Experiment 8: Chlorination of 1-Chlorobutane

Similar documents
Exp't 141. Exp't 141

Cl 2(g) + NaCl + H 2 O. light. 2Cl. Once formed, the chlorine radical can react with the heptane as shown below: + Cl

Free Radical Chlorination

Expt 10: Friedel-Crafts Alkylation of p-xylene

Exp t 144 Synthesis of N,N-Diethyl-m-Toluamide: The Insect Repellent "OFF"

Lab 2. Go Their Separate Ways: Separation of an Acid, Base, and Neutral Substance by Acid-Base Extraction

DEHYDRATION OF ALCOHOLS-GAS CHROMATOGRAPHY

Dehydration of Alcohols-Gas Chromatography

Experiment 12: Grignard Synthesis of Triphenylmethanol

NaBr, H2SO4 CH3CH2CH2CH2Br + NaHSO4 + H2O. 1-Bromobutane bp C den MW n 1.439

The Friedel-Crafts Reaction: 2-(4-methylbenzoyl)benzoic acid

9. Hydroboration-Oxidation of Alkenes

CHMA2000 EXPT 7: The Physical and Chemical Properties of Alcohols

R C OR' H 2 O carboxylic acid alcohol ester water side product

Expt 7: Preparation of Isobutyl Propionate (or Isobutyl Propanoate)

Ester Synthesis And Analysis: Aspirin and Oil of Wintergreen. Vanessa Jones November 19, 2015 Thursday 8:30 Lab Section Lab Partner: Melissa Blanco

The Synthesis of Triphenylmethano. will synthesize Triphenylmethanol, a white crystalline aromatic

INVESTIGATING GAS CHROMATOGRAPHY rev 8/12

Expt 9: The Aldol Condensation

Expt 5: Synthesis of Benzoic Acid Using the Grignard Reaction

Experiment DE: Part II Fisher Esterification and Identification of an Unknown Alcohol

ORGANIC SYNTHESIS: MICROWAVE-ASSISTED FISCHER ESTERIFICATION

Using a mini-gas Chromatograph (GC): Identifying Unknown Compounds

Experiment 16: Polymers

Experiment 11: Dehydration of Cyclohexanol

IMPORTANT SAFETY INFORMATION

General Chemistry I CHEM-1030 Laboratory Experiment No. 2 Physical Separation Techniques

R R CH. Some reactions of alcohols vary depending on their classification as 1º, 2º, or 3º alcohols.

CH 241 EXPERIMENT #6 WEEK OF NOVEMBER 12, NUCLEOPHILIC SUBSTITUTION REACTIONS (S N 1 and S N 2)

2 (CH 3 CH 2 ) 2 NH diethylamine

Experiment 3: Analysis of Unknown Hydrocarbons by GC, NMR, and Chemical Tests for Unsaturation and Aromaticity

Expt 8: Preparation of Lidocaine, Part 2, from α- Chloro-2,6-dimethylacetanilide and Diethylamine

University of Wisconsin Chemistry 116 Preparation and Characterization of Aspirin and Some Flavoring Esters *

Experiment 3: Preparation of Lidocaine

AP Chemistry Lab #5- Synthesis and Analysis of Alum (Big Idea 1 & 2)

Experiment 1: Preparation of Vanillyl Alcohol

The Fragrance of Rum, Isobutyl Propionate

6. Extraction. A. Background. (a) (b) (c) Figure 1. Mixing of Solvents

Experiment 3 Two-Step Synthesis of Ionones

19. Dehydration of 2- Methylcyclohexanol

Introductory Remarks:

6. Extraction. A. Background. (a) (b) (c) Figure 1. Mixing of Solvents

GRIGNARD REACTION Synthesis of Benzoic Acid

EXPERIMENT 6 Empirical Formula of a Compound

Experiment 1: The Borohydride Reduction of 9-Fluorenone to 9-Fluorenol

Gas Chromatography notes

EXPERIMENT 2 DEHYDRATION OF 1- & 2-BUTANOL & DEHYDROBROMINATION OF 1 & 2-BROMOBUTANE: ANALYSIS OF GASEOUS PRODUCTS BY GAS CHROMATOGRAPHY

METHOD 3665 SULFURIC ACID/PERMANGANATE CLEANUP

12AL Experiment 11 (3 days): Nucleophilic Substitution Reactions

Expt 6: Preparation of Lidocaine, Part 1

Friedel Crafts Reaction: Alkylation of Xylene, Kinetic and Thermodynamic Reactions Part I Kinetic Control

Lab #14: Qualitative Analysis of Cations and Anions

CHEMISTRY Organic Chemistry Laboratory II Spring 2019 Lab #2: Grignard Reaction: Preparation of Triphenylmethanol

Dr. Jonathan Gutow Fall Looking for PCBs in Water or Can PCBs Wash out of Landfills and Contaminate Ground Water?

Photosynthesis. Introduction: Objectives:

Experiment 6: Dehydration of 2-Methylcyclohexanol

EXPERIMENT: LIMITING REAGENT. NOTE: Students should have moles of reactants in DATASHEET converted into masses in grams prior to the lab period.

Experiment 5 Reactions of Hydrocarbons

2. Synthesis of Aspirin

Experiment 7 - Preparation of 1,4-diphenyl-1,3-butadiene

Exp t 83 Synthesis of Benzyl Acetate from Acetic Anhydride

Materials Per Class Per Bench. 50 ml beakers 6 1. Hole punch 6 1. Forceps 6 1. Timers or a clock with second hand 6 1

Exp t 125. Oxidation of Borneol to Camphor. Reduction. Camphor. Borneol. Isoborneol

Chemistry 283g Experiment 4

Nucleophilic Addition to Carbonyl: Grignard Reaction with a Ketone

ANALYTICAL CHEMISTRY. Basic Skills in Chemical Laboratory

CHEMISTRY Organic Chemistry Laboratory II Spring 2019 Lab #3: Friedel-Crafts Acylation

HYSICAL AND CHEMICAL PROPERTIES AND PHYSIC AND CHEMICAL CHANGES

Reaction of alkanes with bromine / chlorine in UV light. This is the overall reaction, but a more complex mixture of products is actually formed

OCR AS Chemistry A H032 for first assessment in Complete Tutor Notes. Section: Boomer Publications

Chapter 5. Chemical Extraction

Part II. Cu(OH)2(s) CuO(s)

Properties of Liquids

Experiment 6 Alcohols and Phenols

Synthesis of Benzoic Acid

LAB: Photosynthesis in Leaf Disks

4.15 Halogenation of Alkanes RH + X 2 RX + HX

Aspirin Lab By Maya Parks Partner: Ben Seufert 6/5/15, 6/8/15

SYNTHESIS OF 1-BROMOBUTANE Experimental procedure at macroscale (adapted from Williamson, Minard & Masters 1 )

Scheme 1. Outline in the acid-base extraction of Bengay, hydrolysis to salicylic acid, and esterification to synthesize aspirin.

Review Questions for the Chem 2315 Final Exam

Chemical Equilibrium and Le Chatlier s Principle

Thin Layer Chromatography

Experiment 3. Condensation Reactions of Ketones and Aldehydes: The Aldol Condensation Reaction.

12AL Experiment 9: Markovnikov s Rule

Scheme 2: Formation of Di- Halide via Chloronium Intermediate

To use calorimetry results to calculate the specific heat of an unknown metal. To determine heat of reaction ( H) from calorimetry measurements.

12BL Experiment 1: The Diels-Alder Reaction

ACID-CATALYZED DEHYDRATION OF 2-METHYLCYCLOHEXANOL. Douglas G. Balmer. (T.A. Mike Hall) Dr. Dailey

Core practical 6: Investigating chlorination of 2-methylpropan-2-ol

Chemistry 212 MOLAR MASS OF A VOLATILE LIQUID USING THE IDEAL GAS LAW

For more information about how to cite these materials visit

Acid Rain Drops Keep Falling on My Head Investigating Acid Rain

Chemistry Gas Chromatography: Separation of Volatile Organics

LAB #6 Chromatography Techniques

2/22/2019 NEW UNIT! Chemical Interactions. Atomic Basics #19

CHEMICAL SEPARATION EXPERIMENT 2

METHOD 3520B CONTINUOUS LIQUID-LIQUID EXTRACTION

5: SYNTHESIS OF TRIS(ETHYLENEDIAMINE)NICKEL(II) CHLORIDE

DATES: LAB: Liquid Chromatography Separation of Grape Kool-Aid

Transcription:

1 Experiment 8: Chlorination of 1-Chlorobutane Alkanes contain only nonpolar carbon-hydrogen and carbon-carbon single bonds, which makes them unreactive toward most acidic and basic reagents. They can, however, undergo free radical halogenation. The halogenation of alkanes is a chain reaction which, for chlorination, proceeds through the sequence of steps shown below: 1) 2 2 initiation step 2) + R H H + R propagation step 3) R + 2 R + propagation step 4) R + R termination step 5) R + R R R termination step Since chlorine radicals are used up in step 2 and regenerated in step 3, while alkyl radicals are used up in step 3 and regenerated in step 2, these two reactions form a closed cycle that carries out the net reaction: R H + 2 R + H Only when either [R H] or [ 2 ] becomes small (comparable to [ ]) do the rates of reactions 4 and 5 become fast enough to remove R and from the reaction and interrupt the chain. Thus, a single chlorine atom can convert many thousands of molecules of R H to R. Chlorine radicals may be produced either photochemically or thermally. The bond between the two atoms of the chlorine molecule (58 kcal/mol) can be cleaved homolytically by irradiation with ultraviolet light: hν 2 2 Thermal initiation uses compounds that contain bonds weak enough to undergo homolytic cleavage on heating (bond energies of about 35 kcal/mol or lower). In this experiment, we will use a mixture of 2,2'-azobis-(2-methylpropionitrile) and sulfuryl chloride ( SO 2 ) to produce chlorine radicals. On heating, each molecule of 2,2'- azobis-(2-methyl-propionitrile) forms two cyanopropyl radicals and a nitrogen molecule: ( ) 2 C(CN) N=N C( ) 2 CN 2 [( ) 2 C(CN)] + N 2 Reaction of cyanopropyl radicals with SO 2 2 generates chlorine atoms, completing the sequence of initiation steps: [( ) 2 C(CN)] + SO 2 2 ( ) 2 C(CN) + SO 2 SO 2 SO 2 +

2 The propagation steps are: + R H H + R R + SO 2 R + SO 2 + Note that hydrogen chloride and sulfur dioxide, two hazardous gases, are generated by these reactions. For this reason, you will use a gas trap to neutralize these compounds as they are produced. Formation of Product Mixtures Chlorination of alkanes generally results in the formation of isomeric chlorinated products, depending on which hydrogen is abstracted by in the first propagation step. The percent composition of the product mixture is determined by (a) the probability factor (the number of hydrogens which, on substitution by chlorine, lead to a given product) and (b) the inherent reactivity of each type of hydrogen. For example, let's examine the chlorination of 2-methylbutane. The first column of the table below shows the percent composition of the product mixture that would be expected if only the probability factor is taken into account. The second column displays the percent composition actually found by experimentation. Proportion expected by probability Proportion found by experiment CH 2 CH 2 hν CH 2 CH CH 2 6/12 = 50% 30% C CH 2 1/12 = 8% 22% CH CH 2/12 = 17% 33% CH CH 2 CH 2 3/12 = 25% 15%

3 early the relative reactivities of the hydrogens in this molecule are not equivalent. It is possible to calculate the relative reactivities of these hydrogens towards chlorination using the data in the table. Forty-five percent of the products actually obtained resulted from the chlorination of a primary carbon. Since there are 9 hydrogens attached to a primary carbon, each primary hydrogen is responsible for 5% (45%/9) of the product. Thirty-three percent of the products resulted from chlorination of a secondary carbon. There are two hydrogens attached to a secondary carbon; therefore, each secondary hydrogen is responsible for 16.5% (33%/2) of the product. One tertiary carbon with only one hydrogen attached to it is present in the molecule, and is responsible for 22% of the product. We will calculate the reactivities of the secondary and tertiary hydrogens relative to that of the primary hydrogens, which we will take to be 1. Thus, the secondary hydrogens are (16.5)/5 = 3.3 times as reactive toward chlorination as primary hydrogens, while the tertiary hydrogens are (22)/5 = 4.4 times as reactive. R 3 CH > R 2 CH 2 > R 4.4 3.3 1 In this experiment, you will study the chlorination of 1-chlorobutane. Four different dichlorinated products can be formed, their percentages being determined by the probability factor and the reactivity of each type of hydrogen, which in this case is a function of the influence of the chlorine atom as well as whether the hydrogen is primary or secondary. From the relative amounts of the four dichlorinated products, you will determine the relative reactivities of the different types of hydrogens. CH 2 CH 2 CH 2 SO 2 2 Initiator CH 2 CH 2 CH 2 CH 2 + CH CH 2 CH 2 1,4-dichlorobutane b.p. 162 1,3-dichlorobutane b.p. 134 + CH 2 CH CH 2 + CH 2 CH 2 CH 1,2-dichlorobutane b.p. 124 1,1-dichlorobutane b.p. 114

4 Outline the steps of the following procedure: Heat a water bath in a 150 ml beaker to 80 on a hot plate (use a temperature probe). Place a reaction tube in the oven to dry. Hazards: Sulfuryl chloride is corrosive and reacts violently with water. Use only in a fume hood and avoid contact. Wear gloves. Also, avoid contact of 2,2'-azobis-(2- methyl-propionitrile) with acetone or acetone vapors. Remove the reaction tube from the oven, and when it has cooled, add 1.0 ml of 1-chlorobutane to it (use the markings on the tube to measure this). Use a syringe attached to a Pasteur pipet to measure and dispense 0.32 ml of sulfuryl chloride to the reaction tube in a fume hood (see Figure page, Expt. 8 and p. 60 in LTOC). Begin with the plunger pushed all the way down, place the tip of the attached pipet in the liquid, then draw up the plunger to the 0.32 ml mark. Liquid will be drawn up into the tip of the pipet. Take care not to let the sulfuryl chloride come into contact with the syringe! Add 0.008 g of 2,2'-azobis-(2-methyl-propionitrile) to the reaction tube. Study the reaction apparatus set-up on the Figure page, Expt. 8 (bring it to lab with you). For the gas trap, use an 18 x 150 mm test tube to hold the damp cotton. To insert the Teflon tubing through the rubber septum, stretch the septum over the mouth of the reaction tube; then make a hole in the rubber with a toothpick and push the tubing through the hole. Do not let the other end of the Teflon tubing touch any water, because if there is a sudden drop in pressure in the reaction tube, water may be sucked back into the reaction tube. The damp cotton will absorb the hydrogen chloride and sulfur dioxide gases. amp the reaction tube with the reactants in the water bath so that just the bottom of the tube is immersed in the water (see Figure page, Expt. 8). Allow the reaction to reflux at 80 for 20 minutes. To reflux a mixture means to boil the liquid while condensing the vapors and returning them to the boiling solution (see pages 87-89, Section 7.1, in LTOC). In a reaction tube, the contents will boil gently and the vapors will condense on the cool upper walls of the reaction tube. Read pp 155-161, Section 10.6, in LTOC carefully for a discussion of the microscale technique used for liquid/liquid extraction. When the reflux period is completed, remove the tube from the bath and allow it to cool. Pour the reaction mixture into a centrifuge tube. Add 1.5 ml of diethyl ether to the reaction tube, then pour this ether into the centrifuge tube. Add 1.0 ml of water to the centrifuge tube and note which is the aqueous layer. Mix the layers by pulling some of the contents of the tube into a Pasteur pipet and expelling it back into the reaction tube with force. Repeat the mixing five or six times. After allowing the layers to separate, you will need to draw off and discard the lower, aqueous layer using a Pasteur pipet. Squeeze the bulb, then insert the pipet into the centrifuge tube until the tip rests on the bottom. Slowly release the bulb to draw up just the lower layer. This aqueous solution may be discarded in the sink. Repeat this procedure to wash the organic layer with 1.0 ml of 5% sodium bicarbonate solution. Finally, wash the organic layer with 1.0 ml of water. You may need to add a little more ether during the washings if it evaporates. Add calcium chloride pellets one at a time to the organic solution until the liquid is clear, not cloudy. Make a filter pipet by pushing a small plug of cotton into a Pasteur pipet with a wooden stick. Push the cotton all the way down such that it is packed tightly

5 into the constriction of the pipet (see Figure page, Expt. 8). Holding the filter pipet over a small clean, dry vial, transfer the liquid such that it passes through the cotton and into the vial. To speed up the filtration, it is permissible to place a pipet bulb on the filter pipet and gently squeeze the liquid through the cotton. Hold the vial in the hot water bath for 5 minutes to evaporate the ether. After the ether has evaporated, your TA will inject your product onto the gas chromatograph. Read pp 291-307, Chapter 20, in LTOC to learn about the technique of gas chromatography. The first couple peaks that appear are likely to be due to remaining diethyl ether and unreacted 1-chlorobutane and should be allowed to run off the paper. You may also see a peak for CH 2 2, which is used to clean the syringe. The product peaks will elute in the order of their boiling points, with the product of lowest boiling point appearing first. Measure the distance from the origin to the tip of each product peak on your GC trace so you can later calculate the retention times (see Fig. 20.10 on p. 299). Record the chart speed. The molar amounts of each compound present in the reaction mixture are proportional to the areas under the peaks in the chromatogram. To determine relative peak areas, measure the height of the peak and the width at half-height, and multiply the two numbers (see LTOC, Section 20.8, p. 305-306).

6 Name Date T. A. Lab period Results and Calculations (to be handed in at the next lab period) Attach the trace from the gas chromatograph for your sample. Report the retention time for each peak corresponding to a reaction product. Calculate the relative molar percent of each product molecule. Using your results, calculate the relative reactivities of each type of hydrogen (on C-1, C-2, C-3 and C-4) in 1-chlorobutane toward chlorination. Take the C-4 hydrogen reactivity to be 1.00. (Refer to the example in the introduction.)

Compare the relative hydrogen reactivities of 1-chlorobutane to the relative hydrogen reactivities of primary and secondary hydrogens in 2-methylbutane (see the introduction). What can you conclude regarding the effect of the chlorine atom? 7