N Channel MOSFET level 3

Similar documents
ESE 570: Digital Integrated Circuits and VLSI Fundamentals

The Devices. Devices

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

MOS Transistor I-V Characteristics and Parasitics

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

EE 560 MOS TRANSISTOR THEORY

Practice 3: Semiconductors

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

MOSFET: Introduction

ECE315 / ECE515 Lecture-2 Date:

MOSFET. Id-Vd curve. I DS Transfer curve V G. Lec. 8. Vd=1V. Saturation region. V Th

MOS Transistor Theory

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

The Devices: MOS Transistors

MOSFET Physics: The Long Channel Approximation

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

Lecture 3: CMOS Transistor Theory

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

ESE 570 MOS TRANSISTOR THEORY Part 2

Lecture 12: MOSFET Devices

Chapter 4 Field-Effect Transistors

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

MOSFET Capacitance Model

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

Integrated Circuits & Systems

Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

VLSI Design The MOS Transistor

Device Models (PN Diode, MOSFET )

FIELD-EFFECT TRANSISTORS

ECE 342 Electronic Circuits. 3. MOS Transistors

ECE-305: Fall 2017 MOS Capacitors and Transistors

Lecture 5: CMOS Transistor Theory

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

EE5311- Digital IC Design

Nanoscale CMOS Design Issues

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

Device Models (PN Diode, MOSFET )

Lecture 04 Review of MOSFET

MOS Transistor Properties Review

MOS Transistor Theory

EE105 - Fall 2006 Microelectronic Devices and Circuits

Lecture #27. The Short Channel Effect (SCE)

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact

EE105 - Fall 2005 Microelectronic Devices and Circuits

Microelectronics Part 1: Main CMOS circuits design rules

ECE 546 Lecture 10 MOS Transistors

Chapter 5 MOSFET Theory for Submicron Technology

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7

Lecture 30 The Short Metal Oxide Semiconductor Field Effect Transistor. November 15, 2002

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

LEVEL 61 RPI a-si TFT Model

GaN based transistors

! PN Junction. ! MOS Transistor Topology. ! Threshold. ! Operating Regions. " Resistive. " Saturation. " Subthreshold (next class)

Virtual Device Simulation. Virtual Process Integration

EE115C Winter 2017 Digital Electronic Circuits. Lecture 2: MOS Transistor: IV Model

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Quantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current.

Metal-oxide-semiconductor field effect transistors (2 lectures)

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

Lecture 12: MOS Capacitors, transistors. Context

Long Channel MOS Transistors

The Intrinsic Silicon

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Lecture 11: MOSFET Modeling

Non Ideal Transistor Behavior

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow

Technische Universität Graz. Institute of Solid State Physics. 11. MOSFETs

Lecture 4: CMOS Transistor Theory

6.012 MICROELECTRONIC DEVICES AND CIRCUITS

ECE 305: Fall MOSFET Energy Bands

Chapter 2 MOS Transistor theory

The Devices. Jan M. Rabaey

Investigation of the Thermal Noise of MOS Transistors under Analog and RF Operating Conditions

MOS CAPACITOR AND MOSFET

Lecture 28 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 18, 2007

CMOS Digital Integrated Circuits Analysis and Design

EE 330 Lecture 16. Devices in Semiconductor Processes. MOS Transistors

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University

Class 05: Device Physics II

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Transcription:

N Channel MOSFET level 3 mosn3 NSource NBulk NSource NBulk NSource NBulk NSource (a) (b) (c) (d) NBulk Figure 1: MOSFET Types Form: mosn3: instance name n 1 n n 3 n n 1 is the drain node, n is the gate node, n 3 is the source node, n is the bulk node. Parameters: parameter list Parameter Type Default value Required? gamma: Bulk threshold parameter (V 0.5 ) DOUBLE 0 no kp: Transconductance parameter (A/V ) DOUBLE 0.00001 no l: Device length (m) DOUBLE 0.00000 no w: Device width (m) DOUBLE 0.00005 no ld: Lateral diffusion length (m) DOUBLE 0 no wd: Lateral diffusion width (m) DOUBLE 0 no nsub:substrate doping (cm 3 ) DOUBLE 0 no phi: Surface inversion potential (V) DOUBLE 0.6 no tox: Oxide thickness (m) DOUBLE 1 10 7 no u0: Surface mobility (cm /V-s) DOUBLE 600 no vt0: Zero bias threshold voltage (V) DOUBLE 0 no kappa: Saturation field factor (m) DOUBLE 0. no t: Device temperature (degrees) DOUBLE 300.15 no tnom: Nominal temperature (degrees) DOUBLE 300.15 no nfs: Fast surface state density (cm ) DOUBLE 0 no eta: Static feedback on threshold voltage DOUBLE 0 no theta: Mobility modulation (1/V) DOUBLE 0 no tpg: Gate material type DOUBLE 0 no nss: Surface state density (cm ) DOUBLE 0 no vmax: Maximum carrier drift velocity (m/sec) DOUBLE 0 no xj: Metallurgical junction depth DOUBLE 0 no delta: Width effect on threshold voltage DOUBLE 0 no Example: mosn3:m1 3 0 0 l=1.u w=0u Description: f REEDA TM has the NMOS level 3 model based on the MOS level 3 model in SPICE. It uses the charge conservative Yang-Chatterjee model for modeling charge and capacitance. 1

DC Calculations: Constants used are: All parameters used are indicated in this font. Effective channel length and width: q = 1.601918 10 19 (As) (1) k = 1.38066 10 3 (J/K) () ɛ 0 = 8.85187 10 1 (F/m) (3) ɛ s = 11.7 ɛ 0 () E g = 1.16 7.0 10 T (V ) T + 1108 (5) C ox = ɛ 0 3.9 (F ) TOX (6) L eff = L LD (7) W eff = W WD (8) Depletion layer width coefficient Built in voltage: Square root of substrate voltage: ɛs X d = q NSUB 10 6 (9) V bi = VT0 GAMMA PHI (10) V BS 0 = SqV BS = PHI V BS PHI V BS > 0 = SqV BS = 1 + PHI 0.5 V BS(1 + PHI 0.75 V BS) Short-channel effect correction factor: In a short channel device, device threshold voltage tends to lower since part of the depletion charge in the bulk terminates the electric fields at the source and drain. The value of this correction factor is determined by the metallurgical depth XJ. (11) c 0 = 0.0631353 (1) c 1 = 0.80139 (13) c = 0.01110777 (1) T 1 = XJ (c 0 + c 1 X d SqV BS + c (X d SqV BS ) ) (15) F s = 1 LD + T 1 X d SqV BS 1 ( ) L eff XJ + X d SqV (16) BS Narrow channel effect correlation factor: The edge effects in a narrow channel cause the depletion charge to extend beyond the width of the channel. This has an effect of increasing the threshold voltage. F n = π ɛ s DELTA C ox W eff (17) Static feedback coefficient: The threshold voltage lowers because the charge under the gate terminal depleted by the drain junction field increases with V DS. This effect is Drain Induced Barrier Lowering (DIBL). σ = 8.1 10 ETA L eff 3 C ox (18)

Threshold voltage: V th = V bi σ V DS + GAMMA SqV BS F s + F n SqV BS Subthreshold operation: This variable is invoked depending on the value of the parameter NFS and is used only during subthreshold mode. X n = 1 + q NFS 10 C ox + F n + GAMMA Modified threshold voltage: This variable defines the limit between weak and strong inversion. Subthreshold gate voltage: Surface mobility: (19) F s SqV BS (0) NFS > 0 = V on = V th + k T q X n (1) NFS 0 = V on = V th () µ s = V gsx = MAX(V GS, V on ) (3) U0 10 1 + THETA (V gsx V th ) Saturation voltage: Calculation of this voltage requires many steps. The effective mobility is calculated as () µ eff = µ s F drain (5) where 1.0 F drain = 1 + µs V (6) DS VMAX L eff The Taylor expansion of coefficient of bulk charge is β = W eff L eff µ eff C ox (7) F B = GAMMA The standard value of saturation voltage is calculated as The final value of the saturation voltage depends on the parameter VMAX F s SqV BS + F n (8) V sat = V gsx V th 1 + F B (9) VMAX = 0 = V dsat = V sat (30) VMAX > 0 = V c = VMAX L eff µ s (31) V dsat = V sat + V c Vsat + Vc (3) Velocity saturation drain voltage: This ensures that the drain voltage does not exceed the saturation voltage. V dsx = MIN(V DS, V dsat ) (33) Drain Current: Linear Region: µ s I DS = β U0 10 F drain (V gsx V th 1 + F b V dsx ) V dsx (3) 3

Saturation region: Cutoff Region: I DS = β (V GS V th 1 + F b V dsat ) V dsat (35) I DS = 0 (36) Channel length modulation: As V DS increases beyond V dsat, the point where the carrier velocity begins to saturate moves towards the source. This is modeled by the term l. Xd l = X E p d + KAPPA (V DS V dsat ) E p Xd (37) where E p is the lateral field at pinch-off and is given by E p = VMAX µ s (1 F drain ) (38) The drain current is multiplied by a correction factor l fact. This factor prevents the denominator L eff l from going to zero. The corrected value of drain-source current is l 0.5 L eff = l fact = L eff L eff l (39) l > 0.5 L eff = l fact = l L eff (0) I DSnew = I DS l fact (1) Subthreshold operation: For subthreshold operation, if the fast surface density parameter NFS is specified and V GS V on, then the final value of drain-source current is given by I DSfinal = I DSnew e kt q V GS Von Xn () Yang-Chatterjee charge model This model ensures continuity of the charges and capacitances throughout different regions of operation. The intermediate quantities are: and V F B = V to GAMMA PHI PHI (3) C o = C ox W eff L eff () Accumulation region V GS V F B + V BS Cut-off region V F B + V BS < V GS V th Q d = 0 (5) Q s = 0 (6) Q b = C o (V GS V F B V BS ) (7) Q d = 0 (8) Q s = 0 (9) GAMMA Q b = C o { 1 + 1 + (V GS V F B V BS ) GAMMA } (50)

Saturation region V th < V GS V DS + V th Linear region V GS > V DS + V th Q d = 0 (51) Q s = 3 C o (V GS V th ) (5) Q b = C o (V F B PHI V th ) (53) V DS Q d = C o [ 8 (V GS V th V DS ) + V GS V th 3 V DS] (5) V DS Q s = C o [ (V GS V th V DS ) + V GS V th + 1 V DS] (55) Q b = C o (V F B PHI V th ) (56) The final currents at the transistor nodes are given by I d = I DSfinal + dq d dt I g = dq g dt I s = I DSfinal + dq s dt (57) (58) (59) 5

DC Characteristics Transient analysis 0.0008.5 Output 0.0007 0.0006 3.5 0.0005 3 Vds (V) 0.000 Vd (V).5 0.0003 1.5 0.000 1 0.0001 0.5 0 0 0.5 1 1.5.5 3 3.5.5 5 0 0 1e-09 e-09 3e-09 e-09 5e-09 6e-09 7e-09 8e-09 9e-09 1e-08 (a) Ids (A) Time (s) (b) Figure : Analysis results. Notes: This is the M element in the SPICE compatible netlist. Version: 00.08.01 Credits: Name Affiliation Date Links Nikhil Kriplani NC State University August 00 nmkripla@unity.ncsu.edu www.ncsu.edu 6