Coloron Models and LHC Phenomenology

Similar documents
Flavor and Scalar Signals of an Extended Color Sector. R. Sekhar Chivukula Michigan State University

arxiv: v1 [hep-ph] 27 Oct 2015

Theory Perspective of Top Production: Top Resonances. Tim M.P. Tait

Search for New Physics at the Early LHC

Model independent analysis of top FB asymmetry at the Tevatron

Technicolored Strong Dynamics. Fermion masses ETC FCNC Walking Isospin Topcolor Other lurking challenges - Conclusions

BSM Higgs Searches at ATLAS

BSM physics at the LHC. Akimasa Ishikawa (Kobe University)

How to tell apart non-standard EWSB mechanisms. Veronica Sanz CERN and YORK Moriond 2012

Yu Gao Mitchell Institute for Fundamental physics and Astronomy Texas A&M University

Exotics Searches for New Physics with the ATLAS Detector

arxiv:hep-ph/ v1 15 Dec 1998

Light generations partners at the LHC

arxiv: v1 [hep-ex] 8 Nov 2010

Exotic Dark Matter as Spin-off of Proton Stability. Kaustubh Agashe (University of Maryland)

Top properties and ttv LHC

Exotic scalars. Stefania Gori. Second MCTP Spring Symposium on Higgs Boson Physics. The University of Chicago & Argonne National Laboratory

S = 2 decay in Warped Extra Dimensions

Recent Results from the Tevatron

Florencia Canelli On behalf of the ATLAS and CMS collaborations. University of Zürich TOP2014 Cannes, France

The Zoo of BSM Physics at the LHC. 8/1/12 T.G. Rizzo

Top-Quark Charge Asymmetry Review

Top quark at LHC. M. Villa. Bologna, oggi

Search for Quark Substructure in 7 TeV pp Collisions with the ATLAS Detector

On behalf of the ATLAS and CMS Collaborations

Higgs Property Measurement with ATLAS

Looking through the Higgs portal with exotic Higgs decays

Top Quarks and New Physics

Top results from CMS

Production and decay of top quark via FCNC couplings beyond leading order

arxiv: v1 [hep-ex] 7 Jan 2019

Charge asymmetries of top quarks: A window to new physics at hadron colliders

Nonthermal Dark Matter & Top polarization at Collider

Sensitivity to the Single Production of Vector-Like Quarks at an Upgraded Large Hadron Collider

W/Z + jets and W/Z + heavy flavor production at the LHC

Extra Dimensional Signatures at CLIC

Probing Dark Matter at the LHC

Search for single production of vector-like quarks decaying into a W-boson and a b-quark at 13 TeV

B-meson anomalies & Higgs physics in flavored U(1) model

Searches for Natural SUSY with RPV. Andrey Katz. C. Brust, AK, R. Sundrum, Z. Han, AK, M. Son, B. Tweedie, 1210.XXXX. Harvard University

Fourth Generation and Dark Matter

Searches for new physics at ATLAS

Distinguishing Standard Model Extensions using MonoTop Chirality at the LHC

LHC resonance searches in tt Z final state

New Physics from Type IIA Quivers

Highlights from the ATLAS Experiment

LHC Results in Majid Hashemi IPM, Tehran Wednesday, 11 th May 2011

BSM searches with top quarks

Two-Higgs-doublet models with Higgs symmetry

Heavy Electroweak Resonances at the LHC

Electroweak Symmetry Breaking via Strong Dynamics in the Precision Higgs Era: Extra Dimension and Composite Higgs.

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014

8.882 LHC Physics. Higgs Physics and Other Essentials. [Lecture 22, April 29, 2009] Experimental Methods and Measurements

Higgs in the light of Hadron Collider limits: impact on a 4th generation

Higgs Production at LHC

A Minimal Composite Goldstone Higgs model

Electroweak Baryogenesis after LHC8

arxiv: v1 [hep-ph] 27 Jan 2011

BEYOND THE SM (II) Kaustubh Agashe (University of Maryland)

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

Mono-X, Associate Production, and Dijet searches at the LHC

Scenarios with Composite Higgs Bosons

Two Early Exotic searches with dijet events at ATLAS

Measurements of the Higgs Boson at the LHC and Tevatron

arxiv: v1 [hep-ex] 5 Sep 2014

A Search for Vector Diquarks at the CERN LHC

Dark matter and collider signatures from extra dimensions

Higgs-Radion Mixing in the RS and LHC Higgs-like Excesses

SUSY Phenomenology & Experimental searches

Dark Matter Phenomenology

Koji TSUMURA (NTU à Nagoya U.)

Statistical methods in CMS searches

QCD at the Tevatron: The Production of Jets & Photons plus Jets

Baryonic LHC

arxiv: v1 [hep-ex] 1 Mar 2017

Koji TSUMURA (NTU Nagoya U.) KEK 16-18/2/2012

Single Higgs production at LHC as a probe for an anomalous Higgs self coupling

Measurement of the jet production properties at the LHC with the ATLAS Detector

Lone Higgs at the LHC. Ken Hsieh. in collaboration with C.-P. Yuan Phys. Rev. D 78, (2008) arxiv:

Gauge U(1) Dark Symmetry and Radiative Light Fermion Masses

Evidence for Single Top Quark Production. Reinhard Schwienhorst

Lecture 23. November 16, Developing the SM s electroweak theory. Fermion mass generation using a Higgs weak doublet

Mono Vector-Quark Production at the LHC

The Physics of Heavy Z-prime Gauge Bosons

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

Studies of Higgs Potential (Higgs Boson Self Coupling Measurements)

arxiv: v1 [hep-ph] 22 Apr 2015

Searches for Dark Matter with in Events with Hadronic Activity

Beyond the Standard Model

Electroweak measurements at HERA

Electroweak Physics and Searches for New Physics at HERA

Searches for dark matter at CMS and ATLAS

ATLAS Run II Exotics Results. V.Maleev (Petersburg Nucleare Physics Institute) on behalf of ATLAS collaboration

New Higgs Production Mechanism in Composite Higgs Models

Outline: Introduction Search for new Physics Model driven Signature based General searches. Search for new Physics at CDF

Forward physics with proton tagging at the LHC

Search for physics beyond the Standard Model at LEP 2

Hadronic Exotica Searches at CMS

Department of Physics and Astronomy 1082 Malott,1251 Wescoe Hall Dr. Lawrence, KS

SEARCH FOR EXTRA DIMENSIONS WITH ATLAS AND CMS DETECTORS AT THE LHC

Transcription:

Coloron Models and LHC Phenomenology Elizabeth H. Simmons Michigan State University - New Strong Dynamics - Models - LHC Phenomenology - Other Phenomenology - Conclusions SCGT 12 December 5, 2012

LHC s rediscovery and new particle After years of work pay off... What s next?

Our Quest in The BSM Landscape SUSY Composite Higgs Dark Matter Extra Dimensions? Flavor L H C LHC References

New Strong Dynamics New colored gauge bosons Classic Axigluon: P.H. Frampton and S.L. Glashow, Phys. Lett. B 190, 157 (1987). Topgluon: C.T. Hill, Phys. Lett. B 266, 419 (1991). Flavor-universal Coloron: R.S. Chivukula, A.G. Cohen, & E.H. Simmons, Phys. Lett. B 380, 92 (1996). Chiral Color with gl gr: M.V. Martynov and A.D. Smirnov, Mod. Phys. Lett. A 24, 1897 (2009). New Axigluon: P.H. Frampton, J. Shu, and K. Wang, Phys. Lett. B 683, 294 (2010). Other color-octet states: KK gluon: H. Davoudiasl, J.L. Hewett, and T.G. Rizzo, Phys. Rev. D63, 075004 (2001) B. Lillie, L. Randall, and L.-T. Wang, JHEP 0709, 074 (2007). Techni-rho: E. Farhi and L. Susskind, Physics Reports 74, 277 (1981). Recent catalog of colored states: Color sextets, colored scalars, low-scale scale string resonances... T. Han, I. Lewis, Z. Liu, JHEP 1012, 085 (2010).

New Strong Dynamics... and A t fb Coloron might impact A t FB at FNAL: L. M. Sehgal and M. Wanninger, Phys. Lett. B 200, 211 (1988). D. Choudhury, R.M. Godbole, R. K. Singh, and K. Wagh, Phys. Lett. B 657, 69 (2007). P. Ferrario and G. Rodrigo, J. High Energy Phys. 02 (2010) 051. M.V. Martynov and A. D. Smirnov, arxiv:1006.4246. Q. H. Cao, D. McKeen, J. L. Rosner, G. Shaughnessy, and C. E. M. Wagner, Phys. Rev. D 81, 114004 (2010). P. Ferrario and G. Rodrigo, Proc. XVIII Int l Workshop on Deep-Inelastic Scattering, April 19-23, 2010, Firenze. R.S. Chivukula, E.H. Simmons, and C.-P. Yuan, Phys. Rev. D82 (2010). G. Rodrigo and P. Ferrario, 3rd Int l Workshop on Top Quark Physics, Brugges, Belgium, 31 May to 4 Jun 2010. G. Rodrigo and P. Ferrario arxiv:1007.4328 [hep-ph]... anti-top proton beam Anti-proton beam top

Models

Coloron Models: Gauge Sector u SU(3) 1 SU(3) 2 h 1 h 2 SU(3)1 x SU(3)2 color sector with M 2 = u2 4 h 2 1 h 1 h 2 h 1 h 2 h 2 2 unbroken subgroup: SU(3)1+2 = SU(3)QCD gluon state: G A µ = cos A A 1µ +sin A A 2µ h 1 = g s cos h 2 = g s sin couples to: g S J µ G g S(J µ 1 + J µ 2 ) coloron state: Cµ A = sin A A 1µ + cos A A M 2µ C = p u qh 2 1 + 2 h2 2 couples to: g S J µ C g S( J µ 1 tan + J µ 2 cot ) low-energy current-current interaction: L 2 FF = g 2 S 2M 2 C J µ C J Cµ

Coloron Models: Quark Charges u SU(3) 1 SU(3) 2 h 1 h 2 g S J µ G g S(J µ 1 + J µ 2 ) g S J µ C g S( J µ 1 tan + J µ 2 cot ) low-energy current-current interaction: L 2 FF = g 2 S 2M 2 C J µ C J Cµ Depending on how quarks transform under SU(3)1 x SU(3)2 the presence of colorons may impact LHC dijet mass distribution (or angular distribution) kinematic distributions of tt or bb final states asymmetry in top-quark production: A t FB FCNC processes: K K,D D, B B mixing, b! s precision EW observables: delta-rho, Rb

Patterns of Quark Charges SU(3)1 SU(3)2 model pheno. (t,b)l ql tr,br qr coloron dijet qr (t,b)l ql tr,br tr,br (t,b)l ql qr ql (t,b)l tr,br qr ql tr,br (t,b)l qr new axigluon dijet, A t FB, FCNC ql qr (t,b)l tr,br topgluon dijet, tt, bb, FCNC, Rb... tr,br qr (t,b)l ql classic axigluon dijet, A t FB ql tr,br qr (t,b)l q = u,d,c,s

LHC Phenomenology

LHC Limits on Colorons LHC searches for colorons in dijet constrain M C > 3.5 TeV [pb] σ 3 10 2 10 10 q* Observed 95% CL upper limit Expected 95% CL upper limit 68% and 95% bands 1-1 10-1 L dt = 4.8 fb s = 7 TeV -2 10 10-3 ATLAS 1000 2000 3000 4000 Mass [GeV] But these calculations have treated the colorons only at LO and QCD to NLO (or beyond)... we can do better!

Coloron Production q LO vs NLO production cross-section pt of coloron C q q q q q C q C q q q q q

Colorons at NLO + + + + + virtual corrections real corrections + + R.S.Chivukula, A.Farzinnia, R.Foadi, EHS arxiv:1111.7261

Impact of NLO Corrections σ pb 3.2 3.0 2.8 2.6 2.4 2.2 r L πr R NLO LO s B A HpbL σ 100 10 1 0.1 0.01 0.001 r L πr R 1.0 1.5 2.0 2.5 3.0 3.5 4.0 m F HTeVL 1.0 1.5 2.0 2.5 3.0 3.5 4.0 M C HTeVL K-factor: NLO/ LO 30% 30% of produced colorons have p T > 200 GeV! RSC, Farzinnia, Foadi, EHS arxiv:1111.7261

Impact of NLO Corrections σ pb 3.2 3.0 2.8 2.6 2.4 2.2 r L πr R NLO LO s B A HpbL σ 100 10 1 0.1 0.01 0.001 r L πr R 1.0 1.5 2.0 2.5 3.0 3.5 4.0 m F HTeVL 1.0 1.5 2.0 2.5 3.0 3.5 4.0 M C HTeVL scale dependence at LO: 30% at NLO: 2% K-factor: NLO/ LO 30% 30% of produced colorons have p T > 200 GeV! RSC, Farzinnia, Foadi, EHS arxiv:1111.7261

Impact of NLO Corrections σ pb 3.2 3.0 2.8 2.6 2.4 2.2 r L πr R NLO LO s B A HpbL σ 100 10 1 0.1 0.01 0.001 r L πr R 1.0 1.5 2.0 2.5 3.0 3.5 4.0 m F HTeVL 1.0 1.5 2.0 2.5 3.0 3.5 4.0 M C HTeVL scale dependence at LO: 30% at NLO: 2% K-factor: NLO/ LO 30% Axigluon mass limit from CMS stronger when NLO included 30% of produced colorons have p T > 200 GeV! RSC, Farzinnia, Foadi, EHS arxiv:1111.7261

Beyond Production: Suppose we discover a coloron... What then? Remember the diversity of models: How to establish which coloron has been found?

New Mode: W+C a probes Chiral Couplings Different production modes probe several combinations of the coloron s couplings to RH and LH fermions: g R 3 2 1 0 Dijet Zjj pp! C a + W [Z]! jj` [``] 1 2 q W (Z) l (l + ) ν (l ) j q j l (l + ) Wjj 3 3 2 1 0 1 2 3 g L q C j q C W (Z) j ν (l ) l (l + ) l (l + ) W (Z) ν (l ) W (Z) ν (l ) q C j q C j A. Atre, R.S.Chivukula, P. Ittisamai, EHS arxiv:1206.1661 q j q j

W+C a : Heat Map of Significance all of these heat maps are for Mc = 3.5 TeV at 14 TeV LHC g R 3 2 1 0 1 2 W+C a Dijet Sensitivity 14TeV 100fb-1 Γ/M=0.05 Γ/M=0.10 Γ/M=0.20 Γ/M=0.30 LHC 14 TeV L = 10 fb -1 MC = 3.5 TeV 3 3 2 1 0 1 2 3 g L significance >5σ 5σ 4σ 3σ 2σ <2σ g R 3 2 1 0 1 2 W+C a Dijet Sensitivity 14TeV 100fb-1 Γ/M=0.05 Γ/M=0.10 Γ/M=0.20 Γ/M=0.30 LHC 14 TeV L = 100 fb -1 MC = 3.5 TeV 3 3 2 1 0 1 2 3 g L significance >5σ 5σ 4σ 3σ 2σ <2σ grey ring is excluded by 7 TeV LHC dijet searches with 5 fb -1 of data g R 3 2 1 0 1 2 Z+C a Dijet Sensitivity 14TeV 100fb-1 Γ/M=0.05 Γ/M=0.10 Γ/M=0.20 Γ/M=0.30 LHC 14 TeV L = 10 fb -1 MC = 3.5 TeV significance >5σ 5σ 4σ 3σ 2σ <2σ g R 3 2 1 0 1 2 Z+C a Dijet Sensitivity 14TeV 100fb-1 Γ/M=0.05 Γ/M=0.10 Γ/M=0.20 Γ/M=0.30 LHC 14 TeV L = 100 fb -1 MC = 3.5 TeV significance >5σ 5σ 4σ 3σ 2σ <2σ 3 3 2 1 0 1 2 3 g L 3 3 2 1 0 1 2 3 g L

W+C a : Heat Map and Afb range g R 2 1 0 1 Allowed by AFB Γ/M=0.20 Γ/M=0.05 Γ/M=0.10 Dijet Exclusion 7 TeV 4.8 fb-1 Dijet Sensitivity 14TeV 100fb-1 LHC 14 TeV L = 10 fb -1 M C = 3.0 TeV Allowed by AFB significance >5σ 5σ 4σ 3σ 2σ <2σ g R 2 1 0 1 Allowed by AFB Γ/M=0.20 Γ/M=0.05 Γ/M=0.10 Dijet Exclusion 7 TeV 4.8 fb-1 Dijet Sensitivity 14TeV 100fb-1 LHC 14 TeV L = 100 fb -1 M C = 3.0 TeV Allowed by AFB significance >5σ 5σ 4σ 3σ 2σ <2σ 2 2 1 0 1 2 g L 2 2 1 0 1 2 g L

Precision Phenomenology

Precision EW Tests Coloron exchange does impact at one-loop W, Z but since c t, b m4 t M 2 W M 2 C the size of the effect is small ln apple M 2 c m 2 t Likewise, coloron exchange across the vertex yields effects proportional to m 2 b Zb b which are negligible New weak-charged states would give larger effects...

FCNC in Coloron Models Coloron exchange can produce FCNC if the coloron coupling to quarks are flavor non-universal The total rate of FCNC will depend quite strongly on how flavor is implemented overall in the model Are there other states that quarks mix with? Are there additional composite states made from quarks, whose exchange can boost FCNC s? Let s look at a specific implementation

A New Toy Topgluon Model R.S. Chivukula, EHS, N. Vignaroli (2012) in preparation

Our Toy Topgluon Model particles SU(3)1 SU(3)2 SU(2)W 3rd generation (t,b)l 3 1 2 quarks tr,br 3 1 1 light quarks (u,d)l (c,s)l 1 3 2 ur,dr cr,sr 1 3 1 vector quarks QL,QR 3 1 2 light scalar # $ φ 1 1 2 heavy scalar Φ 3 3* 1 R.S. Chivukula, EHS, N. Vignaroli (2012) in preparation

Generational Mixing in Toy Model SU(3)1 x SU(3)2 x SU(2)W (1,1,2) (3, 3 *,1) <φ> <Φ> X tr, br QL QR (u,d)l (c,s)l (3,1,1) (3,1,2) (3,1,2) (1,3,2)

FCNC in Our Toy Topgluon Model Coloron exchange yields KK, DD, and BB mixing quark charges under strong gauge groups are non-universal the top and bottom mass eigenstate quarks are admixtures of ordinary and heavy vector gauge eigenstate quarks Mixing among ordinary and heavy vector quarks also leads to flavor-changing b-quark decays: b! s

Limits on Toy Topgluon Model M C HTeVL 5 Allowed... 4 l 2 KK mixing may exclude l 2 ë 2 3 2 1 0 LHC dijets exclude KK mixing may exclude l 2 ë 3 BB mixing and b! s exclude KK mixing certainly excludes 1 2 3 4 5 Cotw R.S. Chivukula, EHS, N. Vignaroli (2012) in preparation Θ

Conclusions

Conclusions Physics beyond the SM may lurk in the strong interactions LHC can discover and study colorons, incorporate NLO results for the coloron K-factor and pt distribution into dijet searches use associated W+ C a production to probe the coloron s couplings. Additional coloron effects? FCNC: yes, if couplings are flavor non-universal precision EW: negligible in, Zb b top-quark asymmetry: for some coupling values