APPENDIX 11A: BASELINE NOISE MONITORING RESULTS

Similar documents
Develop and implement harmonised noise assessment methods

ERRATA AND ADDITIONS FOR "ENGINEERING NOISE CONTROL" 5th Edn. First printing October 29, 2018

Attenuation. Witt&Sohn AG Oct-14

Vibrations in buildings in the mid frequency range

Noise impact of innovative barriers dedicated to freight trains in urban areas

Attenuation of rail vibration: Analysis of experimental data

Special edition paper

Test Report. RI Acoustic Lab. Measurement of Sound Absorption Coefficient for RockDelta NoiStop Noise Barrier. 20 Feb. 07

E-JUST s Sample Entrance Exam Faculty of Engineering

Dubai Municipality LRT Noise and Vibration Impact Stage 2

Fast Determination of the Acoustic Area of Influence of Roads, Railways, Airports and Industries

Welcome. Noise Production Ceilings. How Dutch environmental legislation affects railway planning. Gerard Groenveld July 17, 2014

Research of Different Noise Barriers Efficiency at Different Temperature

Paseo Recoletos, nº Madrid TEST REPORT

Experimental and numerical study of the ground transmission of structure-borne sound generated by trams

Answer - SAQ 1. The intensity, I, is given by: Back

The diagram below. to the by the. outlet into. calculation. Since TRANSMISSION VIA STRUCTURE. Vibration Via Supports Duct Breakout

Transportation Noise Assessment. 809 Richmond Road. Ottawa, Ontario

Estimating Community Sound Levels of Large Industrial Equipment

Insertion Loss Analysis of the Acoustic Panels with Composite Construction

Traffic Noise Impact Study. 383 Slater Street / 400 Albert Street. Ottawa, Ontario

A train begins a journey from a station and travels 60 km in a time of 20 minutes. The graph shows how the speed of each runner changes with time.

GIS data classes used within the November 2013 Environmental Statement Engineering Maps

Noise Assessment Method for High-Speed Railway Applications in Sweden

Appendix E FTA NOISE MODELING WORKSHEETS AND DETAILED METHODOLOGY

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

Day 5 Notes: The Fundamental Theorem of Calculus, Particle Motion, and Average Value

INSPIRE in the context of EC Directive 2002/49/EC on Environmental Noise

EVALUATION OF THE EFFECTS OF TEMPERATURE ON RAILPAD PROPERTIES, RAIL DECAY RATES AND NOISE RADIATION

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

MEASUREMENTS OF SOUND ABSORPTION TIMBERCRETE

Uncertainties in Acoustics

ENVIRONMENTAL NOISE IMPACT ASSESSMENT

NOISE & VIBRATION MITIGATION IN RAILWAY TRACK

FDTD analysis on the sound insulation performance of wall system with narrow gaps

patersongroup Environmental Noise Control Study Proposed Multi-Storey Building 1136 Martime Way - Ottawa Prepared For

Transportation Noise Assessment. 590 Rideau Street. Ottawa, Ontario

M1 January Immediately after the collision Q moves with speed 5 m s 1. Calculate. the speed of P immediately after the collision,

Assessment & Specifications for Noise Controls

Geometry Warm Up Right Triangles Day 8 Date

Transportation Noise Assessment. 560 Rideau Street. Ottawa, Ontario

London Examinations IGCSE

ACOUSTICAL IMPACT OF TRAFFIC FLOWING EQUIPMENTS IN URBAN AREA

Accuracy, and the prediction of ground vibration from underground railways Hugh Hunt 1 and Mohammed Hussein 2

Mitigation solutions for low frequency structure borne noise. Stockholm, December 11, 2012 Presented by Hamid Masoumi

Edexcel GCE Mechanics M1 Advanced/Advanced Subsidiary

Acoustics Attenuation of sound during propagation outdoors Part 2: General method of calculation

Experiment P-5 Motion of a Cart on an Inclined Plane

Motion. Aristotle. Motion: usually something abstract, such as the laws of motion.

Lateral directivity of aircraft noise

Acoustic seafloor mapping systems. September 14, 2010

PHYS 1303 Final Exam Example Questions

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

J. E. COULTER ASSOCIATES LIMITED -ii- APPENDIX B: GUIDELINES

Transportation Noise & Vibration Feasibility Assessment. 383 Albert Street & 340 Queen Street Ottawa, Ontario

DELTA Test Report. DANAK TEST Reg. no Measurement of Sound Absorption Coefficient for Kvadrat Soft Cells Wall Panel Type Time

Effect of rail unevenness correlation on the prediction of ground-borne vibration from railways

Roadway Traffic Noise Assessment. 407 Nelson Street Ottawa, Ontario

IB Math SL Year 2 Name: Date: 8-1 Rate of Change and Motion

Feasibility Noise Assessment. Westgate Shopping Centre Redevelopment. Ottawa, Ontario

Aerodynamic Noise Simulation Technology for Developing Low Noise Products

Special edition paper Development of Shinkansen Earthquake Impact Assessment System

Sound radiation and transmission. Professor Phil Joseph. Departamento de Engenharia Mecânica

Transportation Noise Assessment. 370 Queen Elizabeth Drive. Ottawa, Ontario

Airport Noise Action Planning Data Pack

Comparing railway noise prediction results for passenger trains using various models

Note that W is the skin surface weight density in units of psf. An equivalent graph in terms of metric units is given in Appendix A.

Predicting highly-resolved traffic noise

Study on elevated light rail induced vibration attenuation along the surrounding ground

Transportation Noise Assessment Prince of Wales Residential Development Ottawa, Ontario

The velocity (v) of the transverse wave in the string is given by the relation: Time taken by the disturbance to reach the other end, t =

Wojciech ŁAPKA, Czesław CEMPEL

Merrily we roll along

Falling Objects. LabQuest OBJECTIVES MATERIALS PROCEDURE

Math Multiple Choice Identify the choice that best completes the statement or answers the question.

Measurement of sound absorption coefficient for Fraster felt SpaceCover

Noise mitigation measures to be used for the explosive cladding in open air

This document is a preview generated by EVS

CERTIFICATE OF CALIBRATION

Noise and vibration from high-speed

Question Instructions Read today's Notes and Learning Goals

Technical Regulations for Methods of Measuring Emission. Rail Traffic translated version -

Understanding 1D Motion

NOISE PREDICTION, CALCULATION AND MAPPING USING SPECIALIZED SOFTWARE

Motion and simple machines Chapter 33. Dr. BassamTayeh Engineering Technical English Islamic University of Gaza April, 2017

u + v = u - v =, where c Directed Quantities: Quantities such as velocity and acceleration (quantities that involve magnitude as well as direction)

Collisions Impulse and Momentum

ERROR AND GRAPHICAL ANALYSIS WORKSHEET

Influence of loudspeaker directivity on the measurement uncertainty of the acoustic testing of facades.

Identification of the rail radiation using beamforming and a 2 D array

Roadway Traffic Noise Feasibility Assessment. Conservancy Subdivision. Ottawa, Ontario

Sound reflection from different noise barriers

Artificial Intelligence

9.4 Light: Wave or Particle?

Mathematics. Guide

Electricity and Energy 1 Content Statements

A simple model for estimating excess attenuation of road traffic noise

Introduction to Acoustics. Phil Joseph

DELTA Test Report. Measurement of sound absorption coefficient for 15 mm Fraster felt Plus acoustic panels with mounting depth 45 mm

Assessment of locations

Transcription:

appendix 11a APPENDIX 11A: BASELINE NOISE MONITORING RESULTS Table 11.A.1: Summary of daytime noise measurements Location Time Measured Noise Levels (db re. 2x10-5 Pa) LAeq LA10 LA90 12:59 13:14 64 67 56 S01 14:29 14:44 63 66 57 20:20 20:35 63 66 56 00:07 00:22 61 65 51 13:20 13:35 52 53 49 S02 14:47 15:02 52 54 50 20:41 20:56 55 56 52 00:25 00:35 53 55 49 14:11 14:26 67 72 50 S03 15:10 15:25 68 72 50 21:01 21:16 67 72 51 00:40 00:55 59 62 50 13:42 13:57 52 52 47 S04 15:32 15:47 50 52 45 21:34 21:49 55 58 50 01:35 01:50 51 54 46 14:06 14:21 55 58 48 S05 15:10 15:25 51 52 48 21:53 22:08 51 52 49 01:55 02:10 47 49 44 13:46 14:01 53 55 51 S06 14:51 15:06 59 55 50 22:14 22:29 49 50 47 02:15 02:20 48 51 44 13:25 13:40 52 53 51 S07 14:32 14:47 53 54 51 22:34 22:49 50 51 48 02:21 02:36 47 49 45 15:41 15:56 54 56 52 S08 18:06 18:21 56 57 54 22:53 23:08 49 50 46 02:46 03:01 45 47 43 16:05 16:20 57 59 54 S09 17:09 17:24 58 60 54 23:13 23:28 51 54 48 00:10 00:25 54 57 50 16:31 16:46 61 64 56 S010 17:28 17:43 61 63 55 23:32 23:47 52 54 48 00:42 00:57 52 54 48 16:51 17:06 61 64 57 S011 17:46 18:01 62 64 57 23:50 00:05 49 51 45 01:00 01:15 57 57 48 224

Table 10.A2 Summary of background concentrations used in the air dispersion model. Ref. Notes SEL (db) LAeq(dB) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Luas arrival at stop Luas departure from stop Luas movement 150m from stop along straight arrival Luas movement on straight full speed Luas movement on corner (brakes) Luas movement on straight full speed Luas arrival at stop Luas departure at stop Luas movement 150m from stop along straight - departure under acceleration Luas movement on straight full speed Luas movement on corner (brakes) Luas movement on straight full speed 77 52 79 54 77 52 87 62 88 63 90 65 86 61 84 59 88 63 80 56 80 56 80 56 88 64 90 66 85 61 87 62 87 62 87 62 87 62 85 61 82 57 83 58 225

appendix 11b APPENDIX 11.B: REVIEW OF CALCULATION OF RAILWAY NOISE The noise predictions have been carried out using a noise prediction template implementing calculation routines based on the Calculation of Railway Noise (CRN) procedure. The source noise levels were based on measurements taken on equivalent sections of existing Luas lines as detailed in Section 11.2.7. In general, the tram noise level is calculated taking into account a range of factors affecting the propagation of sound, including: the magnitude of the noise source; the distance between the source and receiver; the presence of obstacles such as screens or barriers in the propagation path; the presence of reflecting surfaces; the hardness of the ground between the source and receiver. The CRN method of predicting noise from a rail scheme consists of the following five elements: divide the track into segments so that the variation of noise within this segment is small; calculate the basic noise level at a reference distance of 12.5 metres from the nearside track edge for each segment; assess for each segment the noise level at the reception point taking into account distance attenuation and screening of the source line; correct the noise level at the reception point to take account of site layout features including reflections from buildings and facades, and the size of source segment; combine the contributions from all segments to give the predicted noise level at the receiver location for the entire development. Note that all calculations are performed to one decimal place. For the purposes of comparison with the design goals, the relevant noise level is rounded to the nearest whole number. The noise calculations were prepared using the following data: development alignments, topographical data (including existing boundary walls and new boundary walls proposed as part of the scheme) and Ordnance Survey mapping supplied by Brian Meehan & Associates; timetable data from existing Luas line operations. 226

11c appendix APPENDIX 11.C: NOISE AND VIBRATION MONITORING AND ASSESSMENT LOCATIONS 227

appendix 11c 228

11d appendix APPENDIX 11.D: BASELINE VIBRATION MONITORING RESULTS Table 11.D.1 Measured Vibration Levels at Location S01 20:47:48 0.254 >100 0.254 >100 0.127 >100 0.284 20:48:48 0.254 >100 0.254 >100 0.127 >100 0.311 20:49:48 0.254 >100 0.127 >100 0.127 >100 0.311 Note: A value of 0.127 relates to the lower limit of detection of the vibration meter. A freq of >100 indicates that the maximum frequency is above 100Hz. Typically where these items are noted no significant vibration event has occurred with the period under review. Table 11.D.2 Measured Vibration Levels at Location S02 20:55:48 0.254 >100 0.254 >100 0.127 N/A 0.284 20:56:48 0.254 >100 0.127 >100 0.127 >100 0.311 20:57:48 0.254 >100 0.127 >100 0.127 >100 0.311 20:58:48 0.254 >100 0.127 >100 0.127 >100 0.311 20:59:48 0.254 >100 0.127 >100 0.127 >100 0.311 21:00:48 0.254 >100 0.127 >100 0.127 >100 0.311 21:01:48 0.254 >100 0.254 >100 0.127 >100 0.311 21:02:48 0.254 >100 0.254 >100 0.127 >100 0.311 21:03:48 0.254 >100 0.127 >100 0.127 >100 0.311 21:04:48 0.254 >100 0.127 >100 0.127 >100 0.311 21:05:48 0.254 >100 0.127 >100 0.127 >100 0.311 21:06:48 0.254 >100 0.127 >100 0.127 >100 0.311 21:07:48 0.254 >100 0.254 >100 0.127 >100 0.311 21:08:48 0.254 >100 0.127 >100 0.254 >100 0.311 229

appendix 11d Table 11.D.3 Measured Vibration Levels at Location S03 21:16:30 0.254 >100 0.127 N/A 0.254 >100 0.311 21:17:30 0.254 >100 0.127 >100 0.127 >100 0.311 21:18:30 0.254 >100 0.127 >100 0.127 >100 0.311 21:19:30 0.254 >100 0.254 >100 0.127 >100 0.311 21:20:30 0.254 >100 0.127 >100 0.127 >100 0.311 21:21:30 0.254 >100 0.127 >100 0.127 >100 0.311 21:22:30 0.254 >100 0.254 >100 0.127 >100 0.311 21:23:30 0.254 >100 0.127 >100 0.127 >100 0.311 21:24:30 0.254 >100 0.127 >100 0.127 >100 0.311 21:25:30 0.254 >100 0.254 >100 0.127 >100 0.311 21:26:30 0.254 >100 0.127 >100 0.127 >100 0.311 21:27:30 0.254 >100 0.254 >100 0.127 >100 0.311 21:28:30 0.254 >100 0.254 >100 0.254 >100 0.311 21:29:30 0.254 >100 0.127 >100 0.127 >100 0.311 21:30:30 0.381 >100 0.254 >100 0.254 >100 0.421 Table 11.D.5 Measured Vibration Levels at Location S05 14:21:15 0.127 N/A 0.127 >100 0.127 >100 0.22 14:22:15 0.127 >100 0.127 >100 0.127 >100 0.22 14:23:15 0.127 >100 0.127 >100 0.127 >100 0.22 14:24:15 0.127 >100 0.127 >100 0.127 >100 0.22 14:25:15 0.127 >100 0.127 >100 0.127 >100 0.22 14:26:15 0.127 >100 0.127 >100 0.127 >100 0.22 14:27:15 0.127 >100 0.127 >100 0.127 >100 0.22 14:28:15 0.127 >100 0.127 >100 0.127 >100 0.22 14:29:15 0.127 >100 0.127 >100 0.127 >100 0.22 14:30:15 0.635 43 0.889 34 0.635 64 0.933 14:31:15 0.127 >100 0.127 >100 0.127 >100 0.22 14:32:15 0.127 >100 0.127 >100 0.127 >100 0.22 14:33:15 0.127 >100 0.127 >100 0.127 >100 0.22 14:34:15 0.127 >100 0.127 >100 0.127 >100 0.22 230

Table 11.D.6 Measured Vibration Levels at Location S06 15:06:11 0.127 N/A 0.127 N/A 0.127 >100 0.22 15:07:11 0.127 >100 0.127 >100 0.127 >100 0.22 15:08:11 0.127 >100 0.127 >100 0.127 >100 0.22 15:09:11 0.254 >100 0.127 >100 0.127 >100 0.254 15:10:11 0.127 >100 0.127 >100 0.127 >100 0.22 15:11:11 0.127 >100 0.127 >100 0.127 >100 0.22 15:12:11 0.127 >100 0.127 >100 0.127 >100 0.22 15:13:11 0.127 >100 0.127 >100 0.127 >100 0.22 15:14:11 0.127 >100 0.127 >100 0.127 >100 0.22 15:15:11 0.127 >100 0.127 >100 0.127 >100 0.22 15:16:11 0.127 >100 0.127 >100 0.127 >100 0.22 15:17:11 0.127 >100 0.127 >100 0.127 >100 0.22 15:18:11 0.127 >100 0.127 >100 0.127 >100 0.22 15:19:11 0.127 >100 0.127 >100 0.127 >100 0.22 15:20:11 0.127 >100 0.127 >100 0.127 >100 0.22 Table 11.D.7 Measured Vibration Levels at Location S07 14:47:26 0.127 >100 0.127 >100 0.127 >100 0.22 14:48:26 0.127 >100 0.127 >100 0.127 >100 0.22 14:49:26 0.127 >100 0.127 >100 0.127 >100 0.22 14:50:26 0.127 >100 0.127 >100 0.127 >100 0.22 14:51:26 0.127 >100 0.127 >100 0.127 >100 0.22 14:52:26 0.127 >100 0.127 >100 0.127 >100 0.22 14:53:26 0.127 >100 0.127 >100 0.127 >100 0.22 14:54:26 0.127 >100 0.127 >100 0.127 >100 0.22 14:55:26 0.127 >100 0.127 >100 0.127 >100 0.22 14:56:26 0.127 >100 0.127 >100 0.127 >100 0.22 14:57:26 0.254 >100 0.127 >100 0.127 >100 0.284 14:58:26 0.127 >100 0.127 >100 0.127 >100 0.22 14:59:26 0.127 >100 0.127 >100 0.127 >100 0.22 15:00:26 0.127 >100 0.127 >100 0.127 >100 0.22 231

appendix 11d Table 11.D.8 Measured Vibration Levels at Location S08 15:59:24 0.127 >100 0.127 >100 0.127 >100 0.22 16:00:24 0.127 >100 0.127 >100 0.127 >100 0.22 16:01:24 0.127 >100 0.127 >100 0.127 >100 0.22 16:02:24 0.127 >100 0.127 >100 0.127 >100 0.22 16:03:24 0.127 >100 0.127 >100 0.127 >100 0.22 16:04:24 0.127 >100 0.127 >100 0.127 >100 0.22 16:05:24 0.127 >100 0.127 >100 0.127 >100 0.22 16:06:24 0.127 >100 0.127 >100 0.127 >100 0.22 16:07:24 0.254 >100 0.127 >100 0.127 >100 0.311 16:08:24 0.127 >100 0.127 >100 0.127 >100 0.22 16:09:24 0.127 >100 0.127 >100 0.127 >100 0.22 16:10:24 0.254 >100 0.127 >100 0.127 >100 0.284 Table 11.D.9 Measured Vibration Levels at Location S09 16:20:12 0.127 N/A 0.127 >100 0.127 >100 0.22 16:21:12 0.254 >100 0.127 >100 0.127 >100 0.254 16:22:12 0.127 >100 0.127 >100 0.127 >100 0.22 16:23:12 0.127 >100 0.127 >100 0.127 >100 0.22 16:24:12 0.127 >100 0.127 >100 0.127 >100 0.22 16:25:12 0.127 >100 0.127 >100 0.127 >100 0.22 16:26:12 0.127 >100 0.127 >100 0.127 >100 0.22 16:27:12 0.127 >100 0.127 >100 0.127 >100 0.22 16:28:12 0.254 >100 0.127 >100 0.127 >100 0.254 16:29:12 0.127 >100 0.127 >100 0.127 >100 0.22 16:30:12 0.254 >100 0.127 >100 0.127 >100 0.311 16:31:12 0.127 >100 0.127 >100 0.127 >100 0.22 16:32:12 0.254 >100 0.127 >100 0.127 >100 0.284 16:33:12 0.127 >100 0.127 >100 0.127 >100 0.22 16:34:12 0.127 >100 0.127 >100 0.127 >100 0.22 232

Table 11.D.10 Measured Vibration Levels at Location S10 16:47:53 0.254 >100 0.127 >100 0.127 >100 0.284 16:48:53 0.254 >100 0.127 >100 0.127 >100 0.254 16:49:53 0.127 >100 0.127 >100 0.127 >100 0.22 16:50:53 0.254 >100 0.127 >100 0.127 >100 0.254 16:51:53 0.254 >100 0.127 >100 0.127 >100 0.311 16:52:53 0.254 >100 0.127 >100 0.127 >100 0.284 16:53:53 0.254 >100 0.127 >100 0.127 >100 0.311 16:54:53 0.254 >100 0.127 >100 0.127 >100 0.284 16:55:53 0.254 >100 0.127 >100 0.127 >100 0.311 16:56:53 0.127 >100 0.127 >100 0.127 >100 0.22 16:57:53 0.254 >100 0.127 >100 0.127 >100 0.284 16:58:53 0.254 >100 0.127 >100 0.127 >100 0.284 Table 11.D.11 Measured Vibration Levels at Location S11 17:07:09 0.254 >100 0.127 >100 0.127 >100 0.311 17:08:09 0.254 >100 0.127 >100 0.127 >100 0.311 17:09:09 0.254 >100 0.127 >100 0.127 >100 0.311 17:10:09 0.254 >100 0.254 >100 0.127 >100 0.311 17:11:09 0.254 >100 0.127 >100 0.127 >100 0.311 17:12:09 0.254 >100 0.127 >100 0.127 >100 0.311 17:13:09 0.254 >100 0.127 >100 0.127 >100 0.284 17:14:09 0.254 >100 0.127 >100 0.127 >100 0.311 17:15:09 0.254 >100 0.127 >100 0.127 >100 0.311 17:16:09 0.254 >100 0.254 >100 0.127 >100 0.311 17:17:09 0.254 >100 0.127 >100 0.127 >100 0.284 17:18:09 0.254 >100 0.127 >100 0.127 >100 0.311 233

appendix 11e APPENDIX 11.E: LUAS VIBRATION MONITORING RESULTS Location V01 Belgard Stop - monitor on concrete platform, 5.5m from edge of line, Luas departure. Table 11.E.1 Measured Vibration Levels at Location V01 10:49:34 0.127 >100 0.127 >100 0.127 >100 0.22 10:49:36 0.254 >100 0.254 >100 0.127 >100 0.284 10:49:38 0.254 >100 0.381 >100 0.254 >100 0.421 10:49:40 0.254 >100 0.254 >100 0.254 >100 0.44 10:49:42 0.127 >100 0.127 >100 0.127 >100 0.22 Location V02 Belgard Stop - monitor on concrete platform, 2m from edge of line, Luas arrival. Table 11.E.2 Measured Vibration Levels at Location V02 10:49:54 0.127 >100 0.127 >100 0.127 >100 0.22 10:49:56 0.127 >100 0.127 >100 0.127 >100 0.22 10:49:58 0.254 >100 0.254 >100 0.127 >100 0.311 10:50:00 0.254 >100 0.508 >100 0.254 >100 0.568 10:50:02 0.254 >100 0.381 >100 0.254 >100 0.402 10:50:04 0.254 >100 0.254 >100 0.127 >100 0.284 10:50:06 0.127 >100 0.127 >100 0.127 >100 0.22 Location V03 Belgard Stop - monitor on concrete platform, 2m from edge of line, Luas departure. Table 11.E.3 Measured Vibration Levels at Location V03 10:52:48 0.127 >100 0.127 >100 0.127 >100 0.22 10:52:50 0.127 >100 0.127 >100 0.127 >100 0.22 10:52:52 0.254 >100 0.254 >100 0.127 >100 0.311 10:52:54 0.254 >100 0.254 >100 0.254 >100 0.381 10:52:56 0.127 >100 0.127 >100 0.127 >100 0.22 234

Location V04 Belgard Stop - monitor on concrete platform, 5.5m from edge of line, Luas arrival. Table 11.E.4 Measured Vibration Levels at Location V04 10:58:00 0.127 >100 0.127 >100 0.127 >100 0.22 10:58:02 0.127 >100 0.127 >100 0.127 >100 0.22 10:58:04 0.127 >100 0.254 >100 0.127 >100 0.311 10:58:06 0.381 >100 0.254 >100 0.254 >100 0.524 10:58:08 0.254 >100 0.254 >100 0.127 >100 0.311 10:58:10 0.254 >100 0.127 >100 0.127 >100 0.254 10:58:12 0.127 >100 0.127 >100 0.127 >100 0.22 10:58:14 0.127 >100 0.127 >100 0.127 >100 0.22 Location V05 150m from Belgard Stop along straight section - monitor on soft ground, 2m from edge of line, Luas under acceleration. Table 11.E.5 Measured Vibration Levels at Location V05 11:03:03 0.127 >100 0.127 >100 0.127 >100 0.22 11:03:05 0.254 >100 0.381 85 0.127 >100 0.458 11:03:07 0.762 73 1.78 73 1.14 85 2.05 11:03:09 0.889 73 1.9 73 1.27 85 2.24 11:03:11 0.127 >100 0.254 >100 0.127 >100 0.284 11:03:13 0.127 >100 0.127 >100 0.127 >100 0.22 235

appendix 11e Location V06 150m from Belgard Stop along straight section - monitor on soft ground, 5.5m from edge of line, Luas under breaking. Table 11.E.6 Measured Vibration Levels at Location V06 11:05:37 0.127 >100 0.127 >100 0.127 >100 0.22 11:05:39 0.254 >100 0.381 85 0.254 >100 0.475 11:05:41 0.508 >100 1.27 73 0.889 85 1.43 11:05:43 0.508 85 1.02 73 1.02 85 1.26 11:05:45 0.127 >100 0.127 >100 0.127 >100 0.22 Location V07 Luas movement along corner section - monitor on concrete, 2m from edge of line. Table 11.E.7 Measured Vibration Levels at Location V07 11:12:09 0.127 >100 0.127 >100 0.127 >100 0.22 11:12:11 0.127 >100 0.127 >100 0.127 >100 0.22 11:12:13 0.254 >100 0.254 >100 0.254 >100 0.311 11:12:15 0.254 >100 0.381 >100 0.254 >100 0.475 11:12:17 0.127 >100 0.127 >100 0.127 >100 0.22 Location V08 Luas movement along corner section - monitor on concrete, 5.5m from edge of line. Table 11.E.8 Measured Vibration Levels at Location V08 11:13:03 0.127 >100 0.127 >100 0.127 >100 0.22 11:13:05 0.254 >100 0.254 >100 0.254 >100 0.44 11:13:07 0.381 >100 0.381 85 0.254 >100 0.524 11:13:09 0.254 >100 0.127 >100 0.127 >100 0.254 11:13:11 0.127 >100 0.127 >100 0.127 >100 0.22 236

Location V09 Luas movement along straight section - monitor on soft ground, 5.5m from edge of line, Luas at full speed. Table 11.E.9 Measured Vibration Levels at Location V09 11:19:20 0.127 >100 0.127 >100 0.127 >100 0.22 11:19:22 0.381 85 0.635 85 0.508 85 0.762 11:19:24 0.381 85 0.889 73 1.14 >100 1.23 11:19:26 0.381 >100 0.508 85 0.762 73 0.803 11:19:28 0.127 >100 0.127 >100 0.127 >100 0.22 Location V10 Luas movement along straight section monitor on soft ground, 2m from edge of line, Luas at full speed. Table 11.E.10 Measured Vibration Levels at Location V10 11:21:10 0.127 >100 0.127 >100 0.127 >100 0.22 11:21:12 0.508 85 0.762 85 1.4 85 1.42 11:21:14 0.762 85 1.4 73 1.52 >100 2.05 11:21:16 0.127 >100 0.127 >100 0.127 >100 0.22 Location V11 Luas movement along straight section - monitor on soft ground, 8m from edge of line, Luas at full speed. Table 11.E.11 Measured Vibration Levels at Location V11 11:26:39 0.127 >100 0.127 >100 0.127 >100 0.22 11:26:41 0.254 >100 0.127 >100 0.254 >100 0.311 11:26:43 0.381 85 0.381 73 0.508 85 0.622 11:26:45 0.381 85 0.381 51 0.508 85 0.568 11:26:47 0.254 >100 0.254 >100 0.127 >100 0.311 11:26:49 0.127 >100 0.127 >100 0.127 >100 0.22 237

appendix 11e Location V12 Luas movement along straight section - monitor on soft ground, 4m from edge of line, Luas at full speed Table 11.E.12 Measured Vibration Levels at Location V12 11:30:53 0.127 >100 0.127 >100 0.127 >100 0.22 11:30:55 0.508 85 0.508 64 0.635 73 0.696 11:30:57 0.508 85 0.508 64 0.635 73 0.813 11:30:59 0.127 >100 0.127 >100 0.127 >100 0.22 Location V13 Luas movement along straight section - monitor on soft ground, 14m from edge of line, Luas at full speed. Table 11.E.13 Measured Vibration Levels at Location V13 11:33:05 0.127 >100 0.127 >100 0.127 >100 0.22 11:33:07 0.254 >100 0.254 >100 0.254 >100 0.311 11:33:09 0.254 >100 0.127 >100 0.254 >100 0.311 11:33:11 0.127 >100 0.127 >100 0.127 >100 0.22 Location V14 Luas movement along straight section - monitor on soft ground, 10m from edge of line, Luas at full speed. Table 11.E.14 Measured Vibration Levels at Location V14 11:37:05 0.127 >100 0.127 >100 0.127 >100 0.22 11:37:07 0.381 73 0.254 >100 0.254 >100 0.402 11:37:09 0.254 >100 0.254 >100 0.254 >100 0.311 11:37:11 0.127 >100 0.127 >100 0.127 >100 0.22 238

Location V15 Luas movement along straight section - monitor on soft ground, 24m from edge of line, Luas at full speed. Table 11.E.15 Measured Vibration Levels at Location V15 11:38:29 0.127 >100 0.127 >100 0.127 >100 0.22 11:38:31 0.127 >100 0.127 >100 0.127 >100 0.22 11:38:33 0.127 >100 0.127 >100 0.127 >100 0.22 11:38:35 0.127 >100 0.127 >100 0.127 >100 0.22 11:38:37 0.127 >100 0.127 >100 0.127 >100 0.22 Location V16 Luas movement along straight section - monitor on soft ground, 20m from edge of line, Luas at full speed. Table 11.E.16 Measured Vibration Levels at Location V16 11:45:13 0.127 >100 0.127 >100 0.127 >100 0.22 11:45:15 0.127 >100 0.127 >100 0.127 >100 0.22 11:45:17 0.127 >100 0.127 >100 0.127 >100 0.22 11:45:19 0.127 >100 0.127 >100 0.127 >100 0.22 11:45:21 0.127 >100 0.127 >100 0.127 >100 0.22 239