Rational Inattention

Similar documents
Endogenous Information Choice

An Introduction to Rational Inattention

Information Choice in Macroeconomics and Finance.

Expectation Formation and Rationally Inattentive Forecasters

Christian Hellwig 1 Sebastian Kohls 2 Laura Veldkamp 3. May 2012

Imperfect Information and Optimal Monetary Policy

Business Cycle Dynamics under Rational Inattention

SIGNALS, BELIEFS AND UNUSUAL EVENTS ERID LECTURE DUKE UNIVERSITY

Business Cycle Dynamics under Rational Inattention

Business Cycle Dynamics under Rational Inattention

Optimal Monetary Policy with Informational Frictions

Multivariate Rational Inattention

Information Choice Technologies

Knowing What Others Know: Coordination Motives in Information Acquisition

DISCRETE ACTIONS IN INFORMATION-CONSTRAINED DECISION PROBLEMS

1 Bewley Economies with Aggregate Uncertainty

Economic agents as imperfect problem solvers

Information Acquisition and Welfare

Strategic Inattention, Inflation Dynamics and the Non-Neutrality of Money

Online Appendix for Slow Information Diffusion and the Inertial Behavior of Durable Consumption

Identifying the Monetary Policy Shock Christiano et al. (1999)

Signaling Effects of Monetary Policy

Business Cycle Dynamics under Rational Inattention

Mechanics of linear quadratic Gaussian rational. inattention tracking problems

A Modern Equilibrium Model. Jesús Fernández-Villaverde University of Pennsylvania

Study of Causal Relationships in Macroeconomics

Costly Social Learning and Rational Inattention

Rational Inattention to Discrete Choices: A New Foundation for the Multinomial Logit Model

Fundamental Disagreement

Sentiments and Aggregate Fluctuations

INATTENTION AND BELIEF POLARIZATION PRELIMINARY AND INCOMPLETE

UNIVERSITY OF WISCONSIN DEPARTMENT OF ECONOMICS MACROECONOMICS THEORY Preliminary Exam August 1, :00 am - 2:00 pm

1 The Basic RBC Model

Elastic Attention, Risk Sharing, and International Comovements

Neoclassical Business Cycle Model

Simple New Keynesian Model without Capital

Taylor Rules and Technology Shocks

Speculation and the Bond Market: An Empirical No-arbitrage Framework

High-dimensional Problems in Finance and Economics. Thomas M. Mertens

Rational Inattention and Multiple Equilibria

Lecture 15. Dynamic Stochastic General Equilibrium Model. Randall Romero Aguilar, PhD I Semestre 2017 Last updated: July 3, 2017

Microeconomic theory focuses on a small number of concepts. The most fundamental concept is the notion of opportunity cost.

(a) Write down the Hamilton-Jacobi-Bellman (HJB) Equation in the dynamic programming

Expectations and Monetary Policy

problem. max Both k (0) and h (0) are given at time 0. (a) Write down the Hamilton-Jacobi-Bellman (HJB) Equation in the dynamic programming

Demand Shocks with Dispersed Information

The Real Business Cycle Model

Forward Guidance without Common Knowledge

Getting to page 31 in Galí (2008)

Lecture 3, November 30: The Basic New Keynesian Model (Galí, Chapter 3)

Players as Serial or Parallel Random Access Machines. Timothy Van Zandt. INSEAD (France)

FINM6900 Finance Theory Noisy Rational Expectations Equilibrium for Multiple Risky Assets

Mathematical Foundations -1- Constrained Optimization. Constrained Optimization. An intuitive approach 2. First Order Conditions (FOC) 7

Simple New Keynesian Model without Capital

The Ramsey Model. (Lecture Note, Advanced Macroeconomics, Thomas Steger, SS 2013)

Session 4: Money. Jean Imbs. November 2010

Multivariate LQG Control under Rational Inattention in Continuous Time

Lecture 4 The Centralized Economy: Extensions

Endogenous information acquisition

Measuring the informativeness of economic actions and. market prices 1. Philip Bond, University of Washington. September 2014

The New Keynesian Model: Introduction

Cross-Country Differences in Productivity: The Role of Allocation and Selection

Indeterminacy and Sunspots in Macroeconomics

Textbook Producer Theory: a Behavioral Version

Department of Agricultural Economics. PhD Qualifier Examination. May 2009

The welfare cost of energy insecurity

Eco504 Spring 2009 C. Sims MID-TERM EXAM

Dynamics and Monetary Policy in a Fair Wage Model of the Business Cycle

4- Current Method of Explaining Business Cycles: DSGE Models. Basic Economic Models

Monetary Economics: Solutions Problem Set 1

The B.E. Journal of Macroeconomics

Lecture 7. The Dynamics of Market Equilibrium. ECON 5118 Macroeconomic Theory Winter Kam Yu Department of Economics Lakehead University

Chapter 4. Applications/Variations

Quantifying the Losses from International Trade

Foundation of (virtually) all DSGE models (e.g., RBC model) is Solow growth model

NBER WORKING PAPER SERIES BEHAVIORAL IMPLICATIONS OF RATIONAL INATTENTION WITH SHANNON ENTROPY. Andrew Caplin Mark Dean

Macroeconomics Theory II

Monetary Economics. Lecture 15: unemployment in the new Keynesian model, part one. Chris Edmond. 2nd Semester 2014

Indeterminacy and Sunspots in Macroeconomics

Global Value Chain Participation and Current Account Imbalances

Lecture 6. Xavier Gabaix. March 11, 2004

Dynamic Macroeconomic Theory Notes. David L. Kelly. Department of Economics University of Miami Box Coral Gables, FL

Chapter 11 The Stochastic Growth Model and Aggregate Fluctuations

A Method for Solving DSGE Models with Dispersed Private Information 1

Stagnation Traps. Gianluca Benigno and Luca Fornaro

NBER WORKING PAPER SERIES SENTIMENTS AND AGGREGATE DEMAND FLUCTUATIONS. Jess Benhabib Pengfei Wang Yi Wen

where u is the decision-maker s payoff function over her actions and S is the set of her feasible actions.

Chapter 6. Maximum Likelihood Analysis of Dynamic Stochastic General Equilibrium (DSGE) Models

DSGE-Models. Calibration and Introduction to Dynare. Institute of Econometrics and Economic Statistics

Coordination and Continuous Choice

Robustifying the Permanent Income Model with Rational. Inattention

Macroeconomics Theory II

The Lucas Imperfect Information Model

Learning in Crowded Markets

Government The government faces an exogenous sequence {g t } t=0

Aggregate Demand, Idle Time, and Unemployment

Slow Information Diffusion and the Inertial Behavior of Durable. Consumption

Aggregate Demand, Idle Time, and Unemployment

Proper Welfare Weights for Social Optimization Problems

Demand Shocks, Monetary Policy, and the Optimal Use of Dispersed Information

Transcription:

Rational Inattention (prepared for The New Palgrave Dictionary of Economics) Mirko Wiederholt Northwestern University August 2010 Abstract Economists have studied for a long time how decision-makers allocate scarce resources. The recent literature on rational inattention studies how decision-makers allocate the scarce resource attention. The idea is that decision-makers have a limited amount of attention and have to decide how to allocate it. The literature on rational inattention argues that the optimal allocation of attention by decision-makers can explain important features of economic data. 1

The idea of rational inattention is that individuals have a limited amount of attention and therefore have to decide how to allocate their attention. There is a vast amount of information that is, in principle, available to decision-makers (e.g., all information published in books, magazines, newspapers, and scientific articles; all information available on the internet; knowledge available through colleagues, friends and family), but due to limited attention it is simply impossible to attend to all of this information. Therefore, decision-makers have to choose which information to attend to carefully, which information to attend to less carefully, and which information to ignore. According to the theory of rational inattention, decision-makers take this decision optimally. The literature on rational inattention argues that the optimal allocation of attention by decision-makers can explain important features of economic data. 1 Modeling limited attention Christopher A. Sims proposed to model attention as an information flow and to model limited attention as a bound on information flow. See Sims (1998, 2003). To implement this idea, one has to quantify information flows. Sims (1998, 2003) suggested following a large literature in information theory by quantifying information as reduction in uncertainty, where uncertainty is measured by entropy. Let us illustrate these concepts with a simple example. Entropy is a measure of uncertainty. The entropy of a normally distributed random variable X equals H (X) = 1 2 log 2 2πeσ 2 X, where σ 2 X denotes the variance of X. Conditional entropy is a measure of conditional uncertainty. The conditional entropy of X given S, whenx and S have a multivariate normal distribution, equals H (X S) = 1 2 log 2 ³ 2πeσ 2 X S, where σ 2 X S denotes the conditional variance of X given S. Equippedwithmeasuresof uncertainty and conditional uncertainty, one can quantify the information that one random 2

variable contains about another random variable as reduction in uncertainty. For example, the amount of information that S contains about X equals I (X; S) =H (X) H (X S). Think of X as a variable that a decision-maker may be interested in. Paying attention to the variable X can be modeled as receiving a signal S = X + ε where the noise ε is interpreted as coming from the decision-maker s limited attention and is assumed to be independent of X and normally distributed with mean zero and variance σ 2 ε. The idea is that limited attention leads to a noisy perception of the true realization of X. Limited attention can be modeled as a bound on information flow I (X; S) κ. The constraint on information flow implies σ 2 X σ 2 X S 2 2κ, or equivalently σ 2 X σ 2 2 2κ 1. ε In this simple example, limited attention simply imposes a bound on variance reduction. Equivalently, limited attention simply imposes a bound on the signal-to-noise ratio in the signal concerning X. The noise in the signal is interpreted as arising from the decisionmaker s own nervous system. One advantage of measuring uncertainty by entropy is that entropy also summarizes in a single number the uncertainty associated with a multivariate distribution. For example, the entropy of a n-dimensional random vector X that has a multivariate normal distribution equals H (X) = 1 2 log 2 [(2πe) n det Ω X ], where det Ω X denotes the determinant of the covariance matrix of X. Think of X as a vector of variables that a decision-maker may be interested in. Paying attention to the vector X can be modeled as receiving an m-dimensional signal S with the property that X 3

and S have a multivariate normal distribution. Limited attention can again be formalized as a bound on information flow H (X) H (X S) κ. The constraint on information flow now implies det Ω X det Ω X S 2 2κ, where Ω X S denotes the conditional covariance matrix of X given S. One can then ask how the decision-maker would want to use the available information flow. What is the optimal dimension of S? Which elements of X would the decision-maker want to learn about? Would the decision-maker want to learn about linear combinations of elements of X? Moreover, entropy can be computed for discrete and continuous distributions. Let X be a discrete random variable with support X and probability mass function p (x) =Pr{X = x}. Then the entropy of X equals H (X) = X p (x)log 2 p (x). x X Paying attention can again be modeled as receiving a signal S and limited attention can be modeled as a bound on information flow H (X) H (X S) κ. One can once more ask how the decision-maker would want to use the available information flow. Is it optimal to find out only whether X is above or below a certain level? What is the optimal form of the joint distribution of X and S? For a different approach to modeling attention, see Reis (2006). In his work, paying attention is modeled as incurring a fixed cost and then learning everything perfectly. 2 Rational inattention Let us now study a rational inattention problem. In particular, let us study the problem of a decision-maker who is responsible for setting a price and has to decide how to allocate his or her attention. Let p i denote the price of good i. Setting a price p i that differs from the 4

profit-maximizing price p i causes a profit loss equal to ω 2 (p i p i )2. The profit-maximizing price equals p i = φx where x is a normally distributed random variable with mean zero and variance σ 2 x.hereωand φ are parameters. Paying attention to the variable x is modeled as receiving a signal s i = x+ε i where the noise ε i is independent of x and normally distributed with mean zero and variance σ 2 ε. The decision-maker chooses the amount of attention κ devoted to the variable x. The decision-maker faces a marginal cost of attention μ>0. This cost can be interpreted as the opportunity cost of devoting some of the scarce resource attention to the variable x. Formally, the decision-maker solves n ω h min κ 0 2 E (p i p i ) 2i o + μκ, subject to p i = φx, s i = x + ε i, p i = E [p i s i], and Ã! 1 2 log σ 2 x 2 κ. σ 2 x s The optimal attention devoted to the variable x equals ³ 1 κ 2 = log ωφ 2 σ 2 x ln(2) 2 μ if ωφ2 σ 2 x ln(2) μ 1 0 otherwise ; and the price set by the decision-maker equals p i = ³1 2 2κ φ (x + ε i ). The ratio ωφ2 σ 2 x ln(2) μ is the marginal benefit of devoting attention to the variable x at κ =0 divided by the marginal cost of devoting attention to the variable x. If this ratio exceeds one, the decision-maker devotes some attention to the variable x. The larger the cost of a price setting mistake and the larger the variance of the profit-maximizing price due to the variable x (i.e., the larger ω and φ 2 σ 2 x), the more attention is devoted to the variable x and the stronger is the response of the price p i to changes in x. The example given above is static. One can make the example dynamic by introducing time and by specifying the stochastic process {x t } t=0. One can then solve for the optimal signal process {s i,t } t=0, subject to a constraint on information flow. If the variable x t follows a stationary first-order autoregressive process, it is optimal to receive a signal of the form s i,t = x t + ε i,t, where the noise term ε i,t is independent across time. See Maćkowiak and 5

Wiederholt (2009), Propositions 3 and 4. The attention devoted to the variable x t is again increasing in φ 2 σ 2 x. Furthermore, the more attention is devoted to the variable x t,the smaller is the variance of noise in the signal and the faster is the response of the price p i,t to changes in x t.maćkowiak and Wiederholt (2009) argue that this can explain why prices respond quickly to idiosyncratic shocks and slowly to aggregate shocks. If there is a tradeoff between attending to idiosyncratic conditions and attending to aggregate conditions and idiosyncratic conditions are more important or more volatile, then price setters devote more attention to idiosyncratic conditions and prices respond faster to idiosyncratic shocks. In the example given above, the signal s i and the external state x are assumed to have a multivariate normal distribution, implying that the action p i and the external state x have a multivariate normal distribution. Sims (2006) argues that an agent with rational inattention will also choose the optimal form of the joint distribution of the action and the external state, subject to the constraint on information flow. Sims (2006) and Tutino (2009) study this question in the case of consumption saving problems. Maćkowiak and Wiederholt (2009), Woodford (2009) and Matejka (2010) study this question in the case of price setting problems. When the decision-maker s objective is quadratic and the external state has a normal distribution, a normally distributed signal turns out to be optimal. Sims idea of rational inattention has been applied to a variety of different decision problems, not only to price setting problems. Sims (2003, 2006), Luo (2008) and Tutino (2009) study consumption saving problems with a constant interest rate. Maćkowiak and Wiederholt (2010) study a consumption saving problem with a variable interest rate. Van Nieuwerburgh and Veldkamp (2009) and Mondria (2010) study portfolio choice under rational inattention. Maćkowiak and Wiederholt (2010) solve a dynamic stochastic general equilibrium model with rational inattention on the side of decision-makers in firms and households. Much remains to be done. There are numerous potential applications of the idea of rational inattention, but so far the theory of rational inattention has only been applied to price setting, consumption, portfolio choice, and wage setting. Furthermore, it is interesting to test models of rational inattention empirically. See Maćkowiak, Moench and Wiederholt (2009) and Kacperczyk, Van Nieuwerburgh and Veldkamp (2010) for empirical 6

tests of rational inattention theories of price setting and of portfolio choice. Finally, it seems interesting to study policy implications of models with rational inattention. Maćkowiak and Wiederholt (2010) and Paciello (2010) conduct monetary policy experiments in models with rational inattention, but fiscal policy, for example, has not been studied yet in models with rational inattention. References [1] Kacperczyk, M., S. Van Nieuwerburgh and L. Veldkamp. 2010. Attention Allocation over the Business Cycle. Manuscript. [2] Luo, Y. 2008. Consumption Dynamics under Information Processing Constraints. Review of Economic Dynamics 11(2), 366-385. [3] Maćkowiak, B., E. Moench and M. Wiederholt. 2009. Sectoral Price Data and Models of Price Setting. Journal of Monetary Economics 56(S), 78-99. [4] Maćkowiak, B. and M. Wiederholt. 2009. Optimal Sticky Prices under Rational Inattention. American Economic Review 99(3), 769-803. [5] Maćkowiak, B. and M. Wiederholt. 2010. Business Cycle Dynamics under Rational Inattention. CEPR Discussion Paper 7691. [6] Matejka, F. 2010. Rationally Inattentive Seller: Sales and Discrete Pricing. Manuscript. [7] Mondria, J. 2010. Portfolio Choice, Attention Allocation, and Price Comovement. Manuscript. [8] Paciello, L. 2010. Monetary Policy Activism and Price Responsiveness to Aggregate Shocks under Rational Inattention. Manuscript. [9] Reis, R. 2006. Inattentive Producers. Review of Economic Studies 73(3), 793-821. [10] Sims, C.A. 1998. Stickiness. Carnegie-Rochester Conference Series on Public Policy 49, 317-356. 7

[11] Sims, C.A. 2003. Implications of Rational Inattention. Journal of Monetary Economics 50(3), 665-690. [12] Sims, C.A. 2006. Rational Inattention: Beyond the Linear-Quadratic Case. American Economic Review Papers and Proceedings 96(2), 158-163. [13] Tutino, A. 2009. The Rigidity of Choice. Lifecycle Savings with Information Processing Limits. Manuscript. [14] Van Nieuwerburgh, S. and L. Veldkamp. 2009. Information Immobility and the Home Bias Puzzle. Journal of Finance 64(3), 1187-1215. [15] Woodford, M. 2009. Information-Constrained State-Dependent Pricing. Journal of Monetary Economics 56(S), 100-124. 8