introduction: what is spin-electronics?

Similar documents
Advanced Lab Course. Tunneling Magneto Resistance

MAGNETORESISTANCE PHENOMENA IN MAGNETIC MATERIALS AND DEVICES. J. M. De Teresa

Giant Magnetoresistance

Ferromagnetism and Electronic Transport. Ordinary magnetoresistance (OMR)

Mesoscopic Spintronics

Systèmes Hybrides. Norman Birge Michigan State University

Italian School of Magnetism

Mon., Feb. 04 & Wed., Feb. 06, A few more instructive slides related to GMR and GMR sensors

Some pictures are taken from the UvA-VU Master Course: Advanced Solid State Physics by Anne de Visser (University of Amsterdam), Solid State Course

Giant Magnetoresistance

TEMPERATURE DEPENDENCE OF TUNNEL MAGNETORESISTANCE OF IrMn BASED MTJ

Nanoelectronics 12. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France

arxiv:cond-mat/ v1 7 Aug 1996

Wouldn t it be great if

MSE 7025 Magnetic Materials (and Spintronics)

Giant Magnetoresistance

The exchange interaction between FM and AFM materials

spin-dependent scattering of electrons in ferromagnetic layers antiferromagnetic interlayer exchange coupling

Introduction to Spintronics and Spin Caloritronics. Tamara Nunner Freie Universität Berlin

Colossal magnetoresistance:

GMR Read head. Eric Fullerton ECE, CMRR. Introduction to recording Basic GMR sensor Next generation heads TMR, CPP-GMR UCT) Challenges ATE

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2

Magnetically Engineered Spintronic Sensors and Memory

Giant Magnetoresistance

Low Energy Spin Transfer Torque RAM (STT-RAM / SPRAM) Zach Foresta April 23, 2009

Physics and applications (I)

Magnetoresistance sensors with magnetic layers for high sensitivity measurements

TRANSVERSE SPIN TRANSPORT IN GRAPHENE

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid

During such a time interval, the MOS is said to be in "deep depletion" and the only charge present in the semiconductor is the depletion charge.

Perpendicular MTJ stack development for STT MRAM on Endura PVD platform

single-electron electron tunneling (SET)

Ferromagnetism and Electronic Transport. Ordinary magnetoresistance (OMR)

Chapter 2. Theoretical background. 2.1 Itinerant ferromagnets and antiferromagnets

Giant Magnetoresistance

Recent developments in spintronic

Computational materials design and its application to spintronics

Observation of magnetization alignment switching in Fe3Si/FeSi2 artificial lattices by polarized neutron reflection

Ferromagnetism and antiferromagnetism ferromagnetism (FM) antiferromagnetism (AFM) ferromagnetic domains nanomagnetic particles

3.45 Paper, Tunneling Magnetoresistance

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction

Giant Magnetoresistance and I V Asymmetries in Nickel Magnetic Point Contacts

CURRENT-INDUCED MAGNETIC DYNAMICS IN NANOSYSTEMS

P. Khatua IIT Kanpur. D. Temple MCNC, Electronic Technologies. A. K. Majumdar, S. N. Bose National Centre for Basic Sciences, Kolkata

From spinwaves to Giant Magnetoresistance (GMR) and beyond

Enhanced spin orbit torques by oxygen incorporation in tungsten films

MRAM: Device Basics and Emerging Technologies

NOVEL GIANT MAGNETORESISTANCE MODEL USING MULTIPLE BARRIER POTENTIAL

From Hall Effect to TMR

Center for Spintronic Materials, Interfaces, and Novel Architectures. Voltage Controlled Antiferromagnetics and Future Spin Memory

A Review of Spintronics based Data Storage. M.Tech Student Professor

Influence of exchange bias on magnetic losses in CoFeB/MgO/CoFeB tunnel junctions

Introduction to magnetic recording + recording materials

Low Energy SPRAM. Figure 1 Spin valve GMR device hysteresis curve showing states of parallel (P)/anti-parallel (AP) poles,

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination

Magnetic Sensor (3B) Magnetism Hall Effect AMR Effect GMR Effect. Young Won Lim 9/23/09

S. Mangin 1, Y. Henry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5

Novel Magnetoelectronic Materials and Devices

High T C copper oxide superconductors and CMR:

Ab-initio methods for spin-transport at the nanoscale level

Lecture 6 NEW TYPES OF MEMORY

MAGNETIC FORCE MICROSCOPY

Fabrication and Measurement of Spin Devices. Purdue Birck Presentation

An Overview of Spintronics in 2D Materials

Optical studies of current-induced magnetization

Positive spin polarization in Co/Al 2 O 3 /Co tunnel junctions driven by oxygen adsorption

Ni 8 Cu n Ni 9. Lectue 4 Trilayers a prototype of multilayers. for FM1 and FM2 interlayer exchange coupling IEC, J inter

SPIN TRANSFER TORQUES IN HIGH ANISOTROPY MAGNETIC NANOSTRUCTURES

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

Electron spin transport in Magnetic Multilayers and Carbon Materials. Kurt Stokbro CEO, Founder QuantumWise A/S (Copenhagen, Denmark)

Magnetism (FM, AFM, FSM)

La 0.7 Sr 0.3 MnO 3 - based Spintronics

Advanced Topics In Solid State Devices EE290B. Will a New Milli-Volt Switch Replace the Transistor for Digital Applications?

GIANT MAGNETORESISTANCE IN MAGNETIC NANOSTRUCTURES

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg

A Comparative Study on the Differences in the Evolutions of Thin Film Morphologies of Co-Al Binary System: Molecular Dynamics Study

Spin caloritronics in magnetic/non-magnetic nanostructures and graphene field effect devices Dejene, Fasil

Spin injection. concept and technology

SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES

Spin-dependent tunneling in magnetic tunnel junctions

Spin Torque and Magnetic Tunnel Junctions

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor

Overview Of Spintronics

Magneto-Seebeck effect in spin-valve with in-plane thermal gradient

Materials Research for Advanced Data Storage

Solid Surfaces, Interfaces and Thin Films

arxiv:cond-mat/ v1 4 Oct 2002

METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT

Spintronics at Nanoscale

Spin injection and absorption in antiferromagnets

Current-induced Domain Wall Dynamics

Spintronics. Seminar report SUBMITTED TO: SUBMITTED BY:

The contribution of hot-electron spin polarization to the spin-dependent magnetotransport in a spin-valve transistor at finite temperatures

arxiv: v1 [cond-mat.mtrl-sci] 28 Jul 2008

Models in spintronics (Part I)

Synthesis and Spin-Transport Properties of Co/Cu Multilayer Nanowires

Spin Valve Transistors Radha Krishnan Dept. of Electrical and Electronics, National Institute of Technology- Puducherry

Introduction to Molecular Electronics. Lecture 1: Basic concepts

Quantum Transport Simula0on: A few case studies where it is necessary

Transcription:

Spin-dependent transport in layered magnetic metals Patrick Bruno Max-Planck-Institut für Mikrostrukturphysik, Halle, Germany Summary: introduction: what is spin-electronics giant magnetoresistance (GMR) tunneling magnetoresistance (TMR) hot-electron spin-transistor magnetization switching due to spin-injection ab initio calculations of perpendicular current GMR domain wall magnetoresistance theory of TMR introduction: what is spin-electronics?

what is an electron? particle with negative electric charge q=-e and spin 1/2 (magnetic moment m=µ B ) - - - - - - - + = - - - - - - - electron as seen by an electronician: - - - - - - - electronics = manipulation of electrons by using their charge for storage and processing of information the spin is (almost) completely neglected

principal electronic device: MOSFET source metallic gate oxide drain (SiO 2 ) application: logic gates random access memory inconvenients: volatility of the information energy consumption limited density of information semi-conductor (Si) + - metallic gate conducting channel (2D electron gas) transistor blocked electron as seen by a magnetician: - - - - - - - purpose of magnetism: develop materials in which the electron spins tend to align parallel to each (magnets) the charge of the electrons plays a secondary role

application: mass storage of information (magnetic disks and tapes) advantages: non-volatility high storage density no energy consumption inconvenients: mechanical access to information Purpose of spin-electronics: ``Teaching electrons new tricks combine electronics and magnetism in order to make new devices in which both the charge and the spin oftheelectronplayanactiverole new fundamental physical questions new phenomena new devices and applications

giant-magnetoresistance Giant magneto-resistance (GMR) Baibich et al., PRL 61, 2472 (1988) Binasch et al., PRB 39, 4828 (1989) ferromagnetic metal (Fe, Co,...) current in-plane (CIP) non-magnetic metal (Cu, Ru,...) current perpendicular to the plane (CPP)

definition conventions for the magnetoresistance ratio R RAP R A = P RP ``optimistic definition RAP R A = P RAP ``pessimistic definition H R A = AP RAP RP + RP reasonable definition interlayer exchange coupling Ni 80 Co 20 /Ru/Ni 80 Co 20 Parkin and Mauri, PRB 44, 7131 (1991)

Co / Ru / Co Parkin et al., PRL 64, 2304 (1990) GMR without interlayer exchange coupling Co / Au / Co / Au(111) T =80K T =130K Barnas et al., Vacuum 41, 1241 (1990)

Exchange biasing to an antiferromagnet FM NM FM AF interfacial exchange interaction FeNi Cu FeNi FeMn Diény et al., PRB 43, 1297 (1991)

Biasing by artificial antiferromagnet free FM layer pinned FM layer weak coupling artificial AF strong AF coupling Applications of GMR: reading head for magnetic disks

Evolution of magnetic storage density 1GBytedrive mechanism of GMR: spin-dependent scattering two-current model ferromagnetic (F) configuration R F < R AF antiferromagnetic (AF) configuration RAF R A F can be larger than 50% RAF + RF

spin-dependent scattering probability E E P > P P > P DOS DOS

Fe 1-x V x /Au/Co x=0 x=0.3 x = 0.18 x=0.3 Renard et al., PRB 51, 12821 (1995) tunneling-magnetoresistance

Tunneling magneto-resistance (TMR) Jullière, Phys. Lett. 54A, 225 (1975) Moodera et al., PRL 74, 3273 (1995) insulating barrier θ ferromagnetic electrodes Mechanism of tunneling magneto-resistance parallel (P) configuration G P > G AP antiparallel (AP) configuration

Applications of TMR: magnetic random access memories (M-RAM) "bit" lines tunnel barrier FM electrodes "word" lines hot-electron spin-transistor

hot-electron spin-transistor Monsma et al. PRL 74, 5260 (1995) Science 281, 407 (1998)

magnetization switching due to spin-injection Magnetization switching due to spin-injection

AF differential resistance F current density Myers et al., Science 285, 867 (1999) Katine et al., PRL 84, 3149 (2000) ab initio calculations of perpendicular current GMR

model considered: ideal lead M central region (disorder,...) ideal lead y x z M L current periodic repetition of the supercell in x and y directions Conductances within the Landauer-Büttiker formalism C = C + C (spin-colinear case) 0 1 N N+1 2 σ e 1 C = h N// σ T ( k//, εf ) k // transmittance for spin σ, wavevector k // and energy ε F : [ Γ + Γ 1 G N G ] σ T ( k //, εf ) = Tr 1, N N1 H + 0,1 G H 1, N N, N + 1 (0)+ G 0,0 (0) + G N+ 1N, + 1 (0) + (0) ( G G ) 0, 1 Γ 1 = i H1,0 0,0 0,0 H

recursive calculation of the Green s function + calculation of the surface Green s function: layer addition (or removal) invariance self-consistent (Dyson-like) equation Computational details: density functional theory (local density approximation) TB-LMTO method (Green s function) well adapted to surface problems imaginary energy for GF calculations: 10-7 Ry disordered systems: - 5 x 5 supercell averaged over 5 configurations, or 7 x 7 supercell averaged over 3 configurations - on-site potential parameters obtained from (layer dependent) CPA method k // -integration: 10 000 points in the full fcc(001) SBZ definition of GMR ratio: CF C GMR AF CAF

Cu / Co /Cu/Co / Cu GMR (%) 125 100 75 50 25 variable thickness 5ML 0 0 10 20 30 40 50 Magnetic layer thickness (MLs) Cu Co Co Conductances / atom (in units e 2 /h) 1.0 0.8 0.6 F 0.4 0.2 F AF 0.0 0 10 20 30 40 50 Magnetic layer thickness (MLs) 120 Cu /Co/Cu /Co/Cu GMR (%) 115 110 5ML variable thickness 0 10 20 30 40 50 60 70 80 90 100 Spacer layer thickness (MLs) Conductances / atom (in units e 2 /h) 0.25 F 0.24 0.23 AF 0.22 0 10 20 30 40 50 60 70 80 90 100 Spacer layer thickness (MLs)

Cu / (Co / Cu / Co / Cu) / Cu 5ML repeated N+1times GMR (%) Conductances / atom (in units e 2 /h) 200 175 15.0 125 100 0 2 4 6 8 10 12 14 16 18 20 Number of repetitions 1.0 0.8 F 0.6 0.4 F 0.2 AF 0.0 0 2 4 6 8 10 12 14 16 18 20 Number of repetitions 120 interfaces with 15% interdiffusion GMR (%) 90 60 ideal interdiffused Cu /Co/Cu /Co/Cu 30 0 2 4 6 8 10 Spacer layer thickness (MLs) 5ML variable thickness Conductances / atom (in units e 2 /h) 1.0 0.8 F (ideal) 0.6 F (interdiffused) AF (interdiffused) 0.4 F (interdiffused) 0.2 F (ideal) AF (ideal) 0.0 0 2 4 6 8 10 Spacer layer thickness (MLs)

Cu /Co/Cu (1-x) Pd x /Co/Cu GMR (%) 120 x= 0 (ideal) 90 x= 15% 60 x= 50% 30 0 2 4 6 8 10 Spacer layer thickness (MLs) 5ML variable thickness Conductances / atom (in units e 2 /h) 1.0 0.8 F (ideal) 0.6 F (x=15%) 0.4 AF (x=15%) F (ideal) 0.2 F (x=15%) AF (ideal) 0.0 0 2 4 6 8 10 Spacer layer thickness (MLs) 120 GMR (%) 90 60 Co Co 85 Ni 15 Cu /Co (1-x) Ni x / Cu /Co (1-x) Ni x / Cu 30 0 2 4 6 8 10 Spacer layer thickness (MLs) 5ML variable thickness Conductances / atom (in units e 2 /h) 1.0 0.8 F (Co 85 Ni 15 ) 0.6 F (Co) 0.4 F (Co 85 Ni 15 ) AF (Co 85 Ni 15 ) 0.2 F (Co) AF (Co) 0.0 0 2 4 6 8 10 Spacer layer thickness (MLs)

GMR (%) 120 90 60 30 Co Co 85 Cr 15 Cu /Co (1-x) Cr x / Cu /Co (1-x) Cr x / Cu 0 2 4 6 8 10 Spacer layer thickness (MLs) 5ML variable thickness Conductances / atom (in units e 2 /h) 1.0 0.8 F (Co) 0.6 F (Co 85 Cr 15 ) F (Co 85 Cr 15 ) 0.4 AF (Co 85 Cr 15 ) 0.2 F (Co) AF (Co) 0.0 0 2 4 6 8 10 Spacer layer thickness (MLs) domain wall magnetoresistance

w Bloch wall w A K easy axis Néel wall w A 2 2π M Co / Co / Co magnetic wall of variable thickness (linear rotation of magnetization) GMR (%) 250 200 150 100 50 0 0 10 20 Domain-wall thickness (MLs) Conductances / atom (in units e 2 /h) 3.0 F (no wall) 2.5 2.0 AF (wall) 1.5 1.0 0.5 0.0 0 10 20 Domain-wall thickness (MLs)

Giant magnetoresistance of ferromagnetic atomic point contacts atomic point contact FM configuration ferromagnetic wire electric current AF configuration explaination requires: narrow magnetic wall in an atomic point contact large resistance due to a narrow wall geometrical constriction new kind of magnetic wall: structure (almost) entirely determined by the constriction geometry energy = (almost) pure exchange energy width determined by the characteristic size of the constriction wall can be extremely narrow in an atomic point contact 1.0 0.5 M z / M s 0.0 unconstrained wall -0.5 constrained wall -1.0-1.0-0.5 0.0 0.5 1.0 P. Bruno, PRL 83, 2425 (1999) x / w 0

20 nm X 20 nm theory of tunneling magnetoresistance

simple approach: Jullière model θ assumptions: + = G G G ) ( ) ( 2 1 F F G ε ρ ε ρ σ σ σ P 1 P 2 G G G G A P AP P AP = + ) ( ) ( ) ( ) ( F F F F P ε ρ ε ρ ε ρ ε ρ + DOS E with measurement of the spin-polarization by spin-injection into a superconductor

Soulen et al., Science 282, 85 (1998) ab initio calculation of tunnel conductance Ni / vacuum / Ni(001) J. Henk (MPI Halle)

Fe / MgO / Fe(001) MgO Fe J. Henk (MPI Halle)