Light-Cone Sum Rules with B-Meson Distribution Amplitudes

Similar documents
QCD Effects in Exclusive Rare B-Meson Decays

B γlν and the B meson distribution amplitude

Analysis of the Isgur-Wise function of the Λ b Λ c transition with light-cone QCD sum rules

B D ( ) form factors from QCD sum rules

Applications of QCD Sum Rules to Heavy Quark Physics

Pion FF in QCD Sum Rules with NLCs

OPE for B-meson distribution amplitude and dimension-5 HQET operators

Non-local 1/m b corrections to B X s γ

A Comparative Study of f B within QCD Sum Rules with Two Typical Correlators up to Next-to-Leading Order

Meson Form Factors and the BaBar Puzzle

Theory of B X u l ν decays and V ub

Determination of Vxb

Introduction to Operator Product Expansion

QCD factorization in B decays ten years later

Inclusive B decay Spectra by Dressed Gluon Exponentiation. Einan Gardi (Cambridge)

QCD, Factorization, and the Soft-Collinear Effective Theory

B D ( ) Form Factors from QCD Light-Cone Sum Rules

SUM RULES. T.M.ALIEV, D. A. DEMIR, E.ILTAN,and N.K.PAK. Physics Department, Middle East Technical University. Ankara,Turkey.

arxiv: v2 [hep-ph] 16 Sep 2011

arxiv: v2 [hep-ph] 17 May 2010

Boosting B meson on the lattice

arxiv:hep-ph/ v1 6 Oct 1993

The γ γ π 0 form factor in QCD

Pion Transition Form Factor

HADRON WAVE FUNCTIONS FROM LATTICE QCD QCD. Vladimir M. Braun. Institut für Theoretische Physik Universität Regensburg

arxiv: v1 [hep-ph] 13 Sep 2009

Pion Electromagnetic Form Factor in Virtuality Distribution Formalism

arxiv: v2 [hep-ph] 3 Apr 2008

Decay constants and masses of light tensor mesons (J P = 2 + )

The phenomenology of rare and semileptonic B decays

Exclusive semileptonic B and Λ b decays at large hadronic recoil

CALCULATION OF A e iδ :

Danny van Dyk. B Workshop Neckarzimmern February 19th, Danny van Dyk (TU Dortmund) News on B K µ + µ 1 / 35

Inclusive B decay Spectra by Dressed Gluon Exponentiation

arxiv: v1 [hep-ph] 28 Aug 2013

Soft-Collinear Effective Theory and B-Meson Decays

Renormalon approach to Higher Twist Distribution Amplitudes

Annihilation-Type Semileptonic B-Meson Decays

Structure of Generalized Parton Distributions

B Kl + l at Low Hadronic Recoil

Sébastien Descotes-Genon

Hadronic B decays from SCET

Hadronic Effects in B -Decays

SCET for Colliders. Matthias Neubert. Cornell University. Based on work with Thomas Becher (FNAL) and Ben Pecjak (Siegen)

Factorization, Evolution and Soft factors

Deep inelastic scattering and the OPE in lattice QCD

Distribution amplitudes of Σ and Λ and their electromagnetic form factors

b sll 2015 and New Physics

Determination of the scalar glueball mass in QCD sum rules

Proceedings of the VIIIth International Workshop on Heavy Quarks and Leptons HQL06

arxiv: v1 [hep-ph] 16 Jan 2019

Factorization, the Light-Cone Distribution Amplitude of the B-Meson and the Radiative Decay B γlν l

Hadronic B decays from SCET. Christian Bauer LBNL FPCP 2006, Vancouver

P. Kroll. Fachbereich Physik, Universität Wuppertal Gaußstrasse 20, D Wuppertal, Germany

B-meson form factors

Radiative decay B lνγ in the light cone QCD approach

Charm CP Violation and the electric dipole moment of the neutron

(Semi)leptonic B decays: Form factors and New Physics Searches Danny van Dyk Universität Zürich

Nucleon form factors and moments of GPDs in twisted mass lattice QCD

2 2 ω 0 = m B m D. B D + ρ B D 0 π, B D 0 π,

Pion Distribution Amplitude from Euclidean Correlation functions

V cb : experimental and theoretical highlights. Marina Artuso Syracuse University

arxiv:hep-ph/ v1 18 Jan 1994

QCD Factorization and PDFs from Lattice QCD Calculation

Does the E791 experiment have measured the pion wave function. Victor Chernyak. Budker Institute of Nuclear Physics, Novosibirsk, Russia

Inclusive determinations of V ub and V cb - a theoretical perspective

Reevalua'on of Neutron Electric Dipole Moment with QCD Sum Rules

Angular Analysis of the Decay

Axial anomaly, vector meson dominance and mixing

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

Running electromagnetic coupling constant: low energy normalization and the value at M Z

arxiv:hep-ph/ v1 26 Apr 1996

Probing nucleon structure by using a polarized proton beam

arxiv:nucl-th/ v1 21 Jan 1999

Critical Behavior of heavy quarkonia in medium from QCD sum rules

Valence quark contributions for the γn P 11 (1440) transition

The dierence in complexity of inclusive and exclusive observables is illuminated by the fact that the simple parton picture of charm and beauty decays

arxiv:hep-ph/ Jul 97

arxiv:hep-ph/ v1 1 Sep 1997

QCD Collinear Factorization for Single Transverse Spin Asymmetries

arxiv: v2 [hep-ph] 17 Mar 2015

The transition from pqcd to npqcd

Derek Harnett University of the Fraser Valley Abbotsford, British Columbia, Canada

Global fits to radiative b s transitions

HLbl from a Dyson Schwinger Approach

Radiative and Electroweak Penguin Decays of B Mesons

Higher Fock states and power counting in exclusive charmonium decays

Theory of Elementary Particles homework XI (July??)

arxiv: v2 [hep-ph] 10 Dec 2014

Operator Product Expansion and Local Quark-Hadron Duality: Facts and Riddles

arxiv: v2 [hep-ph] 25 Sep 2014

Babar anomaly and the pion form factors

Hadronic contributions to the muon g-2

Lattice QCD and transport coefficients

The x + (5568) from QCDSR

Estimates of m d m u and dd ūu from QCD sum rules for D and D isospin mass differences

arxiv:hep-ph/ Jul 1992

Theory of hadronic B decays

Radiative Corrections in K, D, and B decays

Vector meson dominance, axial anomaly and mixing

Transcription:

Light-Cone Sum Rules with B-Meson Distriution Amplitudes Alexander Khodjamirian (University of Siegen) (with Thomas Mannel and Niels Offen) Continuous Advances in QCD, FTPI, Minneapolis, May 11-14, 2006

QCD light-cone sum rules (LCSR) Balitsky, Braun, Kolesnichenko; Braun, Filyanov (1989); Chernyak, Zhitnisky(1990) allow to calculate hadronic form factors: several important applications to exclusive B decays ased on: vacuum hadron correlators OPE near the light-cone, inputs: light-cone distriution amplitudes of π, K, ρ,... dispersion relations parton-hadron duality remake of QCD sum rules: Shifman, Vainshtein, Zakharov (1979) ased on vacuum vacuum correlators, OPE in local operators, inputs: quark/gluon condensates

LCSR for B π form factor π π π d u + + +... p + q q The correlation function: q 2, (p+q) 2 m 2, -quark highly virtual F λ (q, p) = i d 4 xe iqx π(p) T {ū(x)γ λ (x), (0)iγ 5 d(0)} 0 operator-product-expansion (OPE) near the light-cone, x 2 0

OPE near the light-cone schematically, F (B) (q, p) = i d 4 xe iqx { [S0 (x 2, m 2, µ) + α s S 1 (x 2, m 2, µ) ] π(p) ū(x)γd(0) 0 µ + 1 0 dv S(x 2, m 2, µ, v) π(p) ū(x)g(vx) Γd(0)} 0 µ } +... * S 0,1, S - perturative amplitudes, (virtual -quark) * universal distriution amplitudes of π (or K, ρ, K ): 1 π(q) ū(x)[x, 0]γ µ γ 5 d(0) 0 x2 =0 = iq µ f π du e iuqx ϕ π (u) + O(x 2 ). * the expansion (light-cone OPE) goes over α s (µ) and powers of 1/µ 2 ; * typical scale µ 2 m Λ, where Λ 1 GeV Λ QCD 0

Derivation of LCSR Hadronic dispersion relation in (p + q) 2 : (q 2 m 2 fixed) π π F(q 2,(p + q) 2 ) = B B u q + h B h B h u q p + q p + q f B f + Bπ (q2 ) B h duality (s B 0 ) [f Bπ (q 2 )] LCSR includes oth soft (end-point) and hard ( α s ) contriutions, valid at 0 < q 2 < m 2 B µ2 more details/results: talk y Roman Zwicky

New approach: LCSR with B meson DA A.K., T. Mannel, N.Offen PLB(2005), hep-ph/0504091 also (in SCET): F. De Fazio, T. Feldmann and T. Hurth; hep-ph/0504088 The inversed correlator: B meson on-shell, pion interpolated with an axial current duality F µν (B) (p, q) = i d 4 x e ip x 0 T { d(x)γµ γ 5 u(x), ū(0)γ ν (0) } B 0 (p + q). B d u p q B d u B d u q 2 = 0, p 2 < 0, p 2 Λ 2 QCD, u-quark propagates near LC.

OPE near the light-cone schematically, { (on-shell B meson with v = p B /m ) [S0 F(q, p) = i d 4 xe iqx (x 2, µ) + α s S 1 (x 2, µ) ] 0 d(x)γ(0) B(v) µ + 1 0 dv S(x 2, m 2, µ, v) 0 d(x)g(vx) Γ(0)} B(v) µ } +... * S 0,1, S - perturative amplitudes, ( virtual u-quark) * universal distriution amplitudes of B(v) : 0 d(x)[x, 0]Γ(0) B(v) x2 =0 first uses of B-meson DA in PQCD factorization for B π. A. Szczepaniak, E. M. Henley and S. J. Brodsky (1990). R. Akhoury, G. Sterman and Y. P. Yao (1994)

B-Meson two-particle DA: the definition. A.G.Grozin. M.Neuert (1997) x 2 0 0 x x x B 0 (p B ) Light-cone matrix element, consistent with HQET d 0 T { dα (x)[x, 0] β (0) } B 0 (v) x 2 =0 = if { Bm B (1 + /v)γ 5 dωe iωv x φ B 4 +(ω) + φb +(ω) φ B } (ω) /x 2v x 0 [x, 0]-Wilson line, two normalized DA s φ B +(ω) and φ B (ω), variale ω = (l 0 + l 3 ): (l-light spectator momentum in B rest frame) γ 5 βα,

Factorization in B γlν l (p l + p ν ) 2 0, E γ m B /2 A(B γlν) dωφ B +(ω)t h (ω) γ T h 1/ω, 1/λ B = dω φb + (ω) 0 ω B u l - the inverse moment ν G. P. Korchemsky, D. Pirjol, T. M. Yan (2000) S. Descotes-Genon, C. T. Sachrajda (2003)] S. W. Bosch, R. J. Hill, B. O. Lange, M. Neuert (2004) factorization in B π, B h 1 h 2 etc.

Quark-antiquark-gluon DA s: definition. H. Kawamura, J. Kodaira,. C.F.Qiao and K. Tanaka,(2001) x 2 0 0 x x x x B 0 (p B ) d 0 d α (x)g λρ (ux) β (0) B 0 (v) = f Bm B dω dξ e i(ω+uξ)v x 4 0 0 [ { ( ) (1 + /v) (v λ γ ρ v ρ γ λ ) Ψ A (ω, ξ) Ψ V (ω, ξ) iσ λρ Ψ V (ω, ξ) ( ) ( ) }] xλ v ρ x ρ v λ xλ γ ρ x ρ γ λ X A (ω, ξ) + Y A (ω, ξ) v x v x βα.

What do we know aout B-meson DA s model-independent relations from QCD equation of motion, e.g. Wandzura-Wilczek-type: φ B (ω) = dρ φb +(ρ) + dωdξ{ψ V,A (ω, ξ)} φ B ρ (0) = 1/λ B + {corr.} ω oundary conditions: ω 0: φ B +(ω) ω, φ B (0) = const Evolution of φ B +(ω, µ) calculated in HQET is nontrivial, φ(ω) log(ω/µ)/ω, radiative tail [M. Neuert, B. Lange, (2003)] lim ω no parton interpretation, positive moments divergent, ut λ B (µ) well defined in O(α s ) no prolem for the new sum rules containing integrals over small ω < s 0 /m B

models of φ B ±(ω) ased on QCD sum rules in HQET [ A. G. Grozin and M. Neuert (1997)] The correlator for φ B +(ω) : i d 4 xe ik(vx) 0 T{O + (t) h v (x)γ 2 q(x)} 0 = {...}T(t, k). O + (t) = q(tn) n [tn, 0]Γ h v (0), k < 0 - external (Euclidean) momentum variale, k = Λ is B meson pole in HQET, {...} - a trace loop condensate simple ansatz φ B +(ω) = (ω/ω 2 0)e ( ω/ω 0), φ B (ω) = (1/ω 0 )e ( ω/ω 0), A hyrid model for φ(ω, µ) (exponent.ansatz with the radiative tail) S.J. Lee, M. Neuert, (2005)

NLO calculation (including radiative corrections) [ V. M. Braun, D. Y. Ivanov and G. P. Korchemsky,(2003)] the sum rule fitted to an explicit ansatz[ for ϕ B +(ω), φ B +(ω, µ = 1 GeV) = 4λ 1 B ω 1 π ω 2 + 1 ω 2 + 1 2(σ B 1) π 2 ] lnω (ω in units of GeV) λ B = (460 ± 110)MeV, σ B = 1.4 ± 0.4 at µ = 1 GeV 0.8, φ B +(ω, µ) [GeV 1 ] 0.6 0.4 0.2 0 0 1 2 3 4 5 ω [GeV] solid (dashed) is the Lee-Neuert (Braun-Ivanov-Korchemsky)

Deriving the simplest sum rule OPE result for B π, the LO diagram: only φ B (ω) contriutes F (B) µν = 2if B Hadronic dispersion relation: 0 dω m B ω p 2φB (ω)p µ p ν +..., F (B) µν = 0 dγ µ u π(p) π(p) ūγ ν B(p + q) +... 2if π f + Bπ = (0) ρ h (s) p 2 + ds s p 2 p µp ν +..., apply duality in pion channel Borel transformation. s h

The relation etween B meson parameters: (using s 0 π m 2 B ): 1 λ B f π f + Bπ (0)m B f B M 2 (1 e sπ 0 /M2 ). inputs: use LCSR for B π form factor (in terms of pion DA s), 2pt sum rule for f B and predict λ B 3-particle B meson DA s, enter 1) soft-gluon diagram 2) indirectly, violation of WW relation estimated - a few %

Summary on the inverse moment 1/λ B = dω φb + (ω) 0 ω renorm. scale 1 GeV Method λ B [MeV] Ref. 2pt SR in HQET,LO 350 Grozin,Neuert 2pt SR in HQET, NLO 440 ± 110 Braun, Ivanov,Korchemsky LCSR for B γlν l 600 Ball, Kou inverted LCSR for B π 460 ± 160 A.K.,Mannel, Offen first moments +Ansatz 480 ± 55 Lee, Neuert

the new method allows to calculate many different B light form factors in one go, including SU(3) reaking, m q = m s the main advantage: knowledge of pion, K, ρ, K DA s not needed, decay constants, duality thresholds from exp. and/or two-point (SVZ) SR contriutions of 3-particle DA s of B meson suppressed y powers of s 0 /m B (work in progress), preliminary (sample) results for all major heavy-light form factors: inputs: 2-particle DA,s φ B ±(ω), Grozin-Neuert exponential ansatz, λ B = 440 MeV, f B = 180 MeV, M 2 = 1 GeV, m s (1GeV ) = 130MeV more detailed analysis in progress compared with the results of conventional LCSR [BZ] y P. Ball, R. Zwicky, (2005) (B π, K, ρ, K )

Form Factor LCSR LCSR Ref. with B DA (prelim) with light-meson DA s f + Bπ (0) 0.267± 0.258± 0.03 [BZ] 0.26± 0.05 [KMMM] 0.25± 0.05 [AGRS] f + BK (0) 0.328± 0.301± 0.041 [BZ] fbπ(0) T 0.24± 0.253± 0.028 [BZ] fbk(0) T 0.305± 0.328± 0.04 [BZ] V Bρ (0) 0.382± 0.323± 0.029 [BZ] V BK (0) 0.442± 0.411± 0.033 [BZ] A Bρ 1 (0) 0.281± 0.242± 0.024 [BZ] A BK 1 (0) 0.328± 0.292± 0.028 [BZ] A Bρ 2 (0) 0.253± 0.221±0.023 [BZ] A BK 2 (0) 0.304± 0.259±0.027 [BZ] T Bρ 1 (0) 0.323± 0.267±0.021 [BZ] T1 BK (0) 0.375± 0.333±0.028 [BZ] *[KMMM] A. K.,T. Mannel, M. Melcher and B. Melic, PRD (2005), hep-ph/0509049 *[AGRS] Arnesen, Grinstein, Rothstein, Stuart, hep-ph/0504209

Conclusions new type of LCSR, calculating B light form factors: already leading order has a good agreement with LCSR with light meson DA s quantitative estimates of SU(3) reaking effects; sensitivity to the inverse moment λ B, values < 300MeV disfavored