V = = A = ln V

Similar documents
Chapter 13 Problem Solutions Computer Simulation Computer Simulation ma/ V 80. r I (120)(0.026)

Circle the one best answer for each question. Five points per question.

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

FYSE400 ANALOG ELECTRONICS

Chapter 3 Output stages

Lecture 37: Frequency response. Context

RIB. ELECTRICAL ENGINEERING Analog Electronics. 8 Electrical Engineering RIB-R T7. Detailed Explanations. Rank Improvement Batch ANSWERS.

Class AB Output Stage

ECE 6412, Spring Final Exam Page 1

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

Input Stage. V IC(max) V BE1. V CE 5(sat ) V IC(min) = V CC +V BE 3 = V EE. + V CE1(sat )

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

ECE 523/421 - Analog Electronics University of New Mexico Solutions Homework 3

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

University of Pittsburgh

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

Microelectronic Circuit Design Fourth Edition - Part I Solutions to Exercises

Bipolar junction transistors

Analog Circuit Design Discrete & Integrated

Biasing the CE Amplifier

Lecture 010 ECE4430 Review I (12/29/01) Page 010-1

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 20, 2003

College of Engineering Department of Electronics and Communication Engineering. Test 1 With Model Answer

Chapter 13 Small-Signal Modeling and Linear Amplification

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14

Quantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current.

6.012 Electronic Devices and Circuits Spring 2005

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Chapter 4 Field-Effect Transistors

University of Toronto. Final Exam

Homework Assignment 08

Lecture 12 Circuits numériques (II)

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

figure shows a pnp transistor biased to operate in the active mode

College of Engineering Department of Electronics and Communication Engineering. Test 2

The Devices. Jan M. Rabaey

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120

Practice 3: Semiconductors

Bipolar Junction Transistor (BJT) - Introduction

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

Fig. 1 Simple BJT (NPN) current mirror and its test circuit

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

3. Design a stick diagram for the PMOS logic shown below [16] Y = (A + B).C. 4. Design a layout diagram for the CMOS logic shown below [16]

At point G V = = = = = = RB B B. IN RB f

V in (min) and V in (min) = (V OH -V OL ) dv out (0) dt = A p 1 V in = = 10 6 = 1V/µs

EE 434 Lecture 34. Logic Design

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.

Lecture 050 Followers (1/11/04) Page ECE Analog Integrated Circuits and Systems II P.E. Allen

Figure 1 Basic epitaxial planar structure of NPN. Figure 2 The 3 regions of NPN (left) and PNP (right) type of transistors

DEPARTMENT OF ECE UNIT VII BIASING & STABILIZATION AMPLIFIER:

6.012 MICROELECTRONIC DEVICES AND CIRCUITS

Electronics II. Midterm #2

VI. Transistor amplifiers: Biasing and Small Signal Model

MOS Transistor Theory

CHAPTER 13. Solutions for Exercises

EECS 141: FALL 05 MIDTERM 1

Transfer Characteristic

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SEMESTER / 2014

4.5 (A4.3) - TEMPERATURE INDEPENDENT BIASING (BANDGAP)

Lecture 28 Field-Effect Transistors

CMOS Analog Circuits

Chapter 9 Bipolar Junction Transistor

Amplifiers, Source followers & Cascodes

LECTURE 380 TWO-STAGE OPEN-LOOP COMPARATORS - II (READING: AH ) Trip Point of an Inverter

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Content. MIS Capacitor. Accumulation Depletion Inversion MOS CAPACITOR. A Cantoni Digital Switching

Electronic Devices and Circuits Lecture 16 - Digital Circuits: CMOS - Outline Announcements (= I ON V DD

MOSFET Model with Simple Extraction Procedures, Suitable for Sensitive Analog Simulations

EE115C Digital Electronic Circuits Homework #3

EE105 Fall 2014 Microelectronic Devices and Circuits

1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp)

(S&S ) PMOS: holes flow from Source to Drain. from Source to Drain. W.-Y. Choi. Electronic Circuits 2 (09/1)

Lecture 140 Simple Op Amps (2/11/02) Page 140-1

Electronics II. Final Examination

P-MOS Device and CMOS Inverters

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

ECE-342 Test 2 Solutions, Nov 4, :00-8:00pm, Closed Book (one page of notes allowed)

University of Pennsylvania Department of Electrical and Systems Engineering ESE 319 Microelectronic Circuits. Final Exam 10Dec08 SOLUTIONS

6.012 Electronic Devices and Circuits

ESE319 Introduction to Microelectronics. BJT Biasing Cont.

EE 560 MOS TRANSISTOR THEORY

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact

Homework Assignment 09

M2 EEA Systèmes Microélectroniques Polytech montpellier MEA 4. Analog Integrated Circuits Design

MOS Transistor Theory

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SPECIAL SEMESTER 2013 / 2014

Chapter 13 Bipolar Junction Transistors

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

EE 434 Lecture 33. Logic Design

Electronics II. Midterm #1

V. Transistors. 3.1 III. Bipolar-Junction (BJT) Transistors

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory

Vidyalankar S.E. Sem. III [EXTC] Analog Electronics - I Prelim Question Paper Solution

Transcription:

Chapter Problem Solutions. a. b. c. γ + γ + BE + C + + γ + ( γ ( γ C γ + BE + BE γ BE and C γ ( γ + or C BE + C ma.5 kω.7 ( ma + 4. kω.5 kω C. (a ln C BE T S (i μ 6 A,.6 ln.588 μa C BE 4 (ii μ 6 A,.6 ln.5987 μa C BE 4 (iii ma (b (i C BE 4,.6 ln.6585 ma + β 9.65 μa BE BE T ln + S 5 6 9.65 (.6 ln 4.578 6 96.5 96.5 A.6 ln + 5.5977 (ii μ BE 4

.965.965 ma.6 ln + 5 (iii B B BE 4. + BE.5. K ( on.7 (.5 C C C C.49 ma + + β 6 4. μa.4 + BE 8. B B ( on 5.7 ( 5.58 ma ( 6.98 μa.6575.58 C C C C.4958 ma + + β 8.5 (a (b 5.7 ( 5 + BE on or 58.6 kω.5.7 ( 5 on 8.6 kω + BE.5 Adantage: equires smaller resistance. (c For part (a: 9. ( max.56 ma 58.6.95 9. min.476 ma ( 58.6(.5 Δ.56.476.5 ma ± 5% For part (b: 4. ( max.56 ma 8.6.95 4. min.476 ma ( 8.6(.5 Δ.5 ma ± 5%.6 a. + + or.4 ma β 5.7 7. kω.4

b. A 8 r 4 kω Δ Δ ( 9..5 ma ΔCE r 4 Δ.5 Δ.6%.7 n C C C + B + B C + + β β n + n C + + C + β β β n + n β + or. n + n + β.8 (.. ma + + 4 β 5.7 4..5 K.9 a. 5.7.9 ma 8.9. ma + 5 b. A 5 r 8 kω. Δ Δ (..597 ma.6 ma EC r 7 Δ..56 ma.45 ma 7 c.. a. 5.7 5 9. kω ma 5.7 For EC min.7 C C.5 kω b. c..

.5 ma.5 ma A B A +.5 + β 6.65 ma.5.7 6.86 K.65..7 7. K.5. and (a. ma,.5 ma (b.5 ma,.75 ma (c.67 ma,. ma.4 a.

E C and C + B C+ + β BE C BE E B + B + + β C C + + BE β ( + β ( + β BE + BE ( + β + β( + β ( + β β ( + β b..7.7 + ( 8( 8 + ( 8.76 +.864 (.7.7 ma.7 kω.5 a. ES i C and C + BS C + + β ES B + B + B +... + BN ( + N B ( + N C β ( + N C Then C + β( + β or i ( + N + β ( + β 6.5 +.5 ma b. ( 5( 5 5(.7 ( 5.6 7.6 kω.5

+ (.5.54 ma β ( β + + ( 5( 5 5(.7 ( 5 7.9 kω.54.7 + β ( β + For.8 ma (.8 +.84 ma 5( 7 8 (.7.69 kω.84.8

The analysis is exactly the same as in the text. We hae + β ( + β.9 ma, B.67 ma 75 C ma, B. ma 75 E B + B. +.67.4 ma E.4 B.56 ma + β 76 C + B.56 ma (.7 8.6 8.6 kω. (a β ro Assuming A A r 4 K.5 ( 4 MΩ (b Δ Δ 5 Δ Δ MΩ MΩ Δ.5 μa. + BE 5.7 9..464 ma T.6.464 ln ln E.5.464.7ln By trial and error 4.7 μa BE.7 E BE.7 (.47(.5.675 BE. (a

5.7 5 + BE 9 μ A 9 ma E T ln.6 ln By trial and error, 6.8 μ A ( r + g o o m E Now ro 4.4 MΩ 6.8.68 gm.65 ma /.6 (.6 rπ.68 8.4 kω So E rπ E 8 9.74 kω Then o 4.4 + (.6( 9.74 o 5.6 M Ω (b. Δ Δ.68.68 BE BE o E BE BE ( m A 8.76 MΩ 6.8 m T.6 ( 8(.6 π C r + g r g.68.65 ma/ rπ 6 kω.68 r 6 9.68 K E E E.76 +.65 9.68 4.54 MΩ Now Δ ( 5 Δ. μa 4.54.4 (a 5.7 5.5 8.6 K E T ln.6.5 E ln.5.5. K E

(b r [ + g ] (c c E m r E E π 75.6.5 rπ 9 K gm.9 ma/.5.6 A ro MΩ E. 9.64 K.5 + (.64(.9 ( 6.477 MΩ Δ 5 Δ.77 μa 6.477 Δ.77 %.54% 5.5 Let 5 k Ω, Then.7 4.66 ma 5 Now.6 4.66 E T ln E ln E kω...6 BE T ln S 5.7 (.6 ln S. A S At ma, BE (.6 ln. 5.78 5.78 7.4 kω T.6 E ln ln E.9 kω.5.5.7 a..7.465 ma Let BE T ln S Then.465 BE (.6 ln.68 5. Then 5.7 (.6 ln S. A S

.68.466 ma T.6.466 b. E ln ln E 4Ω...8.7 (.485 ma 4 BE T ln S 5.7 (.6 ln S. A S Now BE BE So.485 (.6 ln.68 5..68.68.48 ma 4 E T ln.48 (.6 ln By trial and error. 8.7 μa.68.87.5766 BE BE E BE.9 + + BE E BE E BE BE E E For matched transistors BE T ln S BE T ln S Then T ln E E utput resistance looking into the collector of Q is increased.. (a (b + 5.7 5 BE + E 7. +.74 ma.74 ma Using the same relation as for the widlar current source.

( π r o + gm E r A 8.74 ro 5 K gm. ma/.74.6 (.6 rπ 8.9 K E rπ 8.9.68 K.74 5 + (.(.68 5. MΩ (c 5.7( 5.47 ma 7. A 8 ro 5 K.47. Assume all transistors are matched. a. BE BE + E BE T ln S BE T ln S T ln T ln E S S T ln ln E S S T ln E S b..7.6. BE at. ma BE (.6 ln.64 5..64 Since, then BE E E or E. 6.4 kω 5 BE.7 at ma S exp or S. A. (a 5.7( 5.8 ma.6 K.6.8 E ln E.44 K.5.5.6.8 E ln E 4.8 K.. (b BE.7 (.5(.44 BE.68.7. 4.8.64 BE BE

. (a BE BE + BE + Now BE + BE + E or E BE BE + We hae BE T ln and BE T ln S S (b Let and Then BE E ( E so + ( E + E + Then + ε (c Want.5 ma 5( 5 So E E kω.5 5(.7 ( 5 7. kω.5 Then 8.6 kω.4 a..7.7.55 ma. ma.55 ma 4.65 ma BE BE BE b. CE C ( (. + CE.8 EC C (.55( EC 5.5 4.65 5.5 EC C EC.5 a. st approximation

.4.5 ma 8. Now BE.7 (.6 ln BE EB.7 Then nd approximation (.7. ma 8 4.64 ma. ma 6.96 ma b. At the edge of saturation, CE BE.7.7 ( C C. kω 4.64.7 C C 4. kω..7 C C. kω 6.96.6.7.7 ( C C.86 ma C C4.86 ma.86 C5 (.5.6ln C5 By Trial and error. C5.6 ma C6 C7 C.8 + CE CE.86.8 CE 7. 5 EB6 + CE 5 + C5(.5 CE5 5 +.7 (.6(.5 CE5 4. 5 EC 7 + C 7(.8 EC 7 5 (.6(.8 4.89 EC 7.7.7.7 ( C C C C.86 ma C4 C5.86 ma C.86 CE T ln C(..6 ln C C By trial and error C.95 ma 5.86 C C6E T ln C6(.5.6 ln C6 C6 By trial and error C 6.6 ma

.8.7 ma 6. + BE ( Q.7 as assumed E E (( E E E E kω E E E E.5 kω E E E E.75 kω 4 ma ma 4 ma.8 DS ( sat GS TN GS.5 GS.5 μncox ( GS TN L 5 (.5.5.5 L L μncox ( GS TN L (.5.5.5 L L Now GS GS.5 6.5 So ( 6.5.5. L L.9.5 GS.8 GS 5.5.6 +.5 GS GS GS.6GS.6GS.6 GS.6 ± 6.76 +.4.6 ( 6(.5 GS..9.5.9 9. μa 9.5 5 o 9. μa DS ( sat GS TN.9.5 sat.69 DS.9 a. From Equation (.5,

5 5 5 5 GS GS ( 5 + (.5 5 5 + + 5 5.447.447 ( 5 + (.5 +.447 +.447 GS GS.74 Kn ( GS TN ( 8( 5(.74.5.69 ma b. μncox ( GS TN ( + λds L ( 8( 5(.74.5 + (. 45 4.4 ma c. 45 +. 4.448 ma.4 (a 8 5 (.5 GS L. GS.5 Design such that DS ( sat.5 GS.5 GS.75.75 So.5 5 K 8 5.75.5 L L L 5 4 W W L L L (b 667 K λ (.5(. Δ (c Δ.5 μa 666 Δ.5 % %.5%.4 8 GS GS.44 5μA at DS GS.44 λ K (a 5 ( ( (.(.5

(i (ii (iii Δ.44 Δ.8 μa 5.8 μa Δ 4.5.44 Δ. μa 6. μa Δ 6.44 Δ 7.8 μa 67.8 μa 4.5 5 75 μ A at DS.44. K λ (.(.75 Δ.44 Δ 4. μa. 79. μa Δ 4.5.44 Δ 5.5 μa. 9.5 μa Δ 6.44 Δ 6.7 μa. 4.7 μa (b (i (ii (iii.4 SD( sat.5 SG + TP SG.4 SG.65 k p W ( SG + TP L 4 5 (.65.4 L L ( WL / 75 μ A 6 ( WL / L k p W ( SG + TP L SG.65.5 4 Then 75 (.5.4.986 L L.4 (a.5 + + GS TN Kn.5 Kn K n K n Kn

.5 ( max (.5(.5 ( max.55 ma.5.5 ( min (.5(.95 ( min.475 ma.5 So.475.55 ma (b K + n TN TN Kn.5 min.5 +.5 (min.45 ma.5.5 ( max (.5 +.95 (max.55 ma.5 So.45.55 ma.4 x A ( x + g m gs r A ( x + gmgs r So ( o o, gs x gs A x x A + gm ro ro A + g r g r ( [ ] x m x A o x m x o

Then x x ro( x gmx + gm ro ro x x gm x ro + gmx x gmx ro ro ro g r + g + g r x x x m o x m x m o x ro x[ + gmro] x + gm + gmro ro Since gm >> ro x [ + gmro] x( gm( + gmro x + gmro Then o x gm( + gmro Usually, gmr o>>, so that o g.44 DS (sat GS.8 GS.8 6 (.8.8.67 L L L.4 L. W. (.67 L L GS 6.8. 6 4 (..8. L L.45 (a 6 6 GS + GS 5 ( GS.7 5 GS.7.58 6.7.75 6 (.75.7 66 μa (b 8.4 K λ (.5(.66 Δ.5.75 Δ. μa 8.4 6.5 μa (.7 ( (.7 GS GS GS GS GS 6 ( (.75.7 6.6 μ A at DS.75 m

(c Δ.75 Δ 7.6 μa 8.4 7.7 μa.46 5 5 + ( 5(.5 ( (.5 SG SG SG SG SG SG 5 ( SG.5 SG.5.6.68.8 SG SG 5 ( 5 (.8.5.9 ma.9 ma (sat +.8.5 (sat.78 SD SG TP SD.47 (sat..5.55 SD SG SG 5 (.55.5.78 L L ( W L ( W ( W L L.78 + 4.45 SG SG SG L 5.56 5 (.45.5.8 L L.48 8 8 SG SG+ SG SG ( 5(. ( 4(. SG SG 5 ( 4 6.8.7 SG Then SG.. SG SG 8 ( 5(.67..4 ma (sat +.7. sat.7 SD SG TP SD.49 (sat.8.4. SD SG SG ( W L ( W L ( W 8 (..4.77 L L L.77 L.54

Assume M and M 4 are matched.. SG + SG SG.4 8 (.4.4 L,4.5 L,4.5 (a k p ( SG + TP L k p ( SG + TP L But SG SG So 5( SG.4 5( SG.4 which yields SG.8 and SG.9 ( 5(.8.4 μ A ( W / L 5.6 ( W / L 5 Then.6 9 μ A (b DS ( sat.8.4.68.68. then. 6.7 kω.9.5 SD(sat.5 SG.4 SG.75 8 (.75.4.7 L L ( W ( W L 5 L ( W.4 ( W 8.7 L L SG.75.5 5 (.5.4.7 L L.5 a. Kn ( GS TN ( D4 GS GS For, μa

b. r + r ( + g r.5 r 4 m 4 4 r 5 kω λ (.(. g K.. ma/ m n GS TN 5 + 5 +. 5 5 MΩ 6 Δ Δ Δ.8 μa D4 5 r gs4 X g r + r S6 X m gs4 4 X ( + g r r + r X m X 4 X r + + g r r S6 X m 4 gs6 g + g + X S6 X X m gs6 S6 m r6 r6 r6 X X X gm + r + ( + gmr r4 r 6 r6 X X + gm + r + ( + gmr r4 r6 r6 X r6 + ( + gmr6 r + ( + gmr r4 X 4 6. ma. GS g K..4 ma/ m n GS TN r r r 5 kω GS λ (.(. 9 57575 kω.58 Ω { } 5 + +.4 5 5 + +.4 5 5

.54 k n k n L L k p W GS 4 + L GS TN GS TN 4 ( 5(.5 5( 5(.5 TP GS GS GS GS 4 ( 5(.5 (.5 ( 4 + + 6 SG GS GS From ( ( ( ( 4.5.5.5 +.5 GS GS GS GS From ( ( ( ( 5.5.5 5.5 +.5 GS GS 4 SG4 GS Then ( becomes 5.5 +.5 +.5 +.5 + 6 GS GS GS which yields.6 and.,.4 GS GS SG4 k Then 5.6.5 or.74 ma n GS TN L.6 GS GS sat.6.5 sat.86 DS GS TN DS.55 sat.5.5 DS GS TN GS GS k 5 μ A n GS TN L 5 (.5 4 L L k n GS GS ( GS TN L L L 5 5.5 + + 6 GS SG4 GS 6 5.5 GS GS 5 5 (.5.5.75 L L k W p SG4 + TP L 4 5 (.5.5.88 L L 4 4.56 a. As a first approximation GS GS 8 8 Then 4 DS The second approximation ( 8 8 GS +. 4 8 r ( GS GS.96 86.4

Then Kn( GS TN ( + λngs 8(.96 + (.(.96 r 76.94 μa b. From a PSpice analysis, 77.9 μa for D and 77.4 μa for D. The change is Δ.5 μa or.65%..57 a. For a first approximation, 8 8 GS 4 GS 4 As a second approximation 8 8( GS 4 + (. r GS 4.98 GS K + λ n GS TN GS To a ery good approximation 8 μa b. From a PSpice analysis, 8. μa for and the output resistance is 76.9 M Ω. Then For D + 4 Δ D 76.9 8.5 μa.58.5 μa (a DS sat GS TN or GS DS sat + TN. +.8. k n D ( GS TN L 5 48 (. 6 L L GS 5 TN GS TN.8 +.. (b GS 5 GS 5 (c min sat. min.4 D DS D.59 (a k n Kn 5( 5 5 μ A/ L ( W / L K ( W / L n D 5 8.944.688 (.5(.5 5 6. kω (b D

SD GS + SD + sat + sat SD SG TP 5 5.5.7 D SG SG Then sat..5.77 D GS GS Also 5 5 5.5.947 + Then.7+.947.66 (c min 5 5 (.947.5.5 L L 5 5 75 (.7.5 7.5 L L 6 6.6 GS ( 5.667 C μn ox GS TN L W W W W (.667.5 L L L L μ C 4 5 n ox GS TN L r L W L. (.5.5 L L. L. L L. L And.5.75.6 4 SGP GSN (( GSN 8(( SGP. ( ( Also 4. Then 4. 8. GSN SGP 6.5 which yields SGP ( GSN. +. 4.4

4 ( ( Then.4 GSN. 4 GSN.49 GSN.. which yields.69 GSN and.4 SGP 4.4.69 Now 89.4 μ A 89.4 7.9 μ A 5.5 89.4 μ A.8 89.4 7.5 μ A 4 89.4 58 μ A.6 a. gm( M Kn g ( M g ( M r m.5..447 ma/ m r 5 kω (.(. n n λn r r 67 kω (.(. p p λp b. A g r r.447 5 67 A 44.8 m n p c. L rn rp L 5 67 or kω.6 We hae.69 and.4.69.4.88 So 9.4 μ A Then. 9.4.88 μ A 4 GSN 4( 9.4 77.6.5 9.4 4. μ A.8 9.4 5.5 μ A μ A SGP.6 ( W L ( W L ( W L 9 D ( D μ A 5 SG4 4 D ( 67 μ A W 9 L 4 66.7 SG4.6.46 ( SD4 SD4 (sat.46.6 sat.86.64 4 5 SG.6 L.75 SG 5 (

SD(sat.5 SG.6 SG.95.75.95 6 K.5 4 5 (.95.6.4 L L ( W L 49 5 (.4 L ( W D 5 L. 5 (.4 L DS 5(sat.5 GS 5.4 GS 5.75 (.75.4 5 4.5 L 5 L 5 ( W D4 D 5 L 4 4.8 5 4.5 L.65 For GS, id DSS ( + λds a. D 5, DS 5 id + (.5( 5 id.5 ma b. D, DS id + (.5 id ma c. D 5, DS 5 id + (.5( 5 id.5 ma.66 GS DSS P GS 4 P GS.9 P 4 So GS (.9( 4.7 S Then and S GS (.7 GS.586 kω Finish solution: See solution.66 Completion of solution Need DS DS ( sat GS P.7 ( 4 DS.8 So sat +.8 +.7 4 D DS S D 4

.67 a. exp EB S T EB T EB S 5 or ln.6 ln.5568 b. 5.5568 4.44 kω c. From Equations (.79 and (.8 and letting.5.5 +.5 exp 8 +.5568 T + 8.5.8 exp ( T.696 9 Then.6ln (. So.589 ( / T d. A ( / AN + ( / AP.6 8.46 A +.8 +.5 8 A 846.68.5 BE T BE S a. ln.6 ln.58 b. 5.58 8.96 kω.5 c. Modify Eqs..79 and.8 to apply to pnp and npn, and set the two equation equal to each other. EB EC BE CE C S exp + C S exp + T AP T AN EB.5 BE.5 5 exp + exp + T 8 T EB BE 5.565 exp.8 exp T T EB exp T EB BE.9798 exp BE T exp T EB BE + T ln (.9798.58 + (.6 ln (.9798.586 5.586 4.46 EB CE EC

d. A ( / T ( / + ( / AN.6 8.46 A +.8 +.5 8 A 846 AP.69 a. M and M matched. For, we hae SD SG SG DS.5 For M and M : μpcox ( SG + TP ( + λpsd L (.5 + (.(.5 4. L L L L For M : μ C + λ L n ox GS TN n DS ( + (.(.5 4.76 L L b. r n p r 5 kω λ (.(. g K μ C L g m n n ox o m. 4.76..95 ma/ ( A g r r.95 5 5 A 48.8 m n p.7 a. Kp ( SG + TP ( b. From Eq..89 + + λp( SG Kn( TN λ + λ λ + λ ( SG SG (. +. (. +. ( +. 5 5 9.4.96.98 n p n p

c. A gm( rn rp rn rp 5 kω λ (.(. gm K n... ma / A. 5 5 5 A.7 5.6 5.6. ma From Eq..96 C. T A.6.. C C + + + + 4 L 9 AN L AP 8.465 8.465.574 + +.444.46 + (a L, A 7 (b L 5 K, A 56 (c K, A 64 L L.7 5.6.57 ma 5 Then C.54 ma From Eq..96.54.6 9.669 A.54.54 + +.95 +.45 + 8 L L 9.669 A.575 + (a L A 846 (b 5 K, A 47 L L.7 (a To a good approximation, output resistance is the same as the widlar current source. r + gm( rπ E A g r (b m L.74 utput resistance of Wilson source L

β r Then m m ( A g r r AP 8 4 kω. AN r 6 kω. g. 7.69 ma/.6 T ( 8( 4 A 7.69 6 7.69[ 6 6, ] A 4448.75 (a μa D D For M; ro 5 K λ g g m P D m P D (.(..4 K 5..748 ma/ (.5(. For M; r K λ g mo n Do.8 (. gmo.8 ma/ (b A g ( r r (.8( 5 (c mo o oo A 4. ( Want A 57.5.8 4.8 4.8L 4.8 L 7.75 L 4 K 4.8 +.76 Assume M, M matched μa D Do r o r oo 5 K λ p D (.(. K λ n D A g r r mo o oo (.5(. ( g g 5.7 ma/ g mo mo.8 (..7 L 5. L mo L L

k n k p Now L L 8 4 ( 5. L.77.6 L L Since sg, the circuit becomes

g r x sg x m sg + and sg x o r Then x so that o x + gmro + ro ro x r o o ro + g mro + x ro or ( r + r + g r o o o m o A g r o m o o i Now g r m o r.5..6 ma / 5 kω λ n DQ (.(. g K. 8..8 ma/ m p DQ ro ro 5 kω λ Then p DQ (.(. o 5 + 5 +.8 5 MΩ A.6 5 A 5.78 From Eq..5 gm A + r r r r g g m m o o o4 o o k n L D.5.8.5657 ma/ r 65 K A λd (.(.8 (.5657. + (.56 ( 65 ( 65 A 6, 5.79

( ( g + + g + π π m i m π rπ ro ro ( π + + m π ro g ( ( gm i π + + gm + + rπ ro ro ro π ( + + π + gm ro ro gm >> r o + β ( gm i π + rπ ro ( + + π gm ro ( π + gm ro Then + β ( gm i + + gm ro rπ ro + β + + r β r o o + β β β gm i + β From Equation (. β r So

A g r β m o gm i + β.6 o ( 9.65(.5 8 K.5 A 66,65 r 9.65 ma/