PSC 8185: Multilevel Modeling Fitting Random Coefficient Binary Response Models in Stata

Similar documents
Lab 3: Two levels Poisson models (taken from Multilevel and Longitudinal Modeling Using Stata, p )

The Multilevel Logit Model for Binary Dependent Variables Marco R. Steenbergen

Homework Solutions Applied Logistic Regression

Lecture 3.1 Basic Logistic LDA

Longitudinal and Multilevel Methods for Multinomial Logit David K. Guilkey

Recent Developments in Multilevel Modeling

Maximum likelihood estimation of generalized linear models with covariate measurement error

Maximum likelihood estimation of generalized linear models with covariate measurement error

Estimating chopit models in gllamm Political efficacy example from King et al. (2002)

A Journey to Latent Class Analysis (LCA)

7/28/15. Review Homework. Overview. Lecture 6: Logistic Regression Analysis

Multilevel Modeling Day 2 Intermediate and Advanced Issues: Multilevel Models as Mixed Models. Jian Wang September 18, 2012

POLI 7050 Spring 2008 February 27, 2008 Unordered Response Models I

Using the same data as before, here is part of the output we get in Stata when we do a logistic regression of Grade on Gpa, Tuce and Psi.

Model and Working Correlation Structure Selection in GEE Analyses of Longitudinal Data

Sociology 362 Data Exercise 6 Logistic Regression 2

Description Remarks and examples Reference Also see

Estimation of Multinomial Logit Models with Unobserved Heterogeneity Using Maximum Simulated Likelihood

Logit estimates Number of obs = 5054 Wald chi2(1) = 2.70 Prob > chi2 = Log pseudolikelihood = Pseudo R2 =

Outline. Linear OLS Models vs: Linear Marginal Models Linear Conditional Models. Random Intercepts Random Intercepts & Slopes

Understanding the multinomial-poisson transformation

options description set confidence level; default is level(95) maximum number of iterations post estimation results

2. We care about proportion for categorical variable, but average for numerical one.

Estimation of multinomial logit models with unobserved heterogeneity using maximum simulated likelihood

Lecture 12: Effect modification, and confounding in logistic regression

crreg: A New command for Generalized Continuation Ratio Models

Generalized linear models for binary data. A better graphical exploratory data analysis. The simple linear logistic regression model

Linear Regression Models P8111

Analysing repeated measurements whilst accounting for derivative tracking, varying within-subject variance and autocorrelation: the xtiou command

Chapter 11. Regression with a Binary Dependent Variable

Lecture#12. Instrumental variables regression Causal parameters III

Assessing the Calibration of Dichotomous Outcome Models with the Calibration Belt

Binomial Model. Lecture 10: Introduction to Logistic Regression. Logistic Regression. Binomial Distribution. n independent trials

Jeffrey M. Wooldridge Michigan State University

Lecture 10: Introduction to Logistic Regression

Example 7b: Generalized Models for Ordinal Longitudinal Data using SAS GLIMMIX, STATA MEOLOGIT, and MPLUS (last proportional odds model only)

Calculating Odds Ratios from Probabillities

Introductory Econometrics. Lecture 13: Hypothesis testing in the multiple regression model, Part 1

Generalized Linear Models for Non-Normal Data

Problem set - Selection and Diff-in-Diff

Lecture 4: Generalized Linear Mixed Models

Lecture 3 Linear random intercept models

Multilevel Modeling of Non-Normal Data. Don Hedeker Department of Public Health Sciences University of Chicago.

Lecture 5: Poisson and logistic regression

Using generalized structural equation models to fit customized models without programming, and taking advantage of new features of -margins-

Generalized linear models

Mixed Models for Longitudinal Binary Outcomes. Don Hedeker Department of Public Health Sciences University of Chicago.

Binary Dependent Variables

Monday 7 th Febraury 2005

Meta-analysis of epidemiological dose-response studies

ECON 594: Lecture #6

EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #7

Lecture 2: Poisson and logistic regression

Control Function and Related Methods: Nonlinear Models

Dealing With and Understanding Endogeneity

multilevel modeling: concepts, applications and interpretations

Limited Dependent Variable Models II

Latent class analysis and finite mixture models with Stata

Contrasting Marginal and Mixed Effects Models Recall: two approaches to handling dependence in Generalized Linear Models:

Multilevel Modeling (MLM) part 1. Robert Yu

Confidence intervals for the variance component of random-effects linear models

sociology 362 regression

ECON Introductory Econometrics. Lecture 11: Binary dependent variables

Addition to PGLR Chap 6

Week 7: Binary Outcomes (Scott Long Chapter 3 Part 2)

LOGISTIC REGRESSION Joseph M. Hilbe

Binary Dependent Variable. Regression with a

The Regression Tool. Yona Rubinstein. July Yona Rubinstein (LSE) The Regression Tool 07/16 1 / 35

mi estimate : regress newrough_ic Current Torch_height Slowoncurves E_0 G_0 Current > 2 Pressure2 Cut_speed2 Presscutspeed, noconstant

Empirical Application of Simple Regression (Chapter 2)

Group Comparisons: Differences in Composition Versus Differences in Models and Effects

Parametric and semiparametric estimation of ordered response models with sample selection and individual-specific thresholds

Confidence Intervals for the Odds Ratio in Logistic Regression with One Binary X

Lab 11 - Heteroskedasticity

Title. Description. Special-interest postestimation commands. xtmelogit postestimation Postestimation tools for xtmelogit

UNIVERSITY OF TORONTO. Faculty of Arts and Science APRIL 2010 EXAMINATIONS STA 303 H1S / STA 1002 HS. Duration - 3 hours. Aids Allowed: Calculator

raise Coef. Std. Err. z P> z [95% Conf. Interval]

Additional Notes: Investigating a Random Slope. When we have fixed level-1 predictors at level 2 we show them like this:

Logistic Regression. Building, Interpreting and Assessing the Goodness-of-fit for a logistic regression model

Lecture notes to Stock and Watson chapter 8

A short guide and a forest plot command (ipdforest) for one-stage meta-analysis

Lecture 14: Introduction to Poisson Regression

Modelling counts. Lecture 14: Introduction to Poisson Regression. Overview

Single-level Models for Binary Responses

1 Warm-Up: 2 Adjusted R 2. Introductory Applied Econometrics EEP/IAS 118 Spring Sylvan Herskowitz Section #

From the help desk: Comparing areas under receiver operating characteristic curves from two or more probit or logit models

General Linear Model (Chapter 4)

Course Econometrics I

Econometrics. 8) Instrumental variables

Multivariate probit regression using simulated maximum likelihood

Nonlinear Econometric Analysis (ECO 722) : Homework 2 Answers. (1 θ) if y i = 0. which can be written in an analytically more convenient way as

Model Estimation Example

Statistical Modelling in Stata 5: Linear Models

Introduction A research example from ASR mltcooksd mlt2stage Outlook. Multi Level Tools. Influential cases in multi level modeling

POLI 7050 Spring 2008 March 5, 2008 Unordered Response Models II

Generalized Models: Part 1

Rockefeller College University at Albany

Class Notes: Week 8. Probit versus Logit Link Functions and Count Data

Consider Table 1 (Note connection to start-stop process).

Confidence Intervals for the Odds Ratio in Logistic Regression with Two Binary X s

Transcription:

PSC 8185: Multilevel Modeling Fitting Random Coefficient Binary Response Models in Stata Consider the following two-level model random coefficient logit model. This is a Supreme Court decision making model, where level-1 units are justices votes and level-2 units are court cases (justices votes (3544) nested within 399 cases). For binary dependent variables, a Bernoulli sampling model is used, and I use a logit link here. For the logit link, first define Pr(Y ij =1) = p ij, which is the probability of a liberal vote for choice i in case j. Then define ij as the log-odds of p ij : ij = log[p ij / (1 p ij )]. This allows one to specify the log-odds as a linear function of the level-1 independent variables. [Level-1 eq.] [Level-2 eqs.] ij = 0j + j PREF ij 0j = 00 + 01 SAL j + 02 COMP j + 03 ISSUEFAM j + 04 INFO j + 05 USAMICUS j + 06 USPARTY j + 07 STAT j + u 0j j = 10 + 11 SAL j + 12 COMP j + 13 ISSUEFAM j + 14 INFO j + 15 USAMICUS j + 16 USPARTY j + 17 STAT j + u 1j Reduced-form Representation of Model 2: ij = Effects on case outcome Avg. effect of preferences Cross-level interactions Error components 00 + 01 SAL j + 02 COMP j + 03 ISSUEFAM j + 04 INFO j + 05 USAMICUS j + 06 USPARTY j + 07 STAT j + 10 *PREF ij + 11 SAL j *PREF ij + 12 COMP j *PREF ij + 13 ISSUEFAM j*pref ij + 14 INFO j *PREF ij + 15 USAMICUS j *PREF ij + 16 USPARTY j *PREF ij + 17 STAT j *PREF ij + u 0j + u 1j *PREF ij 1

Fitting the Two-Level Model using Full Maximum Likelihood (Adaptive Quadrature) in GLLAMM set more off *ADAPTIVE QUADRATURE MODELS *Generate a constant; gllamm needs this gen cons=1 *Specify random intercept and random coefficient eq cons: cons eq pref: lagpctlib_use *Specify the level-2 variables that are a function of the random intercept eq f1: salience_nyt_cen complex_3pt_cen lnissuecount_cen infoenv_01_cen usamicus_cen usparty_cen statutory_cen *Specify the level-2 variables that are a function of the random coefficient eq f2: salience_nyt_cen complex_3pt_cen lnissuecount_cen infoenv_01_cen usamicus_cen usparty_cen statutory_cen *Model command; start with 4 quadrature points, then 8, then 12, etc.; use *start values from the previous model (that s the from(a) command) geqs(f1 f2) adapt nip(4) geqs(f1 f2) adapt nip(8) from(a) geqs(f1 f2) adapt nip(12) from(a) est store lag_adapt12 geqs(f1 f2) adapt nip(16) from(a) est store lag_adapt16 geqs(f1 f2) adapt nip(20) from(a) est store lag_adapt20 *Present results in a table form est table lag_adapt12 lag_adapt16 lag_adapt20, se p varwidth(34) stats(n ll aic) 2

. *ADAPTIVE QUADRATURE MODELS GLLAMM OUTPUT [Suppressing output from models using 4 and 8 quadrature points.]. gllamm dir lagpctlib_use if lagpctlib_use~=., i(caseid) l(logit) f(binom) nrf(2) eqs(cons pref) geqs(f1 f2) adapt nip (12) from(a) Running adaptive quadrature Iteration 0: log likelihood = -1433.9683 Iteration 1: log likelihood = -1433.9498 Iteration 2: log likelihood = -1433.9498 Adaptive quadrature has converged, running Newton-Raphson Iteration 0: log likelihood = -1433.9498 Iteration 1: log likelihood = -1433.9498 (backed up) Iteration 2: log likelihood = -1433.9496 Iteration 3: log likelihood = -1433.9496 number of level 1 units = 3544 number of level 2 units = 399 Condition Number = 15.170465 gllamm model log likelihood = -1433.9496 - dir Coef. Std. Err. z P> z [95% Conf. Interval] -------------+---------------------------------------------------------------- lagpctlib_~e 4.469579.3126479 14.30 0.000 3.8568 5.082357 _cons -.3927239.2204633-1.78 0.075 -.824824.0393763 - Variances and covariances of random effects ***level 2 (caseid) var(1): 15.246868 (2.1409271) cov(2,1):.47004543 (1.589734) cor(2,1):.03597937 var(2): 11.194171 (2.0465321) Regressions of latent variables on covariates random effect 1 has 7 covariates: salience_nyt_cen: 1.3087985 (.53243653) complex_3pt_cen: -.23641807 (.91949432) lnissuecount_cen:.0830284 (.21363707) infoenv_01_cen: -3.2768549 (2.4414709) usamicus_cen: -1.2216683 (.55349651) usparty_cen: -1.6855654 (.58330776) statutory_cen:.20317709 (.45585559) 3

random effect 2 has 7 covariates: salience_nyt_cen: 1.4321357 (.63688317) complex_3pt_cen: -.37590127 (1.0727686) lnissuecount_cen:.52559336 (.25446341) infoenv_01_cen: -.23535991 (2.9681077) usamicus_cen: -.7769956 (.6769883) usparty_cen: -1.3340209 (.70159345) statutory_cen: -.6900348 (.54179413). est store lag_adapt12 [Suppressing output from models using 16 and 20 quadrature points.].. est table lag_adapt12 lag_adapt16 lag_adapt20, se p varwidth(34) stats(n ll aic) --------------------------------------------------------------------------- Variable lag_ada~12 lag_ada~16 lag_ada~20 dir lagpctlib_use 4.4695786 4.4671294 4.4646248.3126479.31198263.31178696 _cons -.39272387 -.38596767 -.38979855.22046332.22660269.22829931 0.0749 0.0885 0.0877 cas1_1 cons 3.9047238 3.8868616 3.8851496.27414577.26850628.26867348 cas1_2 lagpctlib_use 3.3436029 3.3329991 3.3345159.30571974.30443987.30496215 cas1_2_1 _cons.12037866.12164403.119327.40697491.4042363.40362999 0.7674 0.7635 0.7675 f1 salience_nyt_cen 1.3087985 1.3005355 1.3042134.53243653.53845044.54107965 0.0140 0.0157 0.0159 complex_3pt_cen -.23641807 -.23030577 -.23172214.91949432.93965606.94469984 0.7971 0.8064 0.8062 lnissuecount_cen.0830284.08238374.08341868.21363707.22026835.22284323 0.6975 0.7084 0.7082 infoenv_01_cen -3.2768549-3.2372372-3.2487924 2.4414709 2.4672407 2.4796085 0.1795 0.1895 0.1901 usamicus_cen -1.2216683-1.2033215-1.2095659 4

.55349651.56258063.56695643 0.0273 0.0324 0.0329 usparty_cen -1.6855654-1.6638382-1.6713425.58330776.59268672.59686642 0.0039 0.0050 0.0051 statutory_cen.20317709.20579869.20441877.45585559.46632308.47066661 0.6558 0.6590 0.6641 f2 salience_nyt_cen 1.4321357 1.4270938 1.4280513.63688317.63558729.63648104 0.0245 0.0247 0.0249 complex_3pt_cen -.37590127 -.37517886 -.3744169 1.0727686 1.0706272 1.0717017 0.7260 0.7260 0.7268 lnissuecount_cen.52559336.52337804.52371888.25446341.25367009.25423543 0.0389 0.0391 0.0394 infoenv_01_cen -.23535991 -.24728057 -.24405967 2.9681077 2.9606287 2.9653711 0.9368 0.9334 0.9344 usamicus_cen -.7769956 -.77136087 -.77295672.6769883.67531714.67646903 0.2511 0.2534 0.2532 usparty_cen -1.3340209-1.3306189-1.3306759.70159345.7000968.70095192 0.0572 0.0574 0.0576 statutory_cen -.6900348 -.68659908 -.68781565.54179413.54078971.54172083 0.2028 0.2042 0.2042 Statistics N 3544 3544 3544 ll -1433.9496-1434.0637-1434.0918 aic 2905.8993 2906.1274 2906.1837 --------------------------------------------------------------------------- legend: b/se/p 5