulive frcionl yem o illure h here exi generl oluion for frcionl differenil equion wih noninnneou impule. Exmple. Le u conider he following impulive liner frcionl yem: ( C-H D /2 + u) () = ln, (, π ] (π, 2π], 2 u () = in, u () =. ( π 2,π], (36)

Advnce in Mhemicl Phyic 9 By Theorem 7, yem (36) h generl oluion + Γ (/2) in, (ln )/2 ln d, for (,π 2 ], for ( π 2,π], π u () = Γ (/2) (ln π )/2 ln d + Γ (/2) (ln )/2 ln d (37) π ξ + Γ (/2) [ Γ (/2) (ln π )/2 ln d ] π [ (ln π )/2 ln d + π (ln )/2 ln d (ln )/2 ln d ], for (π, 2π], where ξ i conn. Afer ome elemenry compuion, (37) cn be rewrien by in, u () = + 4 3 π (ln )3/2, for (, π 2 ], 4 3 π (ln π)3/2 + 4 3 π (ln )3/2 > + 2ξ 3 π [ 4 3 π (ln π)3/2 ] for ( π 2,π], (38) [2(ln π) 3/2 +(ln π )/2 (2 ln +ln π) 2(ln ) 3/2 ], for (π, 2π]. > >π Nex, le u verify h (38) ifie ll condiion of yem (36). By Definiion 3, we hve C-HD /2 + ( 4 3 π (ln )3/2 )= 4 Γ ( /2) 3 π (ln ) /2 δ((ln ) 3/2 ) d = Γ (/2) 4 3 π (ln 3 ) /2 2 (ln d )/2 = ln C-HD /2 + [(ln π )/2 (2 ln +ln π) ] >π = Γ ( /2) (ln ) /2 δ[(ln π )/2 (2 ln +ln π) ] d >π = Γ (/2) (ln ) /2 π δ[(ln π )/2 (2 ln +ln π)] d = Γ (/2) (ln π ) /2 [2 (ln π )/2 + 2 (ln π ) /2 (2 ln +ln π)] d = Γ (/2) (ln ) /2 [2 (ln π )/2 π + 2 (ln π ) /2 (2 ln π 3 = Γ (/2) + (3/2) ln π Γ (/2) π +3ln π)] d (ln ) /2 (ln π )/2 d (ln π ) /2 (ln d π ) /2 = 3 2 Γ( 2 ) ln π + 3 2 Γ( 2 ) ln π= 3 2 Γ( 2 ) ln. >π (39)

0 Advnce in Mhemicl Phyic Therefore, for (, π/2] nd (π,2π]in (38), we hve C-HD /2 + u () = C-HD /2 + ( + 4 3 π (ln )3/2 )=ln, for (, π 2 ], C-HD /2 + u () = (π,2π] C-HD /2 + 4 (ln π)3/2 3 π + 4 3 π (ln )3/2 + 2ξ > 3 π [ 4 3 π (ln π)3/2 ] [2(ln π) 3/2 +(ln π )/2 (2 ln +ln π) >π 2(ln ) 3/2 > ]} (π,2π] = C-H D /2 + 4 3 π (ln )3/2 + 2ξ > 3 π [ 4 3 π (ln π)3/2 ] [(ln π )/2 (2 ln +ln π) >π 2(ln ) 3/2 ]} =ln > > + 2ξ 3 π [ (π,2π] 4 3 π (ln π)3/2 ][ 3 2 Γ( 2 ) ln >π 3 2 Γ( 2 ) ln =ln >]} > } (π,2π], (π,2π] for (π, 2π]. (40) Thu, (38) ifie frcionl derivive nd noninnneou impule in yem (36). Therefore, (38) i generl oluion of yem (36). Compeing Inere The uhor declre h hey hve no compeing inere. Acknowledgmen The work decribed in hi pper i finncilly uppored by he Nionl Nurl Science Foundion of Chin (Grn no. 2576033, 2636004, 6563023, nd 6362038) nd he Reerch Foundion of Educion Bureu of Jingxi Province, Chin (Grn no. GJJ4738). Reference [] E. Hernández nd D. O Regn, On new cl of brc impulive differenil equion, Proceeding of he Americn Mhemicl Sociey,vol.4,no.5,pp.64 649,203. [2]M.Pierri,D.O Regn,ndV.Rolnik, Exienceofoluion for emi-liner brc differenil equion wih no innneou impule, Applied Mhemic nd Compuion,vol. 29, no. 2, pp. 6743 6749, 203. [3] J. Wng, Y. Zhou, nd Z. Lin, On new cl of impulive frcionl differenil equion, Applied Mhemic nd Compuion,vol.242,pp.649 657,204. [4] P.-L. Li nd C.-J. Xu, Mild oluion of frcionl order differenil equion wih no innneou impule, Open Mhemic,vol.3,pp.436 443,205. [5] A. A. Kilb, H. H. Srivv, nd J. J. Trujillo, Theory nd Applicion of Frcionl Differenil Equion,Elevier,Amerdm, The Neherlnd, 2006. [6] A.A.Kilb, Hdmrd-ypefrcionlclculu, Journl of he Koren Mhemicl Sociey,vol.38,no.6,pp.9 204,200. [7]P.L.Buzer,A.A.Kilb,ndJ.J.Trujillo, Compoiionof Hdmrd-ype frcionl inegrion operor nd he emigroup propery, Journl of Mhemicl Anlyi nd Applicion,vol.269,no.2,pp.387 400,2002. [8]P.L.Buzer,A.A.Kilb,ndJ.J.Trujillo, Mellinrnform nlyi nd inegrion by pr for Hdmrd-ype frcionl inegrl, Journl of Mhemicl Anlyi nd Applicion, vol.270,no.,pp. 5,2002. [9] P.Thirmnu,S.K.Nouy,ndJ.Triboon, Exiencend uniquene reul for Hdmrd-ype frcionl differenil equion wih nonlocl frcionl inegrl boundry condiion, Abrc nd Applied Anlyi, Aricle ID 902054, Ar. ID 902054, 9 pge, 204. [0] M. Kek, Sequenil frcionl differenil equion wih Hdmrd derivive, Communicion in Nonliner Science nd Numericl Simulion, vol. 6, no. 2, pp. 4689 4697, 20. [] B. Ahmd nd S. K. Nouy, A fully Hdmrd ype inegrl boundry vlue problem of coupled yem of frcionl differenil equion, Frcionl Clculu nd Applied Anlyi, vol.7,no.2,pp.348 360,204. [2] F. Jrd, T. Abdeljwd, nd D. Blenu, Cpuo-ype modificion of he Hdmrd frcionl derivive, Advnce in Difference Equion, 202:42, 8 pge, 202. [3]Y.Y.Gmbo,F.Jrd,D.Blenu,ndT.Abdeljwd, On Cpuo modificion of he Hdmrd frcionl derivive, Advnce in Difference Equion, vol.204,ricleno.0,2 pge, 204. [4] Y.Adjbi,F.Jrd,D.Blenu,ndT.Abdeljwd, OnCuchy problem wih CAPuo Hdmrd frcionl derivive, Journl of Compuionl Anlyi nd Applicion, vol.2,no.4, pp.66 68,206. [5] X. Zhng, The generl oluion of differenil equion wih Cpuo-Hdmrd frcionl derivive nd impulive effec, Advnce in Difference Equion,vol.205,ricle25,6pge, 205. [6] X. Zhng, Z. Liu, H. Peng, T. Shu, nd S. Yng, The generl oluion of impulive yem wih cpuo- hdmrd frcionl derivive of order q C (R(q) (, 2)), Mhemicl Problem in Engineering, vol. 206, Aricle ID 80802, 20 pge, 206. [7] X. Zhng, X. Zhng, nd M. Zhng, On he concep of generl oluion for impulive differenil equion of frcionl order q ε (0, ), Applied Mhemic nd Compuion, vol.247,pp. 72 89, 204. [8] X. Zhng, On he concep of generl oluion for impulive differenil equion of frcionl order q (,2), Applied Mhemic nd Compuion,vol.268,pp.03 20,205.

Advnce in Mhemicl Phyic [9] X. Zhng, P. Agrwl, Z. Liu, nd H. Peng, The generl oluion for impulive differenil equion wih Riemnn-Liouville frcionl-order q(, 2), Open Mhemic, vol. 3, pp. 908 930, 205. [20] X. Zhng, T. Shu, H. Co, Z. Liu, nd W. Ding, The generl oluion for impulive differenil equion wih Hdmrd frcionl derivive of order q (,2), Advnce in Difference Equion,vol.206,ricle4,206. [2] X. Zhng, X. Zhng, Z. Liu, W. Ding, H. Co, nd T. Shu, On he generl oluion of impulive yem wih Hdmrd frcionl derivive, Mhemicl Problem in Engineering, vol. 206, AricleID28430,2pge,206.

Advnce in Operion Reerch Hindwi Publihing Corporion hp://www.hindwi.com Advnce in Deciion Science Hindwi Publihing Corporion hp://www.hindwi.com Journl of Applied Mhemic Algebr Hindwi Publihing Corporion hp://www.hindwi.com Hindwi Publihing Corporion hp://www.hindwi.com Journl of Probbiliy nd Siic The Scienific World Journl Hindwi Publihing Corporion hp://www.hindwi.com Hindwi Publihing Corporion hp://www.hindwi.com Inernionl Journl of Differenil Equion Hindwi Publihing Corporion hp://www.hindwi.com Submi your mnucrip hp://www.hindwi.com Inernionl Journl of Advnce in Combinoric Hindwi Publihing Corporion hp://www.hindwi.com Mhemicl Phyic Hindwi Publihing Corporion hp://www.hindwi.com Journl of Complex Anlyi Hindwi Publihing Corporion hp://www.hindwi.com Inernionl Journl of Mhemic nd Mhemicl Science Mhemicl Problem in Engineering Journl of Mhemic Hindwi Publihing Corporion hp://www.hindwi.com Hindwi Publihing Corporion hp://www.hindwi.com Hindwi Publihing Corporion hp://www.hindwi.com Dicree Mhemic Journl of Hindwi Publihing Corporion hp://www.hindwi.com Dicree Dynmic in Nure nd Sociey Journl of Funcion Spce Hindwi Publihing Corporion hp://www.hindwi.com Abrc nd Applied Anlyi Hindwi Publihing Corporion hp://www.hindwi.com Hindwi Publihing Corporion hp://www.hindwi.com Inernionl Journl of Journl of Sochic Anlyi Opimizion Hindwi Publihing Corporion hp://www.hindwi.com Hindwi Publihing Corporion hp://www.hindwi.com