Asteroid Models from the Pan-STARRS Photometry

Similar documents
Physical models of asteroids from sparse photometric data

How occultations improve asteroid shape models

The Pan-STARRS Moving Object Pipeline

A collective effort of many people active in the CU4 of the GAIA DPAC

Rotation period determination for asteroid 9021 Fagus

Asteroid Detection with the Pan-STARRS Moving Object Processing System

The expected Gaia revolution in asteroid science: Photometry and Spectroscopy

The Large Synoptic Survey Telescope

Large Synoptic Survey Telescope

The determination of asteroid physical properties from Gaia observations

GAIA Observations of Asteroids: Sizes, Taxonomy, Shapes and Spin Properties

Small binary asteroids and prospects for their observations with Gaia

Spacewatch and Follow-up Astrometry of Near-Earth Objects

Efficient intra- and inter-night linking of asteroid detections using kd-trees

Photometric study and 3D modeling of two asteroids using inversion techniques

A STRATEGY FOR FINDING NEAR-EARTH OBJECTS WITH THE SDSS TELESCOPE

1 A photometric probe for Pan-STARRS

arxiv: v1 [astro-ph.ep] 18 Jun 2009

PHOTOMETRIC OBSERVATIONS OF NEAR EARTH ASTEROID 2012 TC4

Status report of the Solar System Working Group

Near-Earth Asteroids Orbit Propagation with Gaia Observations

Science from NEOs - Limitations and Perspectives

arxiv: v1 [astro-ph.im] 10 Nov 2015

Rotation Rates of Koronis Family Asteroid (1029) La Plata

Time-series Photometry of Earth Flyby Asteroid 2012 DA14

A fast ellipsoid model for asteroids inverted from lightcurves

LSST: Comprehensive NEO detection, characterization, and orbits

Study of photometric phase curve: assuming a Cellinoid ellipsoid shape of asteroid (106) Dione.

Imaging of Near-Earth Asteroids.

The SKYGRID Project A Calibration Star Catalog for New Sensors. Stephen A. Gregory Boeing LTS. Tamara E. Payne Boeing LTS. John L. Africano Boeing LTS

Gaia Astrometry Upkeeping by GNSS - Evaluation Study [GAUGES]

THE MINOR PLANET BULLETIN

How do telescopes work? Simple refracting telescope like Fuertes- uses lenses. Typical telescope used by a serious amateur uses a mirror

Projected Near-Earth Object Discovery Performance of the Large Synoptic Survey Telescope

arxiv:astro-ph/ v1 20 Dec 1999

arxiv: v1 [astro-ph.ep] 16 May 2017

Pan-Planets. A Search for Transiting Planets Around Cool stars. J. Koppenhoefer, Th. Henning and the Pan-PlanetS Team

Lightcurve inversion of asteroid (585) Bilkis with Lommel-Seeliger ellipsoid method

Optical Studies of Space Debris at GEO - Survey and Follow-up with Two Telescopes

Lightcurves of 10 Hygiea, 241 Germania and 509 Iolanda

radar astronomy The basics:

CCD observations of 11 faint asteroids

JINA Observations, Now and in the Near Future

Pan-Planets with PANSTARRS1. And : CfA, John Hopkins Uni., UK Consortium, Centr. Uni. Taiwan

arxiv: v2 [astro-ph.ep] 29 Mar 2012

DOME C AS A SETTING FOR THE PERMANENT ALL SKY SURVEY (PASS)

arxiv: v1 [astro-ph] 12 Nov 2008

Gaia Status & Early Releases Plan

Exoplanetary transits as seen by Gaia

Detecting Near Earth Asteroids with a Constellation of Cubesats with Synthetic Tracking Cameras. M. Shao, S. Turyshev, S. Spangelo, T. Werne, C.

IMPROVING THE DECONVOLUTION METHOD FOR ASTEROID IMAGES: OBSERVING 511 DAVIDA, 52 EUROPA, AND 12 VICTORIA

Precision Tracking of Decimeter Targets at GEO Distances using the Magdalena Ridge Observatory 2.4-meter Telescope

Transneptunian Binaries and Collision Families: Probes of our Local Dust Disk

A Survey of the Trans-Neptunian Region

The Cosmological Distance Ladder. It's not perfect, but it works!

arxiv: v1 [astro-ph.ep] 27 Jun 2017

University of Hawai'i at Mänoa

A search for main-belt comets in the Palomar Transient Factory survey

PROJECT PAN-STARRS AND THE OUTER SOLAR SYSTEM

The Magdalena Ridge Observatory s 2.4-meter Telescope: A New Facility for Follow-up and Characterization of Near-Earth Objects

AO Images of Asteroids, Inverting their Lightcurves, and SSA

NEA Rotations and Binaries

The FAME Mission: An Adventure in Celestial Astrometric Precision

SPACE OBJECT CHARACTERIZATION STUDIES AND THE MAGDALENA RIDGE OBSERVATORY S 2.4-METER TELESCOPE

Water Ice on the Satellite of Kuiper Belt Object 2003 EL61

99942 Apophis : Gaia-FUN-SSO campaign

Whipple: Exploring the Solar System Beyond Neptune Using a Survey for Occultations of Bright Stars

PHOTOMETRY OF FOURTEEN MAIN BELT ASTEROIDS

An optimal search strategy for Trojan asteroids and science follow-up of GAIA alerts with the Zadko Telescope, Western Australia

The Trouble with 'Planets'

THE MINOR PLANET BULLETIN

New Perspectives in Multispectral Sky Monitoring. I give a short review and discussion of multispectral (optical and X rays) sky monitoring.

STUDIES OF SELECTED VOIDS. SURFACE PHOTOMETRY OF FAINT GALAXIES IN THE DIRECTION OF IN HERCULES VOID

GAIA: SOLAR SYSTEM ASTROMETRY IN DR2

Astrometry in Gaia DR1

Photometry and Spin Rate Distribution of Small-Sized Main Belt Asteroids. The Wise Observatory and the School of Physics and Astronomy, Tel-Aviv

The Origin of Near Earth Asteroids

Astronomy. Unit 2. The Moon

Brightness variation distributions among main belt asteroids from sparse light curve sampling with Pan-STARRS 1

Amateur Astronomer Participation in the TESS Exoplanet Mission

S. G. KLEINMANN, M. G. LYSAGHT, W. L. PUGIIE, S. E. SCHNEIDER, M. F. SKRUTSKIE and M. D. WEINBERG S. D. PRICE. K. MATTIIEWS and B. T.

Parametrization and Classification of 20 Billion LSST Objects: Lessons from SDSS

Photometric Studies of GEO Debris

(Present and) Future Surveys for Metal-Poor Stars

Minor Planet Bulletin 43 (2016)

2 The PanSTARRS PS1 NEO Survey

PHYS133 Lab 6 Sunspots and Solar Rotation

TESS and Galactic Science

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits.

arxiv:astro-ph/ v1 5 Oct 2001

Rotation periods of the asteroids 55 Pandora, 78 Diana and 815 Coppelia

The Galactic Exoplanet Survey Telescope (GEST)

The Gaia Mission. Coryn Bailer-Jones Max Planck Institute for Astronomy Heidelberg, Germany. ISYA 2016, Tehran

Global Effects on Dynamics

The Yarkovsky effect on near-earth asteroids with Gaia

An Asteroid and its Moon Observed with LGS at the SOR 1

PHOTOMETRIC OBSERVATIONS OF ASTEROIDS IN FRAME OF ISON PROJECT

Near Earth Object Observations Program

Characterization of variable stars using the ASAS and SuperWASP databases

Unbiased orbit determination for the next generation asteroid/comet surveys

Transcription:

Earth, Moon, and Planets (2006) Ó Springer 2006 DOI 10.1007/s11038-006-9084-8 Asteroid Models from the Pan-STARRS Photometry JOSEF Dˇ URECH Astronomical Institute, Charles University in Prague, V Holesˇovicˇka ch 2, 18000, Prague, Czech Republic (E-mail: jod@rni.helsinki.fi) TOMMY GRAV, ROBERT JEDICKE, LARRY DENNEAU Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, Hawaii, 96822, USA MIKKO KAASALAINEN, JOSEF Dˇ URECH Department of Mathematics and Statistics, Rolf Nevanlinna Institute, University of Helsinki, P.O. Box 4, 00014, Helsinki, Finland (Received 16 November 2005; Accepted 4 May 2006) Abstract. We present simulations on the asteroid photometric data that will be provided by the Pan- STARRS (Panoramic Survey Telescope and Rapid Response System). The simulations were performed using realistic shape and light-scattering models, random orientation of spin axes, and rotation periods in the range 2 24 h. We show that physical models of asteroids can be reconstructed from this data with some limitations (possible multiple pole solutions). We emphasize the potential of sparse photometric data to produce models of a large number of asteroids within the next decade and we outline further tests with fast and slow rotators, tumblers, and binary asteroids. Keywords: asteroids, photometry 1. Introduction Physical asteroid models can be constructed from unprecedentedly small sets of single calibrated photometric measurements sparse in time but well distributed in observing geometries. Sidereal periods, pole directions, coarse shape estimates, and solar phase behavior can be solved with accuracy sufficient for the statistical analysis of a large sample of the asteroid population (Kaasalainen, 2004). This approach is roughly two orders of magnitude more time-efficient than the usual lightcurve photometry. The Panoramic Survey Telescope and Rapid Response System (Pan- STARRS) is an ongoing project at the Institute for Astronomy of the University of Hawaii. It presents a novel approach to the need for a Large Synoptic Survey Telescope proposed by the National Academies of Sciences report Astronomy and Astrophysics in the New Millennium (2001). It is

JOSEF Dˇ URECH ET AL. designed to provide a deep survey of large sky areas and detect moving objects. Among many other science goals, Pan-STARRS will provide calibrated brightness measurements of all detected asteroids. In order to explore the potential of the Pan-STARRS photometric data set, we simulated the Pan-STARRS photometric measurements and tested the lightcurve inversion results. In the following sections we present our tests and show that Pan-STARRS will provide photometric data from which the spin states and shapes of the observed asteroids can be derived. 2. Pan-STARRS Design and Observation Schedule Pan-STARRS uses four 1.8 m telescopes, each with a ~7 deg 2 field-of-view CCD mosaic camera with 1.44 billion pixels in the focal plane. This results in a spatial sampling of ~0.3 arcseconds per pixel, which makes the telescope and camera well suited for all-sky survey of moving objects. The four telescopes will simultaneously observe the same part of the sky, allowing the images to be stacked to reach a limiting magnitude of R ~ 24.5. The Pan-STARRS project spans a full range of science goals, from planetary to cosmological, and promises to present a new paradigm in observational astronomy. It will perform a survey of the Solar System that far exceeds any previous surveys, going more than 10 times fainter than any existing full sky survey (LINEAR or LONEOS) and with a much higher return-rate for each part of the sky. See Hodapp et al. (2004) for more details on the design of Pan-STARRS and Milani et al. (2006) for the Pan-STARRS surveying and solar system model overview. The construction phase is fully funded and under way with the construction of the PS1 prototype on Haleakela, Hawaii. PS1 is a single 1.8 m telescope with a full 7 sq. degrees field-of-view camera. Starting in early 2007, PS1 is scheduled to start its Solar System Survey (S 3 ) designed to find objects ranging from the close in near-earth objects to the distant trans-neptunian population. The S 3 is being designed to cover almost 6000 sq. degrees each lunation and thus provides a significant leap in surveying of the Solar System by essentially providing an all sky survey to a limiting magnitude of R ~ 23.5. The photometric accuracy is expected to be 3% for V ~ 21.8 mag, corresponding to an absolute magnitude of H ~ 17 mag for main belt asteroids. We expect that after 10 years of Pan-STARRS surveying we will be able to determine poles, periods and shapes for about 10 5 asteroids. S 3 will image a total of ~1100 deg 2 in the morning and evening sweet spots (sky regions near-quadrature with b <10 and )90 <l <)60 or +60 <l< +90, where l is the solar elongation and b is the ecliptic latitude), as well as a ~4600 deg 2 opposition region ( l > 150 and b <40 ). S 3 is designed to be performed such that most bright objects in the survey will be observed on three

ASTEROID MODELS FROM THE PAN-STARRS PHOTOMETRY separate nights over an 8 12 day arc. Each field is observed twice each night separated by ~15 min. This means that most objects detected during a lunation will have 6 observations over the three nights. If an object is bright enough, it will typically be observed in 2 or 3 lunations when at opposition and once in each of the morning and evening sweet spots. The S 3 survey will be performed in a wide Solar System bandpass filter designed to be optimal for the detection of asteroids. It is expected that serendipitous detections of a significant number of solar system objects will occur in other Pan-STARRS surveying modes. A typical time sequence of observations for a main belt asteroid is shown in Figure 1. Two groups of data points can be recognized in the plots: Observations around opposition at phase angles <15 and observations at larger phase angles corresponding to the evening and morning sweet spots. The large brightness variations on the left plot are caused by the changing distance between the asteroid, the Earth and the Sun. On the right plot, the brightness is reduced to 1 AU distances form the Earth and the Sun and the remaining variations are due to asteroid s rotation. The data were generated using Hapke s scattering model. 3. Simulations and Lightcurve Inversion Tests One of the key features of the Pan-STARRS Moving Object Processing System (MOPS) is that the survey will be fully simulated to develop and test the observing strategy and pipeline system before any real data is available. To achieve this we have created a model of the entire Solar System containing ~10 million objects and used a commercial observatory scheduling package, TAO (Tools for Automated Observing, Paulo Holvorcem), to devise a survey relative brightness [mag] 2 1.5 1 0.5 0 0.5 1 1.5 2 0 2 4 6 8 10 time [years] reduced relative brightness [mag] 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0 5 10 15 20 25 30 phase angle [deg] Figure 1. (Left) A typical time sequence of observations of a main belt asteroid during 10 years of observation (brightness is not reduced to unit distances from the Earth and the Sun) and (right) the corresponding coverage of phase angles (brightness is reduced to unit distances).

JOSEF Dˇ URECH ET AL. pattern consistent with the description above for the expected 10 years of Pan-STARRS operations. This allows us to create a simulated survey which, together with estimated astrometric and photometric errors and false detections, allows for testing and preparation of the MOPS pipeline. The Pan- STARRS Solar System Survey Simulation (S 4 ) used in this work takes every 250th object of each population in our Solar System Model and provides a full 10-year simulated survey for these objects. This allows us to explore the full 10-year cadence for ~40,000 objects. For our lightcurve inversion simulations we selected a few objects from each of three asteroid populations (near-earth asteroids, NEAs; main belt asteroids, MBAs; and trans-neptunian objects, TNOs) from the sub-sample of objects with hundreds of detections in the project s 10-year time span. A few percent of objects were detected hundreds of times but a few percent of the expected 10 7 total number of objects is still an impressive sample. For the selected objects, a Pan-STARRS lightcurve consists of ~150 300 individual points spread over the 10-year observation interval. We used different shape models, pole directions, rotation periods, and noise level to test the Pan-STARRS data s potential for reconstructing asteroid physical models. We performed our tests using the lightcurve inversion technique developed by Kaasalainen et al. (2001) and we processed the sparse time sequences in the same way as Kaasalainen (2004): The rotation period is searched by scanning the expected period range (2 24 h in our tests) with a few initial poles. For the period yielding the lowest rms fit residual, the best pole and shape solution is found using a dense initial pole grid. We used radar shape models 1 of asteroids (6489) Golevka and (2063) Bacchus (see Figure 4) and Hapke s scattering model for the simulated data. In the inversion process, we used the empirical light-scattering model of Kaasalainen et al. (2001). Its three-parameter linear-exponential phase function fits Hapke s model and real data well as shown by Kaasalainen et al. (2003) or Kaasalainen et al. (2004). 3.1. PHOTOMETRIC CALIBRATION ERRORS In order to identify limits on the maximum acceptable noise level for the sparse photometric data, we ran tests with three different Gaussian noise levels: 3, 5, and 7%. The best model always fit the data down to the noise level for the correct period. If the brightness measurements are too noisy, there is no unique period solution the correct period is lost among many 1 3D asteroid model courtesy of Scott Hudson, Washington State University, http:// www.tricity.wsu.edu/~hudson/research/asteroids/index.htm

ASTEROID MODELS FROM THE PAN-STARRS PHOTOMETRY other possible periods. Typical results are shown in Figure 2 we used the Golevka shape model, pole direction (k=65, b=10 ) in the ecliptic coordinates and a rotation period of 5 h. The correct period (indicated with the dotted vertical line) is always found. However, for higher noise levels, there are other periods that fit the data equally well. Note that there remain false period solutions for the TNO simulation even for 3% noise. Those false periods correspond to higher and lower harmonics of the correct period and it is a common characteristic of many of our TNO tests. This is caused by the fact that the viewing/illumination geometry of a TNO changes very little during 10 years. The false periods are usually 1/2 and 3/2 of the correct value. However, these false periods can be rejected if we assume principal axis rotation and a lightcurve with two maxima and minima per revolution. The half period usually leads to a shape with its spin axis not corresponding with the principal axis, and the 3/2 period gives a shape with a typical triangular pole-on silhouette. The expected photometric calibration errors of Pan-STARRS should not exceed the 3% level for asteroids brighter than ~21.8 mag in the R filter fully Figure 2. Period search results for three asteroids and different noise levels. The testing data was simulated with the Golevka shape model, a rotation period of 5 h (the dotted vertical line), and full 10-year cadences. The number of data points of each tested time-sequence is indicated in the first three plots.

JOSEF Dˇ URECH ET AL. sufficient for the lightcurve inversion. This is also lower than the photometric modelling error due to the scattering law. The noise can be higher for more elongated shapes such asteroids have higher lightcurve amplitudes and the correct period stands out clearly even with more noisy data. 3.2. OBSERVATION INTERVALS We also performed the same period search tests with reduced data set in order to determine when the first lightcurve inversion results from Pan- STARRS can be expected. We used only the first 3, 5, and 7 years from the 10-year cadences. Results for three asteroids are shown in Figure 3. The conclusion for NEAs and MBAs (drawn from the full suite of tests, not only from the results presented in Figure 3) is that unique period detection (with the 3% noise) is possible after about 5 years of observation. There are always false period solutions for observations covering only 3 years or less. For a TNO, there are often harmonic period solutions even when using the whole 10-year data set. The correct period model always fits the data down to the Figure 3. Period search results for three asteroids and different intervals of observation. The testing data was simulated with the Golevka shape model, the rotation period of 5 h (the dotted vertical line) and 3% noise.

ASTEROID MODELS FROM THE PAN-STARRS PHOTOMETRY noise level but there are also other possible periods with the same rms residual when less data points (a short observation interval) are available. As the number of detections and the time baseline increases, the average rms residual level increases and the correct period stands out clearly. 3.3. POLE AND SHAPE SOLUTIONS The best pole solutions were very close (within a few degrees) to the original directions in all our tests with the NEA and MBA 10-year cadences and 3% noise level. In many cases, the pole direction cannot be derived uniquely there are one or more poles giving nearly the same fit residual. In some cases, the false pole solutions can be recognized due to their non-physical rotation state their spin axes differ from the principal axes. Some orbit and cadence configurations seem to give more pole solutions than others, and we will run more simulations to identify the typical situation. Pole directions of TNOs cannot be derived from the Pan-STARRS data since the observation geometry changes very little during 10 years of observation. Figure 4 gives an example of asteroid shape reconstruction. We used radar models of asteroids Golevka (nonconvex irregular shape) and Bacchus (elongated ellipsoid-like shape), a MBA orbit, and a rotation period of 5 h. Note the k+180 ambiguity in the pole direction. This is an inevitable ambiguity in all disk-unresolved observations for targets orbiting near the plane of ecliptic (Kaasalainen and Lamberg, 2006). 4. Conclusions The Pan-STARRS photometric data will be fully capable of providing physical models of near-earth and main-belt asteroids. About 100 calibrated data points within 4 5 years suffice for such models for which the calibration errors should not be higher than ~3%. For TNOs, the data is sufficient for rotation period determination. In the next decade, GAIA photometry will provide another dataset for thousands of asteroids and it will be possible to process both Pan-STARRS and GAIA data simultaneously. With GAIA, we can also use the astrometric photocentre offset effect simultaneously with photometry to improve the models (Kaasalainen et al., 2005). A large database of thousands of asteroid spin states and basic shapes provides us the ability to understand key issues related to the formation and evolution of both near-earth and main-belt asteroids. Such a database can be constructed without having to obtain traditional lightcurves that require a dense time series of photometric measurements. From this database we can then select interesting targets (peculiar shapes, probable binary systems, etc.)

JOSEF Dˇ URECH ET AL. Figure 4. Original shapes (top) and derived shape models. The testing data was simulated for a MBA orbit with the Golevka (left) and Bacchus (right) radar shape model, pole direction (20, 40 ), and 3% noise. There are two edge-on views for each model that are 90 apart. Together with the correct solution (the second row), there is a rival solution (the third row) that differs by ~180 in the ecliptic longitude k of the pole direction. that require followup observations such as full lightcurves or radar experiments. In this manner we will improve the efficiency of telescope time devoted to detailed observations. 4.1. FUTURE WORK So far, we have simulated only asteroids rotating in the principal axis mode with periods in the range 2 24 h. This is only the beginning of a more extensive study on the use of Pan-STARRS data. We will continue by testing Pan-STARRS time-sequence series for fast and slow rotating asteroids, tumbling asteroids, and binary objects. Preliminary tests show that: (i) none of these cases can be misinterpreted as a principal axis rotator with a 2 24 h period, (ii) the correct periods can be derived even for fast rotating (~0.2 h) objects, (iii) there are false period solutions of one half or double of the correct value for longer periods (~100 h), and (iv) some binary targets (with large enough secondary/primary size ratio and suitable geometry of the orbit)

ASTEROID MODELS FROM THE PAN-STARRS PHOTOMETRY can be detected through brightness drops during mutual events as exposed in brightness versus phase angle figures. During the first year of Pan-STARRS observation we will compare the measured photometric data with predictions based on available asteroid models (see Kaasalainen et al., 2004 and references therein). This will enable us to derive the real calibration errors, frequency of outliers, systematic errors, etc. Acknowledgements This work was supported, in part, by CIMO and the Academy of Finland. References Hodapp, K. W., Kaiser, N., Aussel, H., Burgett, W., Chambers, K. C., Chun, M., Dombeck, T., Douglas, A., Hafner, D., Heasley, J., Hoblitt, J., Hude, C., Isani, S., Jedicke, R., Jewitt, D., Laux, U., Luppino, G. A., Lupton, R., Maberry, M., Magnier, E., Mannery, E., Monet, D., Morgan, J., Onaka, P., Price, P., Ryan, A., Siegmund, W., Szapudi, I., Tonry, J., Wainscoat, R. and Waterson, M.: 2004, Astronomische Nachrichten 325, 636 642. Kaasalainen, M.: 2004, Astron. Astrophys. 422, L39 L42. Kaasalainen, M., Hestroffer, D. and Tanga, P.: 2005. Physical models and refined orbits for asteroids from Gaia photometry and astrometry. In ESA SP-576: The Three-Dimensional Universe with Gaia, p. 301. Kaasalainen, M. and Lamberg, L. (2006). Inverse Problems 22, 749 769. Kaasalainen, M., Pravec, P., Krugly, Y. N., Sˇ arounová, L., Torppa, J., Virtanen, J., Kaasalainen, S., Erikson, A., Natheus, A., Dˇ urech, J., Wolf, M., Lagerros, J. S. V., Lindgren, M., Lagerkvist, C.-I., Koff, R., Davies, J., Mann, R., Kusˇ nirák, P., Gaftonyuk, N. M., Shevchenko, V. G., Chirony, V. G. and Belskaya, I. N.: 2004, Icarus 167, 178 196. Kaasalainen, M., Torppa, J. and Muinonen, K.: 2001, Icarus 153, 37 51. Kaasalainen, S., Piironen, J., Kaasalainen, M., Harris, A. W., Muinonen, K. and Cellino, A.: 2003, Asteroid photometric and polarimetric phase curves: Empirical interpretation. Icarus 161, 34 46. Milani, A.: 2006, Earth, Moon, and Planets (this volume).