Formation of Higher-dimensional Topological Black Holes

Similar documents
Formation of Higher-dimensional Topological Black Holes

Effect of Monopole Field on the Non-Spherical Gravitational Collapse of Radiating Dyon Solution.

Singularity formation in black hole interiors

A Brief Introduction to Mathematical Relativity

The cosmic censorship conjectures in classical general relativity

Cosmic Censorship Conjecture and Topological Censorship

An Overview of Mathematical General Relativity

arxiv:gr-qc/ v1 21 May 2006

Lecture Notes on General Relativity

Theory. V H Satheeshkumar. XXVII Texas Symposium, Dallas, TX December 8 13, 2013

An introduction to General Relativity and the positive mass theorem

arxiv:gr-qc/ v1 15 Apr 1997

The stability of Kerr-de Sitter black holes

Models of Non-Singular Gravitational Collapse

arxiv:gr-qc/ v4 23 Feb 1999

1 The role of gravity The view of physics that is most generally accepted at the moment is that one can divide the discussion of the universe into

Self trapped gravitational waves (geons) with anti-de Sitter asymptotics

The Motion of A Test Particle in the Gravitational Field of A Collapsing Shell

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor.

arxiv: v2 [gr-qc] 6 Dec 2014

arxiv:gr-qc/ v1 31 Jul 2006

Particle and photon orbits in McVittie spacetimes. Brien Nolan Dublin City University Britgrav 2015, Birmingham

Konstantin E. Osetrin. Tomsk State Pedagogical University

Mathematical Relativity, Spring 2017/18 Instituto Superior Técnico

Five dimensional dust collapse with cosmological constant

Interpreting A and B-metrics with Λ as gravitational field of a tachyon in (anti-)de Sitter universe

Electromagnetic spikes

arxiv: v2 [gr-qc] 27 Apr 2013

General Relativistic Static Fluid Solutions with Cosmological Constant

Hyperbolic Geometric Flow

Are naked singularities forbidden by the second law of thermodynamics?

Gravitational Collapse

Black Hole Physics. Basic Concepts and New Developments KLUWER ACADEMIC PUBLISHERS. Valeri P. Frolov. Igor D. Nbvikov. and

Cosmology on Simplicial Complexes

Stability and Instability of Black Holes

arxiv:gr-qc/ v1 7 Sep 1998

Optimal time travel in the Gödel universe

Naked strong curvature singularities in Szekeres space-times

In the expanding Universe, a comoving volume element expands along with the cosmological flow, getting physically larger over time.

arxiv:gr-qc/ v1 20 May 2003

An Introduction to General Relativity and Cosmology

The AdS/CFT correspondence and topological censorship

THE DARK SIDE OF THE COSMOLOGICAL CONSTANT

2 Carter Penrose diagrams

OLIVIA MILOJ March 27, 2006 ON THE PENROSE INEQUALITY

What happens at the horizon of an extreme black hole?

Geometric inequalities for black holes

arxiv:gr-qc/ v2 14 Apr 2004

UNIQUENESS OF STATIC BLACK-HOLES WITHOUT ANALYTICITY. Piotr T. Chruściel & Gregory J. Galloway

Asymptotic Quasinormal Frequencies for d Dimensional Black Holes

arxiv:gr-qc/ v2 21 Jun 1994

The Uses of Ricci Flow. Matthew Headrick Stanford University

Non-linear stability of Kerr de Sitter black holes

arxiv:gr-qc/ v1 26 Aug 1997

Out of equilibrium dynamics and Robinson-Trautman spacetimes. Kostas Skenderis

Dynamic Dilatonic Domain Walls

A practical look at Regge calculus

Late-time tails of self-gravitating waves

Causal nature and dynamics of trapping horizon in black hole collapse

arxiv:gr-qc/ v1 23 Sep 1996

The BKL proposal and cosmic censorship

TWO-DIMENSIONAL BLACK HOLES AND PLANAR GENERAL RELATIVITY

A Holographic Description of Black Hole Singularities. Gary Horowitz UC Santa Barbara

arxiv: v1 [gr-qc] 4 Aug 2008

Self-dual conformal gravity

Level sets of the lapse function in static GR

Relativity SPECIAL, GENERAL, AND COSMOLOGICAL SECOND EDITION. Wolfgang Rindler. Professor of Physics The University of Texas at Dallas

How to recognise a conformally Einstein metric?

Emergent Universe by Tunneling. Pedro Labraña, ICC, Universidad de Barcelona and Facultad de Ciencias, Universidad del Bío-Bío, Chile.

On the occasion of the first author s seventieth birthday

A A + B. ra + A + 1. We now want to solve the Einstein equations in the following cases:

1. Introduction A few years ago, Ba~nados, Teitelboim and Zanelli (BTZ) showed that three-dimensional General Relativity with a negative cosmological

Anisotropic Interior Solutions in Hořava Gravity and Einstein-Æther Theory

Atlantic General Relativity 2014

arxiv:gr-qc/ v2 1 Oct 1998

Hyperbolic Geometric Flow

arxiv:gr-qc/ v1 10 Nov 1997

Non-existence of time-periodic dynamics in general relativity

Index. Cambridge University Press A First Course in General Relativity: Second Edition Bernard F. Schutz. Index.

/95 $ $.25 per page

On the topology of black holes and beyond

MAKING ANTI-DE SITTER BLACK HOLES arxiv:gr-qc/ v1 2 Apr 1996

Compact Stars in the Braneworld

Nature of Singularities in (n+2)-dimensional Gravitational Collapse of Vaidya Space-time in presence of monopole field.

Causality, hyperbolicity, and shock formation in Lovelock theories

arxiv:gr-qc/ v4 4 Oct 2004

Bibliography. Introduction to General Relativity and Cosmology Downloaded from

Quasi-local mass and isometric embedding

Neutron Stars in the Braneworld

RELG - General Relativity

Hawking radiation and universal horizons

Quantum gravity and aspects of relativity

Quasi-local Mass in General Relativity

Lecture 1 General relativity and cosmology. Kerson Huang MIT & IAS, NTU

Generating Einstein-scalar solutions

TRANSITION FROM BIG CRUNCH TO BIG BANG IN BRANE COSMOLOGY

arxiv:gr-qc/ v1 15 Nov 2000

Exotica or the failure of the strong cosmic censorship in four dimensions

Einstein Maxwell Dilaton metrics from three dimensional Einstein Weyl structures.

Global stability problems in General Relativity

Transcription:

Formation of Higher-dimensional Topological Black Holes José Natário (based on arxiv:0906.3216 with Filipe Mena and Paul Tod) CAMGSD, Department of Mathematics Instituto Superior Técnico Talk at Granada, 2010 José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 1 / 23

Outline 1 Introduction Topological black holes Einstein manifolds Einstein equations 2 Collapse to higher dimensional topological black holes Generalized Kottler solutions Generalized Friedman-Lemaître-Robertson-Walker solutions Matching Global properties 3 Collapse with gravitational wave emission Exterior: Bizoń-Chmaj-Schmidt metric Interiors Matching José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 2 / 23

Outline 1 Introduction Topological black holes Einstein manifolds Einstein equations 2 Collapse to higher dimensional topological black holes Generalized Kottler solutions Generalized Friedman-Lemaître-Robertson-Walker solutions Matching Global properties 3 Collapse with gravitational wave emission Exterior: Bizoń-Chmaj-Schmidt metric Interiors Matching José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 2 / 23

Outline 1 Introduction Topological black holes Einstein manifolds Einstein equations 2 Collapse to higher dimensional topological black holes Generalized Kottler solutions Generalized Friedman-Lemaître-Robertson-Walker solutions Matching Global properties 3 Collapse with gravitational wave emission Exterior: Bizoń-Chmaj-Schmidt metric Interiors Matching José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 2 / 23

Outline Introduction 1 Introduction Topological black holes Einstein manifolds Einstein equations 2 Collapse to higher dimensional topological black holes Generalized Kottler solutions Generalized Friedman-Lemaître-Robertson-Walker solutions Matching Global properties 3 Collapse with gravitational wave emission Exterior: Bizoń-Chmaj-Schmidt metric Interiors Matching José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 3 / 23

Introduction Topological black holes Topological black holes 4-dimensional topological black holes have been considered in the literature. In these one replaces the spherically symmetric Kottler solution (i.e. Schwarzschild de Sitter or Schwarzschild anti de Sitter) by its planar or hyperbolic counterparts. Modding out by discrete subgroup of R 2 or SL(2, R) yields black holes with toroidal or higher genus horizons. José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 4 / 23

Introduction Topological black holes Topological black holes 4-dimensional topological black holes have been considered in the literature. In these one replaces the spherically symmetric Kottler solution (i.e. Schwarzschild de Sitter or Schwarzschild anti de Sitter) by its planar or hyperbolic counterparts. Modding out by discrete subgroup of R 2 or SL(2, R) yields black holes with toroidal or higher genus horizons. José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 4 / 23

Introduction Topological black holes Topological black holes 4-dimensional topological black holes have been considered in the literature. In these one replaces the spherically symmetric Kottler solution (i.e. Schwarzschild de Sitter or Schwarzschild anti de Sitter) by its planar or hyperbolic counterparts. Modding out by discrete subgroup of R 2 or SL(2, R) yields black holes with toroidal or higher genus horizons. José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 4 / 23

Introduction Topological black holes Topological black holes Caveat 1: needs negative cosmological constant to work. Caveat 2: I has the same topology (times R). Formation of these black holes was studied in [Mena, Natário and Tod]. Many spherical collapses (e.g. Oppenheimer-Snyder) generalize to this setting. José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 5 / 23

Introduction Topological black holes Topological black holes Caveat 1: needs negative cosmological constant to work. Caveat 2: I has the same topology (times R). Formation of these black holes was studied in [Mena, Natário and Tod]. Many spherical collapses (e.g. Oppenheimer-Snyder) generalize to this setting. José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 5 / 23

Introduction Topological black holes Topological black holes Caveat 1: needs negative cosmological constant to work. Caveat 2: I has the same topology (times R). Formation of these black holes was studied in [Mena, Natário and Tod]. Many spherical collapses (e.g. Oppenheimer-Snyder) generalize to this setting. José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 5 / 23

Introduction Einstein manifolds Einstein manifolds (N, dσ 2 ) is a n-dimensional Einstein manifold with Ricci = λ dσ 2. Examples: S n, T n, H n, CP n 2, Taub-NUT, Eguchi-Hanson, Calabi-Yau. Can be used to construct (n + 1)-dimensional Einstein metrics with Ricci = k dσ 2. dσ 2 = dρ 2 + (f (ρ)) 2 dσ 2 If k > 0 then k = ν 2 n, λ = ν 2 (n 1), f = sin(νρ) for some ν > 0. If k = 0 then λ = n 1, f = ρ or λ = 0, f = 1. If k < 0 then k = ν 2 n, λ = ν 2 (n 1), f = sinh(νρ) or k = ν 2 n, λ = 0, f = e ±νρ or k = ν 2 n, λ = ν 2 (n 1), f = cosh(νρ) for some ν > 0. José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 6 / 23

Introduction Einstein manifolds Einstein manifolds (N, dσ 2 ) is a n-dimensional Einstein manifold with Ricci = λ dσ 2. Examples: S n, T n, H n, CP n 2, Taub-NUT, Eguchi-Hanson, Calabi-Yau. Can be used to construct (n + 1)-dimensional Einstein metrics with Ricci = k dσ 2. dσ 2 = dρ 2 + (f (ρ)) 2 dσ 2 If k > 0 then k = ν 2 n, λ = ν 2 (n 1), f = sin(νρ) for some ν > 0. If k = 0 then λ = n 1, f = ρ or λ = 0, f = 1. If k < 0 then k = ν 2 n, λ = ν 2 (n 1), f = sinh(νρ) or k = ν 2 n, λ = 0, f = e ±νρ or k = ν 2 n, λ = ν 2 (n 1), f = cosh(νρ) for some ν > 0. José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 6 / 23

Introduction Einstein manifolds Einstein manifolds (N, dσ 2 ) is a n-dimensional Einstein manifold with Ricci = λ dσ 2. Examples: S n, T n, H n, CP n 2, Taub-NUT, Eguchi-Hanson, Calabi-Yau. Can be used to construct (n + 1)-dimensional Einstein metrics with Ricci = k dσ 2. dσ 2 = dρ 2 + (f (ρ)) 2 dσ 2 If k > 0 then k = ν 2 n, λ = ν 2 (n 1), f = sin(νρ) for some ν > 0. If k = 0 then λ = n 1, f = ρ or λ = 0, f = 1. If k < 0 then k = ν 2 n, λ = ν 2 (n 1), f = sinh(νρ) or k = ν 2 n, λ = 0, f = e ±νρ or k = ν 2 n, λ = ν 2 (n 1), f = cosh(νρ) for some ν > 0. José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 6 / 23

Introduction Einstein manifolds Einstein manifolds (N, dσ 2 ) is a n-dimensional Einstein manifold with Ricci = λ dσ 2. Examples: S n, T n, H n, CP n 2, Taub-NUT, Eguchi-Hanson, Calabi-Yau. Can be used to construct (n + 1)-dimensional Einstein metrics with Ricci = k dσ 2. dσ 2 = dρ 2 + (f (ρ)) 2 dσ 2 If k > 0 then k = ν 2 n, λ = ν 2 (n 1), f = sin(νρ) for some ν > 0. If k = 0 then λ = n 1, f = ρ or λ = 0, f = 1. If k < 0 then k = ν 2 n, λ = ν 2 (n 1), f = sinh(νρ) or k = ν 2 n, λ = 0, f = e ±νρ or k = ν 2 n, λ = ν 2 (n 1), f = cosh(νρ) for some ν > 0. José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 6 / 23

Einstein manifolds Introduction Einstein manifolds dσ 2 typically has a singularity at ρ = 0: the Kretschmann scalar K is related to the square C 2 of the Weyl tensor of dσ 2 by K = C 2 f 4 + const. This can be avoided for k < 0 with f = e ±νρ, when the metric has an internal infinity (cusp), or f = cosh(νρ), when the metric has a minimal surface and a second asymptotic region (wormhole). José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 7 / 23

Einstein manifolds Introduction Einstein manifolds dσ 2 typically has a singularity at ρ = 0: the Kretschmann scalar K is related to the square C 2 of the Weyl tensor of dσ 2 by K = C 2 f 4 + const. This can be avoided for k < 0 with f = e ±νρ, when the metric has an internal infinity (cusp), or f = cosh(νρ), when the metric has a minimal surface and a second asymptotic region (wormhole). José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 7 / 23

Einstein equations Introduction Einstein equations We consider the (n + 2)-dimensional Einstein equations R ab = Λg ab + κ(t ab 1 n Tg ab), or R ab 1 2 Rg ab + nλ 2 g ab = κt ab. José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 8 / 23

Outline Collapse to higher dimensional topological black holes 1 Introduction Topological black holes Einstein manifolds Einstein equations 2 Collapse to higher dimensional topological black holes Generalized Kottler solutions Generalized Friedman-Lemaître-Robertson-Walker solutions Matching Global properties 3 Collapse with gravitational wave emission Exterior: Bizoń-Chmaj-Schmidt metric Interiors Matching José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 9 / 23

Collapse to higher dimensional topological black holes Generalized Kottler solutions Generalized Kottler solutions The generalized Kottler solutions are vacuum (T ab = 0) solutions given by ds 2 = V (r)dt 2 + (V (r)) 1 dr 2 + r 2 dσ 2, where V (r) = λ n 1 2m Λr 2 r n 1 n + 1. José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 10 / 23

Collapse to higher dimensional topological black holes Generalized Friedman-Lemaître-Robertson-Walker solutions Generalized Friedman-Lemaître-Robertson-Walker solutions The Generalized Friedman-Lemaître-Robertson-Walker solutions are dust (T ab = µ u a u b ) solutions given by ds 2 = dτ 2 + R 2 (τ) dσ 2, where dσ 2 is any (n + 1)-dimensional Riemannian Einstein metric with Ricci = k dσ 2 and R(τ), µ(τ) satisfy the conservation equation µr n+1 = µ 0 and the generalized Friedman equation Ṙ 2 R 2 + k nr 2 = 2κµ n(n + 1) + Λ n + 1. José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 11 / 23

Collapse to higher dimensional topological black holes Matching Matching Can match generalized Kottler to generalized FLRW at ρ = ρ 0 provided that f (ρ 0 ) > 0 and m = κµ 0(f (ρ 0 )) n+1. n(n + 1) Similar results for generalized Lemaître-Tolman-Bondi. José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 12 / 23

Collapse to higher dimensional topological black holes Matching Matching Can match generalized Kottler to generalized FLRW at ρ = ρ 0 provided that f (ρ 0 ) > 0 and m = κµ 0(f (ρ 0 )) n+1. n(n + 1) Similar results for generalized Lemaître-Tolman-Bondi. José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 12 / 23

Collapse to higher dimensional topological black holes Global properties Global properties If Λ = 0 (hence λ > 0) and (N, dσ 2 ) is not an n-sphere then the locally naked singularity is always visible from I + for k 0, but can be hidden if k > 0 and n 4 (cf. [Ghosh and Beesham]). José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 13 / 23

Collapse to higher dimensional topological black holes Global properties Global properties If Λ > 0 (hence λ > 0) and (N, dσ 2 ) is not an n-sphere then the locally naked singularity can be always be hidden except if the FLRW universe is recollapsing (hence k > 0) and n < 4. José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 14 / 23

Collapse to higher dimensional topological black holes Global properties Global properties For Λ < 0 we have: If λ > 0 and (N, dσ 2 ) is not an n-sphere then the locally naked singularity can always be hidden. If λ = 0 then the cusp singularity is not locally naked. If λ < 0 then no causal curve can cross the wormhole from one I to the other (cf. [Galloway]). José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 15 / 23

Collapse to higher dimensional topological black holes Global properties Global properties Global properties are much more diverse in the generalized Lemaître-Tolman-Bondi case. For instance, one can easily find examples of black hole formation with wormholes inside the matter with positive λ and Λ = 0 (previously seen in 4 dimensions [Hellaby]). José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 16 / 23

Outline Collapse with gravitational wave emission 1 Introduction Topological black holes Einstein manifolds Einstein equations 2 Collapse to higher dimensional topological black holes Generalized Kottler solutions Generalized Friedman-Lemaître-Robertson-Walker solutions Matching Global properties 3 Collapse with gravitational wave emission Exterior: Bizoń-Chmaj-Schmidt metric Interiors Matching José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 17 / 23

Collapse with gravitational wave emission Exterior: Bizoń-Chmaj-Schmidt metric Exterior: Bizoń-Chmaj-Schmidt metric The Bizoń-Chmaj-Schmidt metric is a vacuum (T ab = 0) solution of the Einstein equations with Λ = 0 given by ds 2+ = Ae 2δ dt 2 + A 1 dr 2 + r 2 4 e2b (σ 2 1 + σ 2 2) + r 2 4 e 4B σ 2 3, where σ i are the standard left-invariant 1-forms on S 3 and A, δ and B are functions of t and r satisfying r A = 2A r + 1 3r (8e 2B 2e 8B ) 2r(e 2δ A 1 ( t B) 2 + A( r B) 2 ); t A = 4rA( t B)( r B); r δ = 2r(e 2δ A 2 ( t B) 2 + ( r B) 2 ); t (e δ A 1 r 3 ( t B)) r (e δ Ar 3 ( r B)) + 4 3 e δ r(e 2B e 8B ) = 0. José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 18 / 23

Collapse with gravitational wave emission Interiors Interiors Eguchi-Hanson (S 3 /Z 2 ): dσ 2 = ) 1 (1 a4 ρ 4 dρ 2 + ρ2 4 (σ2 1 + σ2) 2 + ρ2 4 k-eguchi-hanson (S 3 /Z p ): where k < 0, p 3, = 1 a4 k-taub-nut: dσ 2 = 1 dρ 2 + ρ2 4 (σ2 1 + σ 2 2) + ρ2 4 σ2 3, ρ 4 k 6 ρ2 and a 4 = 4 3k 2 (p 2)2 (p + 1). ) (1 a4 ρ 4 σ3. 2 dσ 2 = 1 4 Σ 1 dρ 2 + 1 4 (ρ2 L 2 )(σ 2 1 + σ 2 2) + L 2 Σσ 2 3, where Σ = (ρ L)(1 12 k (ρ L)(ρ+3L)). ρ+l José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 19 / 23

Collapse with gravitational wave emission Interiors Interiors Eguchi-Hanson (S 3 /Z 2 ): dσ 2 = ) 1 (1 a4 ρ 4 dρ 2 + ρ2 4 (σ2 1 + σ2) 2 + ρ2 4 k-eguchi-hanson (S 3 /Z p ): where k < 0, p 3, = 1 a4 k-taub-nut: dσ 2 = 1 dρ 2 + ρ2 4 (σ2 1 + σ 2 2) + ρ2 4 σ2 3, ρ 4 k 6 ρ2 and a 4 = 4 3k 2 (p 2)2 (p + 1). ) (1 a4 ρ 4 σ3. 2 dσ 2 = 1 4 Σ 1 dρ 2 + 1 4 (ρ2 L 2 )(σ 2 1 + σ 2 2) + L 2 Σσ 2 3, where Σ = (ρ L)(1 12 k (ρ L)(ρ+3L)). ρ+l José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 19 / 23

Collapse with gravitational wave emission Interiors Interiors Eguchi-Hanson (S 3 /Z 2 ): dσ 2 = ) 1 (1 a4 ρ 4 dρ 2 + ρ2 4 (σ2 1 + σ2) 2 + ρ2 4 k-eguchi-hanson (S 3 /Z p ): where k < 0, p 3, = 1 a4 k-taub-nut: dσ 2 = 1 dρ 2 + ρ2 4 (σ2 1 + σ 2 2) + ρ2 4 σ2 3, ρ 4 k 6 ρ2 and a 4 = 4 3k 2 (p 2)2 (p + 1). ) (1 a4 ρ 4 σ3. 2 dσ 2 = 1 4 Σ 1 dρ 2 + 1 4 (ρ2 L 2 )(σ 2 1 + σ 2 2) + L 2 Σσ 2 3, where Σ = (ρ L)(1 12 k (ρ L)(ρ+3L)). ρ+l José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 19 / 23

Matching Collapse with gravitational wave emission Matching In each case, the interior metric gives consistent data for the Bizoń-Chmaj-Schmidt metric at a comoving timelike hypersurface. Local existence of the radiating exterior in the neighbourhood of the matching surface is then guaranteed. In the case of Eguchi-Hanson (asymptotically locally Euclidean) and k-taub-nut with k < 0 (includes hyperbolic space), the data can be chosen to be close to the data for the Schwarzschild solution. Since this solution is known to be stable [Dafermos and Holzegel], it is reasonable to expect that the exterior will settle down to the Schwarzschild solution. José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 20 / 23

Bibliography Appendix Filipe Mena, JN and Paul Tod, Gravitational Collapse to Toroidal and Higher Genus asymptotically AdS Black Holes, Advances in Theoretical and Mathematical Physics 12 (2008) 1163-1181, arxiv:0707.2519 [gr-qc]. Filipe Mena, JN and Paul Tod, Formation of Higher-dimensional Topological Black Holes, Annales Henri Poincaré 10 (2010) 1359-1376, arxiv:0906.3216 [gr-qc]. José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 21 / 23

Bibliography Appendix Filipe Mena, JN and Paul Tod, Gravitational Collapse to Toroidal and Higher Genus asymptotically AdS Black Holes, Advances in Theoretical and Mathematical Physics 12 (2008) 1163-1181, arxiv:0707.2519 [gr-qc]. Filipe Mena, JN and Paul Tod, Formation of Higher-dimensional Topological Black Holes, Annales Henri Poincaré 10 (2010) 1359-1376, arxiv:0906.3216 [gr-qc]. José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 21 / 23

Bibliography Appendix S. Ghosh and A. Beesham, Higher-dimensional Inhomogeneous Dust Collapse and Cosmic Censorship, Physical Review D 64 (2001) 124005, arxiv:gr-qc/0108011. G. Galloway, A Finite Infinity Version of Topological Censorship, Classical and Quantum Gravity 13 (1996) 1471-1478. C. Hellaby A Kruskal-like model with finite density, Classical and Quantum Gravity 4 (1987) 635-650. José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 22 / 23

Bibliography Appendix S. Ghosh and A. Beesham, Higher-dimensional Inhomogeneous Dust Collapse and Cosmic Censorship, Physical Review D 64 (2001) 124005, arxiv:gr-qc/0108011. G. Galloway, A Finite Infinity Version of Topological Censorship, Classical and Quantum Gravity 13 (1996) 1471-1478. C. Hellaby A Kruskal-like model with finite density, Classical and Quantum Gravity 4 (1987) 635-650. José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 22 / 23

Bibliography Appendix S. Ghosh and A. Beesham, Higher-dimensional Inhomogeneous Dust Collapse and Cosmic Censorship, Physical Review D 64 (2001) 124005, arxiv:gr-qc/0108011. G. Galloway, A Finite Infinity Version of Topological Censorship, Classical and Quantum Gravity 13 (1996) 1471-1478. C. Hellaby A Kruskal-like model with finite density, Classical and Quantum Gravity 4 (1987) 635-650. José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 22 / 23

Bibliography Appendix P. Bizoń, T. Chmaj and B. Schmidt, Critical Behaviour in Vacuum Gravitational Collapse in 4 + 1 dimensions, Physical Review Letters 95 (2005) 071102, arxiv:gr-qc/0506074. H. Pederson, Eguchi-Hanson Metrics With a Cosmological Constant, Classical and Quantum Gravity 2 (1985) 579-587. M. Dafermos and G. Holzegel, On the Nonlinear Stability of Higher Dimensional Triaxial Bianchi-IX Black Holes, Advances in Theoretical and Mathematical Physics 10 (2006) 503-523, arxiv:gr-qc/0510051. José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 23 / 23

Bibliography Appendix P. Bizoń, T. Chmaj and B. Schmidt, Critical Behaviour in Vacuum Gravitational Collapse in 4 + 1 dimensions, Physical Review Letters 95 (2005) 071102, arxiv:gr-qc/0506074. H. Pederson, Eguchi-Hanson Metrics With a Cosmological Constant, Classical and Quantum Gravity 2 (1985) 579-587. M. Dafermos and G. Holzegel, On the Nonlinear Stability of Higher Dimensional Triaxial Bianchi-IX Black Holes, Advances in Theoretical and Mathematical Physics 10 (2006) 503-523, arxiv:gr-qc/0510051. José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 23 / 23

Bibliography Appendix P. Bizoń, T. Chmaj and B. Schmidt, Critical Behaviour in Vacuum Gravitational Collapse in 4 + 1 dimensions, Physical Review Letters 95 (2005) 071102, arxiv:gr-qc/0506074. H. Pederson, Eguchi-Hanson Metrics With a Cosmological Constant, Classical and Quantum Gravity 2 (1985) 579-587. M. Dafermos and G. Holzegel, On the Nonlinear Stability of Higher Dimensional Triaxial Bianchi-IX Black Holes, Advances in Theoretical and Mathematical Physics 10 (2006) 503-523, arxiv:gr-qc/0510051. José Natário (IST, Lisbon) Higher-dimensional Topological Black Holes IST 2009 23 / 23