defined on a domain can be expanded into the Taylor series around a point a except a singular point. Also, f( z)

Similar documents
Σr2=0. Σ Br. Σ br. Σ r=0. br = Σ. Σa r-s b s (1.2) s=0. Σa r-s b s-t c t (1.3) t=0. cr = Σ. dr = Σ. Σa r-s b s-t c t-u d u (1.4) u =0.

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve)

Σk=1. g r 3/2 z. 2 3-z. g 3 ( 3/2 ) g r 2. = 1 r = 0. () z = ( a ) + Σ. c n () a = ( a) 3-z -a. 3-z. z - + Σ. z 3, 5, 7, z ! = !

Optimization. x = 22 corresponds to local maximum by second derivative test

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013

Math 2142 Homework 2 Solutions. Problem 1. Prove the following formulas for Laplace transforms for s > 0. a s 2 + a 2 L{cos at} = e st.

Satellite Orbits. Orbital Mechanics. Circular Satellite Orbits

Topics for Review for Final Exam in Calculus 16A

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts.

Hadamard and Caputo-Hadamard FDE s with Three Point Integral Boundary Conditions

Previously. Extensions to backstepping controller designs. Tracking using backstepping Suppose we consider the general system

RELATIVE KINEMATICS. q 2 R 12. u 1 O 2 S 2 S 1. r 1 O 1. Figure 1

Mark Scheme (Results) January 2008

9.4 The response of equilibrium to temperature (continued)

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface

Integrals and Polygamma Representations for Binomial Sums

The Formulas of Vector Calculus John Cullinan

k. s k=1 Part of the significance of the Riemann zeta-function stems from Theorem 9.2. If s > 1 then 1 p s

MATHEMATICS IV 2 MARKS. 5 2 = e 3, 4

B.A. (PROGRAMME) 1 YEAR MATHEMATICS

Lecture 10. Solution of Nonlinear Equations - II

Chapter Eight Notes N P U1C8S4-6

Electric Field F E. q Q R Q. ˆ 4 r r - - Electric field intensity depends on the medium! origin

This immediately suggests an inverse-square law for a "piece" of current along the line.

We show that every analytic function can be expanded into a power series, called the Taylor series of the function.

CHAPTER 2 ELECTROSTATIC POTENTIAL

Physics 505 Fall 2005 Midterm Solutions. This midterm is a two hour open book, open notes exam. Do all three problems.

1 Using Integration to Find Arc Lengths and Surface Areas

Chapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY

7.5-Determinants in Two Variables

On Natural Partial Orders of IC-Abundant Semigroups

EECE 260 Electrical Circuits Prof. Mark Fowler

Electronic Companion for Optimal Design of Co-Productive Services: Interaction and Work Allocation

Chapter 19 Webassign Help Problems


Answers to test yourself questions

On the Eötvös effect

STD: XI MATHEMATICS Total Marks: 90. I Choose the correct answer: ( 20 x 1 = 20 ) a) x = 1 b) x =2 c) x = 3 d) x = 0

u(r, θ) = 1 + 3a r n=1

Michael Rotkowitz 1,2

20.2. The Transform and its Inverse. Introduction. Prerequisites. Learning Outcomes

PROGRESSION AND SERIES

Chapter 28 Sources of Magnetic Field

MTH3101 Spring 2017 HW Assignment 6: Chap. 5: Sec. 65, #6-8; Sec. 68, #5, 7; Sec. 72, #8; Sec. 73, #5, 6. The due date for this assignment is 4/06/17.

Last time: S n xt y where T tpijq 1 i j nu.

2. The Laplace Transform

Friedmannien equations

4-4 E-field Calculations using Coulomb s Law

Solution to HW 3, Ma 1a Fall 2016

Fourier-Bessel Expansions with Arbitrary Radial Boundaries

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s:

3.1 Magnetic Fields. Oersted and Ampere

PDF Created with deskpdf PDF Writer - Trial ::

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.)

EXTREMAL PROPERTIES OF LOGARITHMIC SPIRALS. 1. Introduction

Lectures # He-like systems. October 31 November 4,6

PHYS 601 HW 5 Solution. We wish to find a Fourier expansion of e sin ψ so that the solution can be written in the form

π,π is the angle FROM a! TO b

Algebra Based Physics. Gravitational Force. PSI Honors universal gravitation presentation Update Fall 2016.notebookNovember 10, 2016

Schwarzschild Geodesics in Terms of Elliptic Functions and the Related Red Shift

Physics 604 Problem Set 1 Due Sept 16, 2010

a a a a a a a a a a a a a a a a a a a a a a a a In this section, we introduce a general formula for computing determinants.

Radial geodesics in Schwarzschild spacetime

APPENDIX 2 LAPLACE TRANSFORMS

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 12 (Second moments of an area (B)) A.J.Hobson

(a) Counter-Clockwise (b) Clockwise ()N (c) No rotation (d) Not enough information

+ r Position Velocity

4.5 JACOBI ITERATION FOR FINDING EIGENVALUES OF A REAL SYMMETRIC MATRIX. be a real symmetric matrix. ; (where we choose θ π for.

Brief summary of functional analysis APPM 5440 Fall 2014 Applied Analysis

Right-indefinite half-linear Sturm Liouville problems

About Some Inequalities for Isotonic Linear Functionals and Applications

Section 35 SHM and Circular Motion

Euler-Maclaurin Summation Formula 1

STUDY OF THE UNIFORM MAGNETIC FIELD DOMAINS (3D) IN THE CASE OF THE HELMHOLTZ COILS

ELECTROSTATICS. 4πε0. E dr. The electric field is along the direction where the potential decreases at the maximum rate. 5. Electric Potential Energy:

Electric Potential. and Equipotentials

For this purpose, we need the following result:

Several new identities involving Euler and Bernoulli polynomials

FI 2201 Electromagnetism

We divide the interval [a, b] into subintervals of equal length x = b a n

(n 1)n(n + 1)(n + 2) + 1 = (n 1)(n + 2)n(n + 1) + 1 = ( (n 2 + n 1) 1 )( (n 2 + n 1) + 1 ) + 1 = (n 2 + n 1) 2.

Summary: Binomial Expansion...! r. where

CHAPTER 7 Applications of Integration

Laplace s equation in Cylindrical Coordinates

Week 8. Topic 2 Properties of Logarithms

Journal of Number Theory

Method for Approximating Irrational Numbers

Electronic Supplementary Material

Data Structures. Element Uniqueness Problem. Hash Tables. Example. Hash Tables. Dana Shapira. 19 x 1. ) h(x 4. ) h(x 2. ) h(x 3. h(x 1. x 4. x 2.

Quality control. Final exam: 2012/1/12 (Thur), 9:00-12:00 Q1 Q2 Q3 Q4 Q5 YOUR NAME

10 m, so the distance from the Sun to the Moon during a solar eclipse is. The mass of the Sun, Earth, and Moon are = =

V V The circumflex (^) tells us this is a unit vector

Homework: Study 6.2 #1, 3, 5, 7, 11, 15, 55, 57

( ) D x ( s) if r s (3) ( ) (6) ( r) = d dr D x

Lyapunov-type inequality for the Hadamard fractional boundary value problem on a general interval [a; b]; (1 6 a < b)

dx was area under f ( x ) if ( ) 0

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

Fluids & Bernoulli s Equation. Group Problems 9

Transcription:

08 Tylo eie nd Mcluin eie A holomophic function f( z) defined on domin cn be expnded into the Tylo eie ound point except ingul point. Alo, f( z) cn be expnded into the Mcluin eie in the open dik with diu fom the oigin O to the neet ingulity. When the two convegence cicle he the oigin O, the Tylo eie eult in the Mcluin eie. At thi time, numeou eqution e geneted between the coefficient of both. 8. Ce without ingul point Theoem 8.. When function f( z) i holomophic in the whole domin D, the following expeion hold fo ny D. f () () f () () 0 (-) - C -! fo 0,,, Poof The function f( z) cn be expnded into the Mcluin eie in D, nd the diu of convegence i R m. Alo, the function f( z) cn be expnded into the Tylo eie ound ny D follow. f() z 0 f () () ( z-)! And thi diu of convegence i lo R t. Hee, ( z-) ( -) - C - z Uing thi, 0 f () () ( z-)! 0 0 f () ()! Since thi h to be equl to the Mcluin eie in D, 0 f () () (-) - C - z 0 (-) - C - z f () () (-) - C - z f () () 0 z! Futhemoe, ince both eie convege unifomly in D, thee hve to be me. If not o, it contdict to the uniquene of the eie. Theefoe, f () () Exmple f() z coz - - C - f () () 0! The Mcluin eie nd the Tylo eie ound e follow. z f m () z co 0! ( z-) f t () z co 0! fo ny D 0,,, - -

0 (-) - co C - z Thee diu of convegence e R m R t. Then, fo ny, the following hold. (-) - co C - co! fo 0,,, In fct, when c t (, ) denote the left ide nd c m () denote the ight ide, ech vlue of c t ( 00,) t, -e, i e follow. Moeove, the following how tht the vlue of both ide e equl fo 50,5 t -i. Specil vlue When 0, (-) co fo ny e.g. 0 co in co in - - -- 0!!!! 0! 4 0! 4 -! 4 -! 4 -- When, (-) - - ( - )! co 0 fo ny e.g. co in co 4 in - - -- in!!! 4!! 4! 4 -! 4-4! 4 4 -- Exmple inhz The Mcluin eie nd the Tylo eie ound e follow. - -

f m () z 0 f t () z 0 Fom thee, When 0, -( -) - z! e - - - e - ( z-)! e - (-) - e - (-) - C - (-) -( -) -! e - (-) - e - 0 fo ny fo 0,,, 0 inh coh inh coh - - - 0 0!!!! When (-) e - (-) -- e - fo ny 0 coh inh coh inh - - - 0!!!! Exmple ( z) e z The Mcluin eie nd the Tylo eie ound e follow. f m () z 0 f t () z e 0 Fom thee, e When 0, z! ( z-)! (-) - C -! ( -) e fo ny ( -) 0 0! When, ( -)! ( -)! ( -) e fo ny fo 0,,, ( 4-) e! - -

( -) 0 0! Genelly, ( -)! ( 4-)! ( b - ) be fo ny,b ( b -) 0 0! ( b - )! ( b - )! ( 5-) e! ( b - ) be! In fct, clcultion eult giving viou vlue to b, e follow. - 4 -

8. Ce with ingul point Theoem 8.. When function f( z) i holomophic in domin D except ingul point p, the following expeion hold fo.t. < p - f () () f () () 0 (-) - C - fo 0,,,! Whee, the ingul point p i umed to be neet to the oigin O nd the point. Poof The function f( z) cn be expnded into the Mcluin eie in cicle C m of the diu R m p follow. f () () 0 f() z z z < R 0! m p Alo, the function f( z) cn be expnded into the Tylo eie ound except p follow. f() z 0 f () () ( z-)! z- < R t p - The cente of the convegence cicle C t i, nd the diu i R t p -. Hee, ( z-) ( -) - C - z. Uing thi, 0 f () () ( z-)! 0 f () () (-) - C - z Since thi h to be equl to the Mcluin eie in C m C t, 0 f () () (-) - C - z 0 f () () 0 z! When < p -, ince the convegence cicle C t of the Tylo eie include the oigin O, cicle C c ound the oigin O exit touching the cicle C t intenlly. (The diu i p - -. ) Since both eie convege unifomly in C c, thee hve to be me. If not o, it contdict to the uniquene of the eie. Theefoe, - 5 -

f () () (-) - C - f ( ) () 0! < p - 0,,, Condition fo the theoem Let i, p piq. Then < p - educe to the following expeion. p( p- ) q( q- ) > 0 Epecilly, when q 0, if p > 0 then < p/ if p < 0 then > p/ Epecilly, when p 0, if q > 0 then < p/ if q < 0 then > p/ - 6 -

8. Exmple of Ce : C m C t Thi i ce whee the convegence cicle C m of the Mcluin eie include the convegence cicle C t of the Tylo eie. We conide the following function the exmple. f() z tnh - z The highe ode deivtive i given by the following expeion. (See " 岩波数学公式 Ⅰ" p6,) n tnh - z () The Mcluin eie i f m () z 0 ( n -)! () 0 z! f () Fom thi nd the bove, f m () z tnh - 0 ( -z) n f () 0 () 0 z 0 0! ( -) - z On the othe hnd, the Tylo eie ound i f t () z 0 f () () (-) - C - z (-) n- ( z) n n,,, f () () 0 z! f () () (-) C 0 z 0 f () () (-) - C - z f () 0 f () () () (-) f () () (-) - C - z Fom thi nd the bove, f t () z tnh - - (-) - ( -) (-) - ( -) Then, thee coefficient c m (), c t, e follow. c m tnh - 0 0 () ( -) - > 0 c t (, ) tnh - - ( -) - - ( -) - - C - z - - 0 - - C - > 0 (.m) (.t) Since the f( z) h the ingul point t z, the convegence diu of the Mcluin eie i R m nd the convegence diu of the Tylo eie i R t -. Theefoe, i f Re( ) < /, < -. Fo exmple, if /5 0.4 then < -. - 7 -

Theefoe, the following eqution hve to hold. (-) ( -) - - ( -) tnh - - - tnh - 0 0 - - C - ( -) -,,, In fct, when /5, the eult tht the eie of the left ide w clculted to the 0000 th tem fo 0 nd,,4 e follow. We cn ee tht even numbe tem of the Tylo eie e lmot 0. Specil vlue We obtin the following fomul fom the vobe exmple. - 8 -

Fomul 8.. tnh - - - - Re < Poof Fom (.m), (.t) t 0, tnh - tnh - - - ( -) Hee, eplcing with -, tnh - (-) - - - tnh - 0 0 - ( -) - - - - - Since thi function i n odd function, tnh - (-z) -tnh - z. Theefoe, Exmple tnh - tnh - tnh - 4 4 - - - - 6 4-4 8 6 4 Re Re Re < < < - 4 8-4 4 4-9 -

8.4 Exmple of Ce : C m C t Thi i ce whee the convegence cicle C m of the Mcluin eie i included in the convegence cicle C t of the Tylo eie. We conide the following function the exmple. 5 f() z 5-z The Mcluin eie nd the Tylo eie ound e follow. f m () z 0 f t () z 0 z 5 5 5- ( z-) 5 0 ( 5-) Then, thee coefficient c m (), c t c m () 5 (-) - C - z, e follow. (.m) c t (, ) 5 ( 5-) (-) - C - (.t) Since the f( z) h the ingul point t z 5, the convegence diu of the Mcluin eie i R m 5 nd the convegence diu of the Tylo eie i R t 5-. Theefoe, i f Re( ) <5/, < p -. Fo exmple, if -7 then < 5-. Theefoe, the following eqution h to hold. 5 ( 5-) (-) - C - 5 Re( ) < 5/ 0,,, In fct, when -7, the eult tht the eie of the left ide w clculted to the 00 th tem fo 0,,,7 e follow. We cn ee tht coefficient of the Tylo eie nd the Mcluin eie e conitent. - 0 -

Geometic Seie with coefficient Fom the vobe exmple, we obtin the following fomul. Fomul 8.4. (-) - C x Epecilly, when, x x ( -x) x - -x -x x > x > 0,,, Poof Replcing the convegence diu 5 with in the vobe exmple, we obtin (-) - C - ( -) Tnfom thi follow. Hee, let Then - - - C - x -x x, - -x Re( ) < / 0,, - ( -) Re( ) < / 0,,, Subtituting thee fo thevobe, (-) - C - -x x A long </, x > i gunteed. x -x x > 0,,, educe When 0, x - -x x Thi i the uul geometic eie. x > - -

When, x x ( -x) Thi i the geometic eie with coefficient. Exmple x > 4 4 4 4 Exmple 4 - - 4-4 - - 4-4 Exmple 4..... 4 0. 4. -... -. 4 -. 4 ( i) ( i) ( i) ( i) 4 4 - - ( i) ( i) ( i) ( i) 4 i i i - ( i) - -

8.5 Exmple of Ce : C m C t Thi i ce whee the convegence cicle C m of the Mcluin eie nd the convegence cicle C t of the Tylo eie e ovelpping ptilly. We conide the following function the exmple. f() z z The highe ode deivtive i given by the following expeion. (See " 岩波数学公式 Ⅰ" p,) z () n Subtituting thi fo Theoem 8.., c m () c t (, ) n!( -) n z - n in( n ) cot - z 0 - f () () 0!( -)!! c m () (-) in (-) in cot - 0 f () () (-) - C - ( -) - in cot - 0 Re() z 0 in cot - ( -) - C - c t (, ) (-) - in cot - ( -) - C - (.t) (.m) Since the f( z) h the ingul point t z i, the convegence diu of the Mcluin eie i R m nd the convegence diu of the Tylo eie i R t i -. Theefoe, i f Im( ) < /, < i -. Fo exmple, if 0.7 then < i -. Theefoe, the following eqution h to hold. (-) - in cot - ( -) - C - (-) in - -

In fct, when, the eult tht the eie of the left ide w clculted to the 0000 th tem fo 0,,, e follow. We cn ee tht odd numbe tem of the Tylo eie e lmot 0. Altenting eie of powe of / Fom the vobe exmple, we obtin the following fomul. Fomul 8.5. 4 - - 4 6 7-9 - 0 -- 0 0 4 6 7 9 0 - - 4 6 7-9 - 0 -- 0 0 Poof Subtituting / fo (.t), c t, - (-) in (-) in - in ( ) cot - - - C (-) - C (-) in Hee, uing Diichlet chcte ( m, j) Then (-) in c t, (,) c m () (-) in 4 - (-) - m: modulu, j: index, 4 (-) - C (,) - - C C - - - 4 -

When 0, c t 0, c m () 0 (-) 0 in Fom thee, 0 4 (-) -0 C 0 (,) ( 0) (-) 4 (,) 4 0 - - 4 6 7-9 - 0 -- When, c t, c m () (-) in Fom thee, (-) (,) 4 (-) - C (,) 0 0 4 6 7 9 0 - - 4 6 7-9 - 0 -- 0 Adding 0/ 0 to the both ide, we obtin the deied expeion. - 5 -

8.6 Sum of Stieltje contnt In thi ection, we pove the fomul of um of Stieltje contnt. It eem tht thi fomul w dicoveed by O. Michev by 008. ( http://mthwold.wolfm.com/stieltjecontnt.html ). Although I do not know how D.Michev poved thi, the poof pefomed in thi ection i vey good exmple of ppliction of the Theoem 8... Fomul 8.6. (O. Michev) When e Stieltje contnt nd () n () function, The following expeion hold. 0 i the n-th ode diffeentil coefficient of Riemnn zet n (-) n n! () n () 0 n 0,,, (.n) Poof It i known tht the function f( z ) ( z -) ( z ) i expnded to Tylo eie follow. ( z-) () z (-) - - ( z-) : Stieltje contnt Then f () () 0 (-) - - > 0 Next, the Mcluin expnion of f( z ) i follow. f () () 0 ( z-) () z z 0! Since f( z ) i poduct of two function, the highe ode deivtive i given by the following Leibniz ule. n () n n g() z h() z 0 g ( n- ) () z h () () z Hee, put g() z z-, h() z () z, then g () 0 () z z-, g () () z, g () () z 0 (,,4,) Subtituting thee fo the bove, f () n () z ( z-) () z () n f () n () n () z ( z-) () z The diffeentil coefficient t z 0 e f () () 0 ( - ) () 0- () Then f () () ( - ) () 0 0- () () 0!! n n - ( n- ) () n ( n- ) () z ( z-) () n () z () 0 0,,, 0,,, n z n ( z- ) () n () z Now, the function f( z ) ( z -) ( z ) i holomophic on the whole complex plne. So, Theoem 8.. hold nd the following eltion exit between the (.t) nd (.m). (.t) (.m) - 6 -

f ( ) () (-) - C - f ( ) () 0! fo 0,,, Then, ubtituting (.t) nd (.m) fo the both ide one by one ( 0,,, ), it i follow. When 0, Left: Right: Fom thee, f () () (-) -0 C 0-0 - f () () (-) C 0 - f () 0 () 0 0 - () 0 () 0 0! 0! (-) - - (-) -0 C 0-0 - ( - )! - 0! () 0 () 0 (.0) When, Futhe, Uing thi, Left: Right: Fom thee, f () () (-) - C - (-) - - -!( - )!! - -!!( - )! 0 0 0!!!! 0!!! f () () (-) - C -! f () () 0 () 0 () 0- () () 0!! () 0 () 0- () () 0 Subtituting (.0) fo thi,! () 0 () 0 () 0 () 0- () () 0-7 -

Fom thi, -! () () 0 (.) When, Futhe, Uing thi, Left: Right: Fom thee, f () () (-) - C - - (-) - - - - - -!!( - )! -!!( - )! 0 4 4 0!!!! 0!!! f () () (-) - C - -! f () () 0 () () 0- () () 0!! - Subtituting (.) fo thi, Fom thi, () () 0- () () 0 -! () () - 0 () () 0- () () 0 -! () () 0 (.) When, Futhe, f () () (-) - C -! (-) - - - - -!( - )!!!( - )! - 8 -

Uing thi, Left: Right: Fom thee, f () () (-) - C -! f () () 0 () () 0- () () 0!! () () 0- () () 0 Subtituting (.) fo thi, Fom thi,! () () 0 () () 0- () () 0 -! () () 0 (.) Heefte, by induction, we obtin the deied expeion. Specil vlue The following pecil vlue e known bout Riemnn zet function. Theefoe, () 0 () 0 - ( 0 ), () () 0 - - 0! () 0 () 0 log Glihe-Kinkelin contnt -! () () 0 log - -0.08064667 0.0.6 0.0.8 Renewed 07.08.0 Added Section 6. Alien' Mthemtic Kno. Kono - 9 -