Electron beam flue gas treatment and effects on volatile organic compounds Andrzej G. Chmielewski

Similar documents
Environmental Forensic Principals for Sources Allocation of Polycyclic Aromatic Hydrocarbons

Theoretical study of dose and dose rate effect on trichloroethylene (HClC=CCl 2 ) decomposition in dry and humid air under electron beam irradiation

Supporting Information

The direct effect of the harbour. micropollutant concentration. Workshop Characterization of atmospheric pollution in harbour areas 26 June 2013

Tar measurement by the Solid Phase Adsorption (SPA) method

Determination of Polycyclic Aromatic Hydrocarbons (PAH) Adsorbed on Soot Formed in Pyrolysis of Acetylene at Different Temperatures

This project has been funded with support from the European Commission. This publication reflects the views only of the authors, and the Commission

ORIGINAL PAPER. Introduction. Henrieta Nichipor, Elena Dashouk, Svetlana Yacko, Andrzej G. Chmielewski, Zbigniew Zimek, Yongxia Sun, Steven A.

Texas Commission on Environmental Quality INTEROFFICE MEMORANDUM

Selection of a Capillary

Application Note. Agilent Application Solution Analysis of PAHs in soil according to EPA 8310 method with UV and fluorescence detection.

Sensitive and rapid determination of polycyclic aromatic hydrocarbons in tap water

TECHNICAL MEMORANDUM June 16, 2011

Test Report No. : CE/2008/38467 Date : 2008/04/07 Page : 2 of 11 Test Result(s) PART NAME NO.1 : BLACK PLASTIC TUBE Cadmium (Cd) Lead (Pb) Mercury (Hg

Tropospheric OH chemistry

MEASUREMENT OF DRY DEPOSITION AMOUNT OF PAHS IN ZONGULDAK REGION

Authorized By: For Intertek Testing Services Ltd., Shanghai. Joanne Li Deputy General Manager

Combustion Generated Pollutants

Paths and degradation of PAHs in the Environment

A Single-Method Approach for the Analysis of Volatile and Semivolatile Organic Compounds in Air Using Thermal Desorption Coupled with GC MS

Occupational exposure to polycyclic aromatic hydrocarbons in various technological processes i INTRODUCTION

Selection of a Capillary GC Column

The Simplest Alkanes. Physical Properties 2/16/2012. Butanes are still gases. bp -160 C bp -89 C bp -42 C. CH 3 CH 2 CH 2 CH 2 CH 3 n-pentane.

Appendix 1: Polycyclic Aromatic Compounds: Nomenclature and Analysis

SPE AND GC MS INVESTIGATION OF ORGANIC CONTAMINANTS IN ATMOSPHERIC PRECIPITATION

APPENDIX G. Data Management Rules. Dioxin Data Report Appendix G. Lower Duwamish Waterway Superfund Site: T-117 Early Action Area

Accelerated Solvent Extraction GC-MS Analysis and Detection of Polycyclic Aromatic Hydrocarbons in Soil

Estimating PAH Dry Deposition by Measuring Gas and Particle Phase Concentrations in Ambient Air

*

Non-Potable Water A2LA Certificate

Reviewing Material Safety Data Sheets to Verify Significant Drinking Water Threats

EL608. Deodorants [EL /1/ ]

METHOD 8100 POLYNUCLEAR AROMATIC HYDROCARBONS

AppNote 2/2000. Stir Bar Sorptive Extraction (SBSE) applied to Environmental Aqueous Samples

STUDY ON POLYCYCLIC AROMATIC HYDROCARBONS AND POLY CHLORINATED BIPHENYLS YEARLY BASED CONCENTRATION IN WASTE OIL-SLUDGE AT MATHURA-AGRA REGION

Multi-residue Analysis for PAHs, PCBs and OCPs on Agilent J&W FactorFour VF-Xms

Tar analysis by Solid Phase Adsorption (SPA) associated with Thermal Desorption (TD) and Gas Chromatography (GC) analysis

DETERMINATION OF POLYCYCLIC AROMATIC HYDROCARBONS IN SOIL AT AL-NAHRAWAN BRICKS FACTORY Thamera K. M. Al-Rudaini 1 and Israa M.H.

C. Saggese, N. E. Sanchez, A. Callejas, A. Millera, R. Bilbao, M. U. Alzueta, A. Frassoldati, A. Cuoci, T. Faravelli, E. Ranzi

Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Seafood Using GC/MS

Test Report No. : CE/2009/34977 Date : 2009/03/25 Page : 1 of 10

Particle-Associated PAHs in Urban and Rural Ambient Air Samples

PAHs in Parking Lot Sealcoats. Performance Study. Asphalt Based. Coal Tar Sealcoat Sealcoat. Sealcoat. Scrapings. Asphalt Based.

Guidance on the Major Source Determination for Certain Hazardous Air Pollutants

Atmospheric Analysis Gases. Sampling and analysis of gaseous compounds

The Suite for Environmental GC Analysis

Mercury Oxidation Test Program Results

I Write the reference number of the correct answer in the Answer Sheet below.

CERTIFICATE OF ANALYSIS

ILLA SpA VIA GHISOLFI GUARESCHI, NOCETO (PR)

APPENDIX K. Fingerprinting Justification Memo

Pursuant to Chapter 4 of the Code of Ethics, ETAD members may not manufacture or sell dyes referred to in Annexes A and B. Annex A

Defense Technical Information Center Compilation Part Notice

air protection technology

Coal Tar Forensics. Russell Thomas - WSP/PB Chris Gallacher and Robert Kalin - University of Strathclyde. YCLF February 2017

ESTIMATION OF POLYCYCLIC AROMATIC HYDROCARBONS (PAHs) POLLUTANTS IN THE AMBIENT AIR OF KHARTOUM CITY, SUDAN (Part III)

Application Note. Abstract. Introduction. Determination of Polycyclic Aromatic Hydrocarbons in Seafood by an Automated QuEChERS Solution

Detection of Environmental Contaminants Caused by the Oil Spill in the Gulf of Mexico by GC and Hplc

Amec Foster Wheeler Environment & Infrastructure, Inc BIG SHANTY ROAD, NW, SUITE 100 KENNESAW, GEORGIA (770)

Potassium permanganate as an oxidant in the remediation of soils polluted by Bonny light crude oil

OREGON Environmental Laboratory Accreditation Program ORELAP Fields of Accreditation ALS Environmental - Simi Valley

Determination of 24 PAHs in Drinking Water

Method 8270C PAH. FD- Field Duplicate Samples

Simulating chemistry on interstellar dust grains in the laboratory

Analysis of Polycyclic Aromatic Hydrocarbons in Soil with Agilent Bond Elut HPLC-FLD

SUPPORTING INFORMATION

HYDROCARBONS. Section A

The Effect of Unresolved Complex Mixtures (UCM) on Isotopic Profile of Aromatic Hydrocarbons

Polycyclic Aromatic. atmosphere of Guangzhou,

Test Report. Report No. ECL01H Page 1 of 5

Compatibility of Surfactants and Thermally Activated Persulfate for Enhanced. Subsurface Remediation

Andrei Medvedovici, Florina Micăle, Florentin Tache

Results of a Sediment Survey in the Near Offshore Waters of the Proposed Quarry Site in the Vicinity of Whites Cove, Digby Neck, Nova Scotia

Module: 5. Lecture: 29

An Investigation of Precursors of Combustion Generated Soot Particles in Premixed Ethylene Flames Based on Laser-Induced Fluorescence

3 free radical is most stable. Q.5. A + Cl 2 hv monochloro product To maximize the yield of monochloro product in the above reaction? Cl 2 must be add

Training Coarse ECOPROBE 5 CHEMISTRY RS DYNAMICS

3.2 Alkanes. Refining crude oil. N Goalby chemrevise.org 40 C 110 C 180 C. 250 C fuel oil 300 C 340 C. Fractional Distillation: Industrially

Radiation Processing. Chemical Effects

ATOC 3500/CHEM 3151 Air Pollution Chemistry Lecture 1

BRCC CHM 102 Class Notes Chapter 13 Page 1 of 6

APPENDIX D Laboratory Analytical Reports

Measurements of Ozone. Why is Ozone Important?

Polyaromatic Hydrocarbon Emissions in Fly Ashes from an Atmospheric Fluidized Bed Combustor Using Thermal Extraction Coupled with GC/TOF-MS

Modeling of Polycyclic Aromatic Hydrocarbon (PAH) Formation during Hydrocarbon Pyrolysis

Test Report No. SH / CHEM Date: Apr. 28, 2008 Page 1 of 6

Rajesh Dorai and Mark J. Kushner University of Illinois Deparment of Electrical and Computer Engineering Urbana, IL 61801

Dissemination patterns and risks impersonated of PAHs contaminated in the surface and subsurface soil

Optimizing GC Parameters for Faster Separations with Conventional Instrumentation

Katherine K. Stenerson, Michael Ye, Michael Halpenny, Olga Shimelis, and Leonard M. Sidisky. Supelco, Div. of Sigma-Aldrich Bellefonte, PA USA

Table 1 Soil and Groundwater Sampling Summary Table

(for tutoring, homework help, or help with online classes)

PosterReprint INTRODUCTION

Choosing the Correct GC Column Dimensions and Stationary Phase

Mass Spectrometry. Introduction EI-MS and CI-MS Molecular mass & formulas Principles of fragmentation Fragmentation patterns Isotopic effects

Analysis of Alkyl PAHs And Geochemical Biomarkers

Study of Residual Solvents in Various Matrices by Static Headspace

Application of an Analytical Technique for Determining Alkyl PAHs, Saturated Hydrocarbons and Geochemical Biomarkers

Developing Large Volume Injection (LVI) in Split / Splitless Inlets. Philip J. Koerner Phenomenex Inc. NEMC 2014

PAH Analyses with High Efficiency GC Columns: Column Selection and Best Practices

Transcription:

INSTITUTE OF NUCLEAR CHEMISTRY AND TECHNOLOGY Warszawa, Poland Electron beam flue gas treatment and effects on volatile organic compounds Andrzej G. Chmielewski Workshop Volatile organic compounds and aerosol removal by means of plasma-based and plasma-assisted technologies Greifswald, 10th September 2010

EB FLUE GAS TREATMENT TECHNOLOGY 1989 LABORATORY INSTALLATION INCT, WARSAW 400 [Nm3/h] 1992 EB TECHNOLOGY IN POLAND FOR SO 2 AND NO X REMOVAL PILOT PLANT EPS Kawęczyn, n. WARSAW 20 000 [Nm3/h] 2002 DEMONSTRATION INDUSTRIAL PLANT EPS Pomorzany in SZCZECIN 270 000 [Nm3/h]

Pilot plant in EPS Kaweczyn

EPS Pomorzany, Szczecin

Plasma inside the reactor in Kaweczyn

The radiolytic yield of primary reactive species 4.43N 2 0.29N 2* + 0.885N( 2 D) + 0.295N( 2 P) + 1.87N( 4 S) + 100 ev 2.27N 2+ + 0.69N + + 2.96e - 5.377O 100 ev 2 0.077O 2* + 2.25O( 1 D) + 2.8O( 3 P) + 0.18O * + 2.07O 2+ + 1.23O + + 3.3e - 7.33H 2 O 100 ev 0.51H 2 + 0.46O( 3 P) + 4.25OH + 4.15H + 1.99 H 2 O + + 0.01H 2+ + 0.57OH + + 0.67H + + 0.06O + + 3.3 e - 7.54CO 100 ev 2 4.72CO + 5.16O( 3 P) + 2.24CO 2+ + 0.51CO + + 0.07C + + 0.21O + + 3.03 e - [1] J.C. Person, D.O. Ham: Radiat. Phys. Chem. 31 (1988) 1 [2] H. Matzing: Model studies of flue gas treatment by electron beams, in: Application of isotopes and radiation in conservation of the environment, IAEA-SM-325/186, International Atomic Energy Agency, Vienna 1995, pp. 115-124

THE POSSIBILITY TO APPLY EB TECHNOLOGY FOR VOCS TREATMENT HAS BEEN INVESTIGATED SINCE LATE 1980S. HYDROCARBONS CxHy ALIPHATIC AROMATIC CHLORINATED HYDROCARBONS CxHyClz ALIPHATIC AROMATIC Pentane CH 3 (CH 2 ) 3 CH 3 Hexane CH 3 (CH 2 ) 4 CH 3 Heptane CH 3 (CH 2 ) 5 CH 3 Benzene C6H6 Toluene C6H5-CH3 Xylene C6H4 (CH3)2 Styrene C6H5-CHCH2 Methylene chloride CH2Cl2 Chloroethylenes: mono-c2h3cl, di-, tri- ClCH:CCl2, Chlorobenzene C6H5Cl tetra- Cl 2 C:CCl 2 ALICYCLIC POLYCYCLIC POLYCYCLIC Cycloxehane CH 2 (CH 2 ) 4 CH 2 Naphthalene C10H8 Chloronaphthalene Cyclohexene CH:CH(CH 2 ) 3 CH 2 Acenaphthene C10H8 Fluoranthene C16H10 OTHER: Aceton, Methanol CH3OH, Buthylacetate, Diphenylether (C 6 H 5 ) 2 O, Phenol C6H5OH

LABORATORY INSTALLATION FOR EB TREATMENT OF FLUE GAS FROM CRUDE OIL COMBUSTION BF REACTION CHAMBER ACTIVATED CARBON BED INLET OUTLET 2 TRAPPING SYSTEMS CONSISTING OF E.G.: CONDENSERS, GAS BULBES, ADSORBENTS, ABSORBERS GM GM FLOW: 5 [m3/h]

LABORATORY EXPERIMENTS ON MODEL MIXTURES LABORATORY FLOW SET-UP (JAEA) Selected compounds CH 2 CH 2 Naphthalene NL Acenaphthene AC Fluoranthene FA Ci = 10 ppmv THE EXPERIMENT LET ESTIMATE: - removal efficiency vs. dose (individual PAHs decomposition rate) - decomposition products (process mechanism)

LABORATORY EXPERIMENTS ON MODEL MIXTURES 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0 Co/Ci NL AC 0 1 2 3 4 5 6 7 8 Dose [kgy] Co/Ci ratio vs. dose applied for naphthalene NL and acenaphthene AC (Ci = 10 ppm) BASE GAS COMPOSITION: 6% H 2 O + 10% O 2 + 84% N 2

LABORATORY EXPERIMENTS HOW EB INFLUENCED FLUE GAS COMPOSITION PAHs OH C 10 H 8 C 11 H 10 O C 6 H 6 O C 12 H 8 C 12 H 10 C 9 H 10 O AHs O OH O C 7 H 6 O 2 C 8 H 10 O C 7 H C 8 8 H 10 C 10 H 14 C 8 H 8... CONCENTRATION DECREASE OBSERVED CONCENTRATION INCREASE OBSERVED

LITERATURE BASED LABORATORY EXPERIMENTS OH H OH NO [1] [2] [3] O 2 O 2 NO 2 NO 2 H O H OH OH + HO 2 H NO 2 H OH OH CHOH CH=CHCHO O 2 NO NO 2 OH NO 2 + H 2 O O 2 O HO 2 + CHO CH=CHCHO O NL TRANSFORMATION MECHANISM ANALOGICAL TO ITS ATMOSPHERIC CHEMISTRY

LABORATORY EXPERIMENTS ON MODEL GAS MIXTURES [1] k 1 O2+, O+ C 10 H + 8 [2] k 0,45 3 O 0,55 [2a] [2b] C 10 H 8 O + C 9 H 8 + + CO 0,4 [3] O 0,2 [3a] 0,3 [3b] [3c] C 9 H 8 O + + CO C 9 H 7 O + C 10 H 8 O + 2 [5] O [7] O C 9 H 7 O + 2 + HCO 0,2 [5a] 0,4 [5b] 0,4 [5c] [4] O 0,75 0,05 0,2 [4a] [4b] [4c] C 8 H + 8 + CO C 9 H 7 O + + H C 9 H 8 O + O [6] [6a] [6b] C 7 H + C 7 H + 7 + HCO 8 + CO C 8 H 8 O + + CO C 8 H 7 O 2 + + HCO C 7 H 5 O + + H 3 C 2 O Snow, T. P., Le Page, V., Keheyan, Y., Bierbaum, V.M., (1998) The interstellar chemistry of PAH cations, Nature. Midey, A. J., Williams, S., Arnold, S. T., Dotan, I., Morris, R. A., Viggiano, A. A., (2000) Rate constants and branching ratios for the reactions of various positive ions with naphthalene from 300 to 1400 K, Int. J. Mass Spectr., vol. 195/196.

EB AS MULTICOMPONENT PURIFICATION TECHNOLOGY FOR FOSSIL FUEL COMBUSTION SO2, NOx AND VOCs REMOVAL. THE KEY ORGANIC COMPOUNDS INVESTIGATED BY INCT POLYCYCLIC AROMATIC HYDROCARBONS (PAHs) Naphtalene Acenaphtene Antracene Fluoranthene C10H8 C12H10 C14H10 C16H10 Pyrene C16H10 Benzo(a)pyrene C20H12 Dibenzo(a,h) anthracene C22H14

POLYCYCLIC AROMATIC HYDROCARBONS WHY? PAHs EMISSION LEGISLATION AND REGULATIONS: Due to PAHs carcinogenicity*, they are subject to emission controls specified in annex III to the 1998 Protocol on Persistent Organic Pollutants (UNECE POPs). Some European countries applies own PAHs emission limits: benzo[a]pyrene is controlled in many of them Sweden - fluoranthene emission limited up to [2ng/m 3 ] Switzerland naphthalene up to 100 [mg/m 3 ]. IN POLAND OVER 90% OF ENERGY IS GENERATED BY COAL COMBUSTION PROCESS. * The epidemiological studies suggest an association between lung cancer and exposure to PAHs. EB.AIR/WG.1/2002/14, UNECE (http://www.unece.org/env/documents/2002/eb/wg1/eb.air.wg.1.2002.14.e.pdf

EB PILOT PLANT AT COAL-FIRED POWER STATION KAWĘCZYN ESP 200 000 Nm3/h 20 000 Nm3/h H2O Inlet sampling point Accelerators NH3 Irradiation chamber EP Outlet sampling point NH4NO3 & (NH4)2 SO4

ANALYTICAL PROCEDURE: GM COMBUSTION GASES ICE XAD2 - resin Activated carbon PRE-CONCENTRATION SORBENTS (XAD-2, ACTIVATED CARBON) EXTRACTION BY ETHERE SAMPLING SYSTEM Usually at least 200 dm3 minimum should be pumped through with the flow rate 100 dm3/h ETHERE EXTRACT EXTRACTION BY TOLUENE TOLUENE EXTRACT SEPARATION ORGANIC POLLUTANTS GAS CHROMATOGRAPHY, GC/FID POLYAROMATIC HYDROCARBONS (PAHs)

acenaphthylene acenaphthene fluorene phenanthrene anthracene fluoranthene pyrene benzo[a]anthracene chrysene benzo[bk]fluoranthene benzo[a]pyrene dibenzo[ah]anthracene benzo[ghi]perylene RESULTS PAH Ci Co naphthalene 0,000 0,000 acenaphthylene 0,000 0,184 2,000 Concentration [ g/nm³] acenaphthene 0,000 0,011 1,500 fluorene 0,000 0,073 phenanthrene 0,046 0,636 1,000 anthracene 0,043 0,509 fluoranthene 0,374 1,433 0,500 pyrene 0,049 0,071 benzo[a]anthracene 2,305 1,253 0,000 chrysene 0,856 0,433 benzo[bk]fluoranthene 0,102 0,244 benzo[a]pyrene 0,210 0,073 dibenzo[ah]anthracene 1,203 0,118 benzo[ghi]perylene 0,938 0,133 TOTAL 6,534 5,269 inlet outlet

RESULTS [ g/nm³] 2 4 Fused benzene rings 3 5-1- 0,000 0,500 1,000 1,500 2,000 NL ACL ACL FL PHE AN FA PY BaA CHR BbkFA BeP BaP P DBahA BghiP inlet outlet 0,000 1,000 2,000 3,000 4,000 5,000 6,000 NL ACL ACL FL PHE AN FA PY BaA CHR BbkFA BeP BaP P DBahA BghiP [ g/nm³] -3-0,000 0,500 1,000 1,500 2,000 2,500 3,000 NL ACL ACL FL PHE AN FA PY BaA CHR BbkFA BeP BaP P DBahA BghiP -4-0,000 0,500 1,000 1,500 2,000 NL ACL ACL FL PHE AN FA PY BaA CHR BbkFA BeP BaP P DBahA BghiP

HOW EB INFLUENCES OVERALL TOXICITY OF FLUE GAS? - SO2 and NOx removed - PAHs in some cases incresed concentration observed after irradiation COMPARISION OF OVERALL TOXICITY OF FLUE GAS (BASED ON PAHs) AT INLET AND OUTLET OF IRRADIATION VESSEL TEQ = c i TEF i TEQ - overall toxicity c i - PAH concentration [ g/nm 3 ] TEF i - PAH Toxic Equivalency Factor

TOXIC EQUIVALENCY FACTOR TEF* PAH TOXICITY EQUIVALENT FACTOR EPA Chu&Chen Nisbet&LaGoy naphtalene C 10 H 8 0,001 acenaphthylene C 12 H 8 0,000 acenaphthene C 12 H 10 0,000 0,001 fluorene C 13 H 10 0,000 0,001 phenanthrene C 14 H 10 0,001 anthracene C 14 H 10 0,000 0,010 fluoranthene C 16 H 10 0,000 0,001 pyrene C 16 H 10 0,000 0,001 benzo(a)anthracene C 18 H 12 0,100 0,013 0,100 chrysene C 18 H 12 1,000 0,001 0,010 benzo(bk)fluoranthene C 20 H 12 0,100 0,080 0,100 benzo(a)pyrene C 20 H 12 1,000 1,000 1,000 benzo(e)pyrene C 20 H 12 perylene C 20 H 12 dibenzo(ah)anthracene C 22 H 14 1,0909 0,690 5,000 benzo(ghi)perylene C 22 H 12 0,000 0,010 * TEF of individual PAHs have been determine in different bioassays on the base of their carcinogenic potencies

OVERALL TOXICITY - RESULTS OVERALL TOXICITY RESULTS BASED ON TEF EPA TEQ 6 5 4 3 SERIE 3 Inlet outlet inlet outlet PAH TEF EPA [ g/nm 3 c i c o [ g/nm 3 ] c i TEF C o TEF acenaphthene 0,0000 0,000 0,011 0,000 0,000 fluorene 0,0000 0,000 0,073 0,000 0,000 anthracene 0,0000 0,043 0,509 0,000 0,000 fluoranthene 0,0000 0,374 1,433 0,000 0,000 pyrene 0,0000 0,049 0,071 0,000 0,000 benzo[a]anthracene 0,1000 2,305 1,253 0,230 0,125 chrysene 1,0000 0,856 0,433 0,856 0,433 benzo[bk]fluoranthene 0,1000 0,102 0,244 0,010 0,024 benzo[a]pyrene 1,0000 0,210 0,073 0,210 0,073 dibenzo[ah]anthracene 1,0909 1,203 0,118 1,313 0,128 benzo[ghi]perylene 0,0000 0,938 0,133 0,000 0,000 TOTAL c 0 6,534 c k 5,269 TEQ 0 2,619 TEQ k 0,785 2 1 0 1 2 3 4 serie TEQinlet TEQoutlet

(TEQi-TEQo)/TEQi RELATIVE DECRESE OF OVERALL TOXICITY TEQi TEQo - inlet flue gas overall toxicity - outlet flue gas overall toxicity E TEQ = (TEQi-TEQo)/TEQi 1,00 0,90 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0,00 1 2 3 4 serie EPA Chu&Chen Nisbet&LaGoy

12:48 13:54 14:08 16:10 17:58 18:24 18:40 19:58 20:20 21:45 22:36 00:10 01:40 Flow rate [Nm3/h] Concentration [mg/nm3] PAHs ADSORPTION ON THE BY-PRODUCT SURFACE MEASUREMENT OF AMOUNT OF PAHs ADSORBED : 1. Collected by-product samples analysed PAHs concentration determined [ gpah /kg BP] 2. By-product concentration in flue gas measured continously average concentration for PAHs sampling calculated [mg/nm³] PAH PAH in by product [ g/kg] Serie 1 Serie 2 Serie 3 Naphthalene n.m. n.m. n.m. Acenaphthylene n.m. 2,276 n.m. Acenaphthene n.m. n.m. n.m. Fluorene n.m. n.m. n.m. Fenanthrene 0,684 0,896 n.m. Anthracene 0,094 0,125 0,095 Fluoranthene 3,329 n.m. 1,035 Pyrene n.m. n.m. n.m. Benz(a)anthracene n.m. 2,178 n.m. Chrysene n.m. 1,114 0,821 Benzo(b+k)fluoranthene n.m. 0,484 0,084 Benzo(e)pyrene 1,925 0,458 1,092 Benzo(a)pyrene 2,029 1,177 0,711 Perylene 0,677 0,792 0,534 Dibenzo(a,h)anthracene n.m. 1,210 0,092 Benzo(ghi)perylene n.m. 0,400 1,678 8,738 11,110 6,142 10 500 9 500 8 500 7 500 6 500 5 500 Flue gas flow rate and by-product concentration during PAHs sampling in EB experiment (Serie 2) 1500 1400 1300 1200 1100 1000 900 800 700 600 time

PAHs ADSORBED ON THE BY-PRODUCT SURFACE Serie Average by-product concentration c p [mg/nm 3 ] PAHs concentration in by-product M PAH [ g/kgbp] PAHs removed from flue gas [ g/ Nm 3 ] PAHs adsorbed In by-product [ g/ Nm 3 ] 1 500,51 8,738 1,255 0,0044 2 1119,27 11,110 5,388 0,0125 3 295,23 6,142 1,402 0,002 PAHs ADSORPTION PLAYS MINOR ROLE IN THE WHOLE REMOVAL PROCESS (LESS THAN 1% REMOVED)

Reason for Cl-VOCs treatment Principle for destruction Cl-VOCs using EB technology examples for Cl-VOCs treatment in lab scale Dioxins removal

Reason for Cl-VOCs treatment most Cl-VOCs have adverse effect on human s healthy, they can cause ozone depletion in stratosphere and ozone formation in troposphere, recent studies show that some Cl-VOCs (aromatic compounds) are suspected as precusor for dioxin s formation PhCl + OH = PhOH + Cl (1) PhOH + PhCl = HCl + PhOPh (2) Ph: benzene ring

Principle for Cl-VOCs removal using EB technology Active species formed from radiolysis of base gas react with Cl-VOCs (reactions of 5 big groups) and cause Cl- VOCs destruction

Main Reactions 1. positive ions-neutral reactions 2. negative ions-neutral reactions 3. ionic recombination reactions 4. radical-radical reactions 5. radical-neutral reactions

Rate constants of OH radicals with different dioxins (298K, 1atm) Compound Rate constant ( 10-12 cm 3.s - 1,4-dioxane 1 ) 11 dibenzo-p-dioxin 11-18 1-chlorodibenzo-p-dioxin 3.1-6.3 2,7-dichlorodibenzo-pdioxin 3.4-5.8 1,2,3,4-tetrachlorodibenzop-dioxin 0.47-1.6 Dibenzofuran 2.9-4.2 2,8-dichlorodibenzofuran 1.8-2.5

Set-up for 1,4-DCB irradiation with EB

Example of lab scale experiment Flow meter Mixer Ventilation Pump Air Air GC Reactor 1,4-DCB Setup for preparation of model gas containing 1,4-DCB

Removal efficiency(%) 1,1-, cis- & trans-dce decomposition vs. dose under EB-irradiation (C0: 900~1000ppm) 100 80 60 1,1-DCE trans-dce Cis-DCE 40 20 0 0 5 10 15 20 25 30 35 40 Dose(kGy)

1,1-DCE(molecules.cm-3) Main species contribute to 903.8ppm 1,1-DCE decomposition under EB-irradiation 1.00E+18 1.00E+16 1.00E+14 1.00E+12 1.00E+10 1.00E+08 1.00E+06 1.00E+04 1.00E+02 Cl e O2- OH O2+ H2O3+ O N2+ 1.00E-08 1.00E-06 1.00E-04 1.00E-02 1.00E+00 1.00E+02 Dose(kGy)

Mechanism of 1,1-DCE decomposition under EB-irradiation CH 2 CCl 2 R1 Cl R48b H2 O,CH 2 CCl 2 + CH 2 (OH)CCl 2 R29 CH 2 (OH)CCl2(O 2 ) CH 2 ClCCl 2 R9 CH 2 ClCCl 2 (O 2 ) R10,R11 HCHO,CCl 2 R49 OCl,COCl CH 2 CCl, Cl- COCl, HCHO M+ Cl CH 2 CCl 2+,CH 2 CCl - 2 CH 2 CCl 2, R30,R31 R12a CH 2 ClCCl2(O) R12b R18/R19 R34,R35,R36 CH 2 (OH)CCl 2 (O) CH 2 ClCOCl,Cl COCl 2, CH 2 Cl CO, Cl HCO, H 2 O / HCl / H 2 O 2 R32 R13,R14 R39 R22 R37 CH 2 OH, COCl 2 R33 HO 2, HCHO R58 H 2 O 2 H 2 O/HCl, CHClCOCl R15 COClCHCl(O 2 ) R16 COClCHCl(O) CO, Cl 2 - R54~R57 Cl 2 CH 2 ClO 2 R23,R24 CH 2 ClO R25 HCOCl, HO 2 CO, HO 2 H, CO 2 R38 R17 COCl, HCOCl

Concn. (ppm) 100 80 1,4-DCB/air mixture vs. dose in EB-irradiation 32 ppm 52.7ppm 68.5 ppm 90 ppm 60 40 20 0 0 10 20 30 40 50 60 Dose (kgy)

Removal efficiency (%) 100 80 1,4-DCB decomposition in different gas mixtures N2 air 1%NO-99%N2 60 40 20 0 0 10 20 30 40 50 60 Dose(kGy)

molecules/cm3 Kinetic reactions along time scale contributing to 1,4-DCB degradation in air mixture under EB irradiation(1,4-dcb = 90.0 ppm, H2O = 170.0 ppm) 1.E+15 1.E+14 1.E+13 1.E+12 1.E+11 1.E+10 OH M+ e M- Cl NO3 1.E+09 1.E+08 1.00E-08 1.00E-06 1.00E-04 1.00E-02 1.00E+00 1.00E+02 Time(s)

1,4-DCB/air decomposition under EB-irradiation Total irradiation time (s.) Dose (kgy) Main Species 10-8 ~ 10-4 4.8E-9 ~ 4.8E-5 e, M -, M + 10-3 ~ 10-2 4.8E-4 ~ 4.8E-3 OH 0.1 4.8E-2 M +, OH 1.0 0.48 Cl, NO3 10 ~ 100 4.83 ~ 48.3 OH, NO3

Schema of reaction pathways of 1,4-DCB decomposition and products formation C 6 H 4 Cl 2 M + M - OH Cl NO 3 A +, C 6 H 4 Cl + O 2 - A, O 3 - A, A - C 6 H 4 Cl(OH), Cl HCl, C 6 H 3 Cl 2 C 6 H 3 Cl 2, HNO 3 R128-129 R349 O 2 A 11+, A 12 + HO 2, C 6 H 4 Cl C 6 H 3 Cl 2 O 2 R149-157 M - R347 O 2 - Cl R343 C 4 H 3 C 2 HCl, C 6 H 4 Cl, others H 2 O 2 C 6 H 4 Cl(O 2- ) C 6 H 4 Cl 2 C 4 H 2 O 2 Cl, HC CCl O 2 M + R344 C 2 H, HCO C 4 H 3 Cl C 6 H 4 Cl CO, C 2 HCl, HCO NO 2 O 2 O 2 HCCO, O HCO, COCl C 2 HCl 2 HCONO 2 H O 2 CH 2 CO CH 2 CO CO CO 2 CO, Cl COCl 2, HCO CH 3 COCONO 2 R336 CO, CH 2 Cl CO 2 Cl 2

Conc. (mg/m3) Conc. of 1-chloronaphthalene vs. dose under EB-irradiation (for 1-chloronaphthalene, 1 mg/m 3 = 0.15ppm V/V) 40 12,08(mg/m3) 30,15(mg/m3) 30 20 10 0 0 10 20 30 40 50 60 Dose(kGy)

Present control technology for VOC (dioxin) emission and treatment Optimize combustion process Adsorption Plasma (EB) treatment

Thank you for your attention!