Enhanced sampling via molecular dynamics II: Unbiased approaches

Similar documents
Free energy calculations and the potential of mean force

Newtonian and extended Lagrangian dynamics

Molecular Dynamics Lecture 3

Temperature and Pressure Controls

Methods of Computer Simulation. Molecular Dynamics and Monte Carlo

Low-temperature isomers of the water hexamer

macroscopic view (phenomenological) microscopic view (atomistic) computing reaction rate rate of reactions experiments thermodynamics

Sampling the conformation space of complex systems, such as

Lecture 8: Introduction to Density Functional Theory

EXTENDING THE BOUNDARIES OF STRUCTURAL MODELING EPIGENETIC EFFECTS ON NUCLEOSOME POSITIONING

Set the initial conditions r i. Update neighborlist. r i. Get new forces F i

Supporting Information

Chemistry 532 Practice Final Exam Fall 2012 Solutions

Rare Event Simulations

Efficient Parallelization of Molecular Dynamics Simulations on Hybrid CPU/GPU Supercoputers

Canonical transformations (Lecture 4)

Approach to Thermal Equilibrium in Biomolecular

Laser Induced Control of Condensed Phase Electron Transfer

7 To solve numerically the equation of motion, we use the velocity Verlet or leap frog algorithm. _ V i n = F i n m i (F.5) For time step, we approxim

Molecular Dynamics Lecture 2

Simple Harmonic Oscillator

Multiple time step Monte Carlo

Lecture 14: Advanced Conformational Sampling

Open quantum systems

Ab initio molecular dynamics

Boltzmann-Gibbs Preserving Langevin Integrators

A Symmetric Treatment of Damped Harmonic Oscillator in Extended Phase Space

Second quantization: where quantization and particles come from?

M e t ir c S p a c es

3.320 Lecture 18 (4/12/05)

Electronic excitations in conjugated. Many-Body Green's Functions. Behnaz Bagheri Varnousfaderani. Behnaz Bagheri Varnousfaderani

Overcoming stability limitations in biomolecular dynamics. I. Combining force splitting via extrapolation with Langevin dynamics in LN

Computational Chemistry - MD Simulations

Luttinger Liquid at the Edge of a Graphene Vacuum

Supporting Information Soft Nanoparticles: Nano Ionic Networks of Associated Ionic Polymers

Quantum Physics III (8.06) Spring 2008 Final Exam Solutions

Competing sources of variance reduction in parallel replica Monte Carlo, and optimization in the low temperature limit

C. Show your answer in part B agrees with your answer in part A in the limit that the constant c 0.

Aspects of nonautonomous molecular dynamics

Handout 10. Applications to Solids

Temperature and Pressure Controls

Replica Exchange with Solute Scaling: A More Efficient Version of Replica Exchange with Solute Tempering (REST2)

Speeding up path integral simulations

CE 530 Molecular Simulation

Lecture 6: 2D FET Electrostatics

The Geometry of Euler s equation. Introduction

3. Riley 12.9: The equation sin x dy +2ycos x 1 dx can be reduced to a quadrature by the standard integrating factor,» Z x f(x) exp 2 dt cos t exp (2

Practice Qualifying Exam Questions, Differentiable Manifolds, Fall, 2009.

Lecture 2. Contents. 1 Fermi s Method 2. 2 Lattice Oscillators 3. 3 The Sine-Gordon Equation 8. Wednesday, August 28

Organization of NAMD Tutorial Files

Coupling the Level-Set Method with Variational Implicit Solvent Modeling of Molecular Solvation

Collection of formulae Quantum mechanics. Basic Formulas Division of Material Science Hans Weber. Operators

Nosé-Hoover Thermostats

Thermostatic Controls for Noisy Gradient Systems and Applications to Machine Learning

Fluctuation theorem in systems in contact with different heath baths: theory and experiments.

Supplemental Material for Global Langevin model of multidimensional biomolecular dynamics

Mixing Quantum and Classical Mechanics: A Partially Miscible Solution

A path integral approach to the Langevin equation

LAMMPS Performance Benchmark on VSC-1 and VSC-2

4.3 Lecture 18: Quantum Mechanics

arxiv:hep-th/ v3 16 May 1996

Supporting information

Why study protein dynamics?

Section 8.2 : Homogeneous Linear Systems

Why Proteins Fold? (Parts of this presentation are based on work of Ashok Kolaskar) CS490B: Introduction to Bioinformatics Mar.

Population annealing study of the frustrated Ising antiferromagnet on the stacked triangular lattice

Ionic Liquids simulations : obtention of structural and transport properties from molecular dynamics. C. J. F. Solano, D. Beljonne, R.

5.4 Given the basis e 1, e 2 write the matrices that represent the unitary transformations corresponding to the following changes of basis:

Serial Generalized Ensemble Simulations of Biomolecules with Self-Consistent Determination of Weights

Effective Temperatures in Driven Systems near Jamming

1 The Quantum Anharmonic Oscillator

Two recent works on molecular systems out of equilibrium

Lecture contents. A few concepts from Quantum Mechanics. Tight-binding model Solid state physics review

arxiv: v1 [physics.chem-ph] 24 Apr 2018

Ab initio molecular dynamics and nuclear quantum effects

Computational Studies of the Photoreceptor Rhodopsin. Scott E. Feller Wabash College

Serial Replica Exchange

Ab initio molecular dynamics: Basic Theory and Advanced Met

Statistical methods in atomistic computer simulations

EC Control Engineering Quiz II IIT Madras

Prolongation structure for nonlinear integrable couplings of a KdV soliton hierarchy

Molecular Dynamics Simulations of Fusion Materials: Challenges and Opportunities (Recent Developments)

LINEAR ALGEBRA (PMTH213) Tutorial Questions

Molecular dynamics with multiple time scales: The selection of efficient reference system propagators

Phys460.nb Back to our example. on the same quantum state. i.e., if we have initial condition (5.241) ψ(t = 0) = χ n (t = 0)

Phonons (Classical theory)

Time-dependent DMRG:

of Long-Term Transport

G : Statistical Mechanics

Optimized statistical ensembles for slowly equilibrating classical and quantum systems

5. Systems in contact with a thermal bath

nd A L T O SOLO LOWELL. MICHIGAN. THURSDAY. APRIL Spring Activities Heads Up and Forward (Editorial By " T h e Committee'')

Langevin Dynamics of a Single Particle

Introduction to Classical Molecular Dynamics. Giovanni Chillemi HPC department, CINECA

Consider a system of n ODEs. parameter t, periodic with period T, Let Φ t to be the fundamental matrix of this system, satisfying the following:

Eran Rabani, S. A. Egorov, a) and B. J. Berne Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027

Burgers equation in the complex plane. Govind Menon Division of Applied Mathematics Brown University

Physics 5153 Classical Mechanics. Canonical Transformations-1

Density Functional Theory: from theory to Applications

Molecular Dynamics Simulations. Dr. Noelia Faginas Lago Dipartimento di Chimica,Biologia e Biotecnologie Università di Perugia

Transcription:

Enhanced sampling via molecular dynamics II: Unbiased approaches Mark E. Tuckerman Dept. of Chemistry and Courant Institute of Mathematical Sciences New York University, 100 Washington Square East, NY 10003

Spatial-Warping Transformations Z. Zhu, MET, S. O. Samuelson, G. J. Martyna, Phys. Rev. Lett. 88 100201 (2002) P. Minary, MET, G. J. Martyna SIAM J. Sci. Comput. 30, 2055 (2007) Science, December 22, 2006

Molecular dynamics in a double well. V(x) p x = m dv p = = F( x) + heat bath dx x time Crossing the barrier is a rare event!

Spatial-warping transformations Z. Zhu, MET, S. O. Samuelson, G. J. Martyna, Phys. Rev. Lett. 88 100201 (2002) V(x) Hamiltonian: 2 p H( x, p) = + V( x) 2m Canonical partition function: 2 p x= a x= a Q = dp dx exp β + V ( x) 2m Change the integration variables: u = f ( x) = a + dy e β a Transformed partition function: x V ( y) 1 βv ( f ( u)) dx = e du 2 p Q = dp du exp β + V f ( u) V f ( u) 2m ( 1 ) ( 1 )

V ( x ) Spatial-warping transformations (cont d) Choosing the transformation: V ( x) V( x) a< x< a = 0 Otherwise x = a x= a V(x) V ( x) V ( x ) V ( x ) 1 1 ( ( )) ( ( )) V f u V f u MD: p d u = p = Fu ( ) + heat bath F( u) = V f ( u) V f ( u) m du Reference potential spatial warping (REPSWA) 1 1 ( ) ( )

How is the space warped? Barrier: kt B Barrier: 5kT B Barrier: 10kT B

V No Transformation Transformation 5kT 10kT 10kT

How to do biomolecules and polymers P. Minary, MET, G. J. Martyna SIAM J. Sci. Comput. 30, 2055 (2007) Sampling hindered by barriers in the dihedral angles: V ( φ) Ramachandran dihedral angles (alanine dipeptide): φ ψ ψ φ

Dihedral angle transformations Transformed angle: φ = + d e u min φ φ φ χ min βv ( χ) V ( φ) φ min

P. Minary, G. J. Martyna and MET SIAM J. Sci. Comp. 30, 2055 (2008) r 6 V ( φ,{ r}) = V ( φ) S ( φ) + α V ( r ( φ,{ r}) r ) S ( r ( φ,{ r}) ri ) tors 1 n.b. 4 i 2 4 i nn

A 400-mer alkane chain No nonbonded interactions 397 collective variables! Nonbonded interactions off

No Transformation REPSWA Transformations RIS Model value: 10

β-barrel Proteins

Honeycutt and Thirumalai PNAS 87, 3526 (1990)

MD REMC Transformations PT replicas = 16

Equations of motion: Integrators in molecular dynamics p q =, p = Fq ( ) m Time evolution: q( t) (0) (0) il t q q = e = φ t p( t) p(0) p(0) where il p = + F( q) m q p t p t = + 2 p m q 2 p 3 exp( ilt) exp Fq ( ) exp t exp Fq ( ) O( t) Pseudocode: p p+ 0.5* t* F; q q+ t* p; GetForce( q); p p+ 0.5* t* F;

Multiple time scale (r-respa) integration MET, G. J. Martyna and B. J. Berne, J. Chem. Phys. 97, 1990 (1992) p q = m p = F + F fast slow p il = + F + F = il + il m q p p fast slow ref slow

Multiple Time Scale Integration (cont d) Trotter factorized propagator: 3 exp( il t) = exp( ilslow t / 2)exp( ilref t)exp( ilslow t / 2) + O( t ) = exp( ilslow t / 2) exp( ilref δt) exp( ilslow t / 2) n t exp( il t) = exp Fslow 2 p δt p δt exp Ffast exp δt exp Ffast 2 p m q 2 p t exp F 2 slow p n

From: G. J. Martyna, MET, D. Tobias, and M. L. Klein Mol. Phys. 87, 1117 (1996).

Illustration of resonance A. Sandu and T. S. Schlick, J. Comput. Phys. 151, 74 (1999) F = ω x F = Ω x fast 2 2 slow t 2 p = p(0) Ω x(0) 2 p ' x( t) = x(0)cos( ω t) + sin( ω t) ω p = p(0)cos( ω t) ωx(0)sin( ω t) t p t = p Ω x t 2 2 ( ) ( ) x( t) x(0) = A( ω, Ω, t) p( t) p(0)

Illustration of resonance (cont d) 2 Ω t 1 cos( ω t) sin( ω t) sin( ω t) 2ω ω A( ω, Ω, t) = 2 4 2 t Ω 2 Ω t ω sin( ω t) tω cos( ω t) cos( ω t) sin( ω t) 4ω 2ω Note: det(a) = 1 Depending on Δt, eigenvalues of A are either complex conjugate pairs 2 < Tr( A) < 2 or eigenvalues are both real Tr( A) 2 Leads to resonances ( Tr(A) 2) at Δt = nπ/ω

Isokinetic dynamics Constraint the kinetic energy of a system: 2 i 3N 1 p = kt 2m 2 Introduce constraint via a Lagrange multiplier: i i p r = p = F λp i i i i i m i Derivative of constraint yields multiplier: Fp i i / mi pi pi i p i = [ Fi λpi] = 0 λ = m m p p / m Partition function generated: i i i i i i i i p 3N 1 Ω= d p δ kt d r e i 2mi 2 Resonance-free but is a poor thermostat. 2 N i N βu( r)

Consider the equations of motion: Resonance-free stochastic isokinetic thermostat P. Minary, MET, G. J. Martyna PRL (2004); B. Leimkuhler, D. Margul, MET Mol. Phys. (in press) dq = vdt F dv = λv dt m dv = λv dt v v dt, k = 1,..., L 1, k 1, k 2, k 1, k Gv ( ) dv = dt γv dt + σdw 1, k 2, k 2, k k Q2 G( u) Isokinetic constraint: Multiplier: = = Qu 1 2 1 β k= 1 λ L mv Q v v v v L L 2 2 1 + 1 1, k = Λ (, 1,1,..., 1, L) = β L + 1 k= 1 L L vf Q v v L + 1 Λ( vv,,..., v ) 1,1 1, L 2 1 1, k 2, k

Multiple time-step integrator Assume forces have fast and slow components: F = Ff + Fs il q = v q il = il + il + il + il + il ( f ) ( s) q v v N OU il F v v L ( f ) f ( f ) ( f ) v = λf F 1, k m λ v k = 1 v1, k F il v v L ( s) s ( s) ( s) v = λf λf 1, k m v k = 1 v1, k Gv ( ) il v v v v L L L 1, k N = λn λn 1, k 2, k 1, k + v k= 1 v1, k k= 1 v1, k k= 1 Q2 v2, k L L Qv v ( f ) vff ( s) vf s L + 1 k= 1 λf =, λf =, λ N = Λ Λ Λ 2 1 1, k 2, k

Multiple time-step integrator ( s) ( f ) /2 /2 ( f ) n ( s) il t iln t/2 ilv t/2 ilv δt/2 ilqδt il il OUδt qδt ilv δt/2 ilv t/2 iln t/2 e = e e e e e e e e e Solution of the Ornstein-Uhlenbeck process: e v = v (0) e + σ Rt ( ) ilouδ t γδ t 2, k 2, k 1 e 2γ 2γδ t

Numerical illustration of resonance Harmonic oscillator with quartic perturbation L 9 Uq ( ) = q+ 0.025q 2 2 4 Nbins t 1 = 3, δt = ς () t = [ Pq ( i;) t Pexact ( qi) ] 100 N i= 1 bins P(q) q

Flexible SPC/E water U() r = U () r + U () r = U () r + U () r + U () r intra nb intra short long qq i jerfc( αr) ij Ushort () r = ULJ ( rij ) + ij rij 1 4π 2 2 α U ( r) = e S( k) q long 2 V kk, < k k S( k) = RESPA schemes i qe i ikr F. Paesani et al. J. Chem. Phys. 125, 184507 (2006) max k /4α 2 2 i π i qq U () r = U (; r α, k ) + 1 δ θ( r r ) ( ) ij (1) i j ij long recip res ij cut i> j rij ( ) ij erf ( αr) qq U () r = U (; r α, k ) 1 δ 1 θ( r r ) erf ( αr) (2) i j ij long recip max ij cut i> j rij

δ t = 0.5 fs t = 3 fs T =? RESPA 1: L = 4, r cut = 6 Å RESPA 2: L = 4, r cut = 8 Å

RESPA 1: L = 4, r cut = 6 Å L = 4 (colors) L = 1 (dashed) L = 2 (circles)

Parallel Tempering Swendsen and Wang, Phys. Rev. Lett. 57, 2607 (1986) T M TM 1 T 1 f r ( K ) K ( ) = ( K ) βk U ( r ) e Z( NVT,, ) K F M (1) ( M) ( K) ( r,..., r ) f( r ) = K = 1 ( K+ 1) ( K) ( K+ 1) ( K) ( K) ( K+ 1) fk( r ) fk+ 1( r ) A( r, r r, r ) = min 1, = min 1, e fk( r ) fk+ 1( r ) K, K+ 1 ( K) ( K+ 1) ( β β ) KK, + 1 = K K+ 1 U r ( K) ( K+ 1) ( ) U( ) r

Comparison for a 50-mer chain using CHARMM22 REMC/PT replicas = 10; 300 < T < 1000, 10 replicas 20% acceptance Nonbonded interactions off

Comparison for 50-mer using CHARMM22 all interactions

Comparison for 50-mer with all interactions PT replicas = 10; REPSWA α = 0.8; Every 10 th dihedral not transformed

Replica exchange with solute tempering P. Liu, B. Kim, R. A. Friesner, B. J. Berne PNAS (2005); L. Wang, R. A. Friesner, B. J. Berne J. Phys. Chem. B (2011) A downside of replica-exchange is that U ~ N, therefore, the energy differences between neighboring replica need to shrink as the system size grows, which means more and more replica are needed in order for the acceptance probability to remain approximately fixed. Replica exchange with solute tempering (REST) was developed to allow just part of the system (the solute ) to be subject to attempted exchanges. It relies on the idea that different replicas can be subject to different potentials. f K () r = βkuk( r) e Z( NVT,, ) ( ( K ) ( K 1) ) ( ( K ( ) ( ) ( 1) ) ( ( K U r U r + β U r + U r ) )) = β + KK, + 1 K K K K+ 1 K+ 1 K+ 1 If the potential energy of a solute-solvent system is: U () r = U () r + U () r + U () r K s sv v The latest version of REST (called REST2) uses the following ladder of potentials: U () β β r = U () r + U () r + U () r K K K s sv v β0 β0 K

The ladder of potentials Replica exchange with solute tempering allows each replica to be run at a single temperature T 0 so that the solute probability e = e β ( β / β ) U ( r) β U ( r) 0 K 0 s K s For full potential ladder: βu () r = βu () r + ββ U () r + βu () r 0 K K s 0 K sv 0 v Acceptance probability determined by β K, K + 1 = K K + 1 s s + sv βk + βk+ 1 ( K) ( K+ 1) ( ) ( 1) ( ) ( ) ( ) 0 K K+ β β U r U r ( U ( r ) U( r ))

Solute potential energy Convergence of alanine dipeptide in solution