Climate Change Impact on Air Temperature, Daily Temperature Range, Growing Degree Days, and Spring and Fall Frost Dates In Nebraska

Similar documents
Variability of Reference Evapotranspiration Across Nebraska

but 2012 was dry Most farmers pulled in a crop

November 2018 Weather Summary West Central Research and Outreach Center Morris, MN

September 2018 Weather Summary West Central Research and Outreach Center Morris, MN

Current Climate Trends and Implications

Nebraska experienced a wide

MDA WEATHER SERVICES AG WEATHER OUTLOOK. Kyle Tapley-Senior Agricultural Meteorologist May 22, 2014 Chicago, IL

An ENSO-Neutral Winter

Meteorology. Circle the letter that corresponds to the correct answer

2012 Growing Season Weather Summary for North Dakota. Adnan Akyüz and Barbara A. Mullins Department of Soil Science October 30, 2012

Multiple-Year Droughts In Nebraska

The Climate of Payne County

CLIMATOLOGICAL REPORT 2002

Monthly Long Range Weather Commentary Issued: February 15, 2015 Steven A. Root, CCM, President/CEO

The Climate of Grady County

The Climate of Marshall County

KANSAS CLIMATE SUMMARY August 2015

Midwest and Great Plains Climate- Drought Outlook 21 August 2014

UNITED STATES AND SOUTH AMERICA OUTLOOK (FULL REPORT) Wednesday, April 18, 2018

Weather and Climate Summary and Forecast August 2018 Report

Impacts of Climate on the Corn Belt

SEASONAL AND DAILY TEMPERATURES

National Wildland Significant Fire Potential Outlook

The Climate of Seminole County

The Climate of Kiowa County

Champaign-Urbana 2001 Annual Weather Summary

Monthly Long Range Weather Commentary Issued: APRIL 1, 2015 Steven A. Root, CCM, President/CEO

Why the Earth has seasons. Why the Earth has seasons 1/20/11

The Climate of Texas County

Weather & Climate of Virginia

The Climate of Bryan County

Seasonal Climate Forecast August October 2013 Verification (Issued: November 17, 2013)

Weather and Climate Summary and Forecast Winter

NIDIS Intermountain West Drought Early Warning System November 21, 2017

The Climate of Murray County

Monthly Long Range Weather Commentary Issued: SEPTEMBER 19, 2016 Steven A. Root, CCM, Chief Analytics Officer, Sr. VP,

Upper Missouri River Basin December 2017 Calendar Year Runoff Forecast December 5, 2017

Lab Activity: Climate Variables

The Climate of Pontotoc County

Champaign-Urbana 1999 Annual Weather Summary

Weather and Climate Summary and Forecast Winter

California 120 Day Precipitation Outlook Issued Tom Dunklee Global Climate Center

Weather and Climate Summary and Forecast Summer 2017

North Central U.S. Climate Summary & Outlook May 19, 2016

Illinois Drought Update, December 1, 2005 DROUGHT RESPONSE TASK FORCE Illinois State Water Survey, Department of Natural Resources

Weather and Climate Summary and Forecast February 2018 Report

CropCast Corn and Soybean Report Kenny Miller Tuesday, March 14, 2017

Midwest/Great Plains Climate-Drought Outlook September 20, 2018

Range Cattle Research and Education Center January CLIMATOLOGICAL REPORT 2016 Range Cattle Research and Education Center.

Range Cattle Research and Education Center January CLIMATOLOGICAL REPORT 2012 Range Cattle Research and Education Center.

NIDIS Intermountain West Drought Early Warning System September 4, 2018

Monthly Long Range Weather Commentary Issued: May 15, 2014 Steven A. Root, CCM, President/CEO

NIDIS Intermountain West Drought Early Warning System July 18, 2017

The following information is provided for your use in describing climate and water supply conditions in the West as of April 1, 2003.

Weather and Climate of the Rogue Valley By Gregory V. Jones, Ph.D., Southern Oregon University

Monthly Long Range Weather Commentary Issued: July 18, 2014 Steven A. Root, CCM, President/CEO

March 1, 2003 Western Snowpack Conditions and Water Supply Forecasts

Precipitation. Standardized Precipitation Index. NIDIS Intermountain West Drought Early Warning System September 5, 2017

Vermont Soil Climate Analysis Network (SCAN) sites at Lye Brook and Mount Mansfield

The Climate of Haskell County

LOCAL CLIMATOLOGICAL DATA FOR FREEPORT ILLINOIS

SEPTEMBER 2013 REVIEW

Weather and Climate Summary and Forecast October 2017 Report

Christopher ISU

SEASONAL RAINFALL FORECAST FOR ZIMBABWE. 28 August 2017 THE ZIMBABWE NATIONAL CLIMATE OUTLOOK FORUM

NIDIS Intermountain West Drought Early Warning System April 18, 2017

NIDIS Intermountain West Drought Early Warning System January 16, 2018

Potential (Reference) and Actual Evapotranspiration Trends across U.S. High Plains in Relation to Irrigation Development and Climate Change

Monthly Long Range Weather Commentary Issued: APRIL 18, 2017 Steven A. Root, CCM, Chief Analytics Officer, Sr. VP,

NIDIS Intermountain West Regional Drought Early Warning System February 7, 2017

JRC MARS Bulletin global outlook 2017 Crop monitoring European neighbourhood

Midwest and Great Plains Climate- Drought Outlook 16 April 2015

Climate Outlook through 2100 South Florida Ecological Services Office Vero Beach, FL January 13, 2015

The Pennsylvania Observer

UNITED STATES AND SOUTH AMERICA OUTLOOK (FULL REPORT) Thursday, December 28, 2017

Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate

Which Earth latitude receives the greatest intensity of insolation when Earth is at the position shown in the diagram? A) 0 B) 23 N C) 55 N D) 90 N

CropCast Corn and Soybean Report Kenny Miller Friday, March 17, 2017

Weather and Climate Summary and Forecast Fall/Winter 2016

AgWeatherNet and WA Climate Nic Loyd Meteorologist and Associate in Research AgWeatherNet

Here s what a weak El Nino usually brings to the nation with temperatures:

2006 Drought in the Netherlands (20 July 2006)

2011 Year in Review TORNADOES

Weather and Climate Summary and Forecast March 2018 Report

Climate Change and Climate Trends in Our Own Backyard

Climate Outlook through 2100 South Florida Ecological Services Office Vero Beach, FL September 9, 2014

The MRCC and Monitoring Drought in the Midwest

Weather and Climate Risks and Effects on Agriculture

2012 Growing Season. Niagara Report. Wayne Heinen

1.Introduction 2.Relocation Information 3.Tourism 4.Population & Demographics 5.Education 6.Employment & Income 7.City Fees & Taxes 8.

Weather Report 04 April 2018

Pacific Decadal Oscillation ( PDO ):

CropCast Corn and Soybean Report Kyle Tapley Monday, March 20, 2017

Climate outlook, longer term assessment and regional implications. What s Ahead for Agriculture: How to Keep One of Our Key Industries Sustainable

Upper Missouri River Basin February 2018 Calendar Year Runoff Forecast February 6, 2018

Drought Update May 11, 2018

Champaign-Urbana 2000 Annual Weather Summary

4) At the end of this presentation we have an operator that will organize the Q & A s.

Weather and Climate Summary and Forecast January 2018 Report

NIDIS Intermountain West Drought Early Warning System October 30, 2018

Transcription:

EXTENSION Know how. Know now. Climate Change Impact on Air Temperature, Daily Temperature Range, Growing Degree Days, and Spring and Fall Frost Dates In Nebraska EC715 Kari E. Skaggs, Research Associate Suat Irmak, Extension Soil and Water Resources and Irrigation Engineering Specialist and Professor Department of Biological Systems Engineering This UNL Extension Circular provides data and quantitative analyses, discussion, and interpretation of impacts of change in air temperature as a result of climate change on some of the basic temperature-related indices related to agricultural practices and their potential implications on agricultural practices. Adapting agricultural practices to a changing climate can help to sustain and even increase productivity. While we notice and hear stories about the climate changes going on around us, such as seeing robins and lilacs blooming earlier in the spring, it is important to know the numbers behind the observations and what they mean. Also, while global climate change is making headlines, local conditions and climate changes need to be quantified and interpreted. Even within a given region (i.e., Nebraska), the impact(s) of climate change can vary substantially depending on the gradients in interactions between land surface characteristics versus atmosphere. Thus, the climate change impacts in even one state should be quantified locally. Better preparations and management decisions can be made by combining relevant climate trend information with up-to-date forecasts. To quantify the trends in air temperature across Nebraska, five locations with long historical records were chosen. From west to east, the locations are Alliance (Box Butte County), Culbertson (Hitchcock County), Hastings (Adams County), Central City (Merrick County ), and Fremont (Dodge County). The available data dated from 12 back to 1897 at Fremont; back to 191 at Alliance, 194 at Culbertson, 198 at Hastings, and 1918 at Central City. Trends are based on annual frost dates, daily high and low (maximum and minimum) air temperatures, average air temperature, daily temperature range (high minus low temperature), accumulated growing degree days, and temperature distribution. Extension is a Division of the Institute of Agriculture and Natural Resources at the University of Nebraska Lincoln cooperating with the Counties and the United States Department of Agriculture. University of Nebraska Lincoln Extension educational programs abide with the nondiscrimination policies of the University of Nebraska Lincoln and the United States Department of Agriculture. 13, The Board of Regents of the University of Nebraska on behalf of the University of Nebraska Lincoln Extension. All rights reserved.

Day of year 28 26 2 2 18 16 1 1 1 First fall: 5.9 days per century Alliance Last spring: -7. days per century First fall: 5.8 days per century Central City Last spring: -12.5 days per century First fall: 1.7 days per century Culbertson Last spring: -1.9 days per century Day of year 28 26 2 2 18 16 1 1 1 First fall: 4.7 days per century Fremont Last spring: -9.2 days per century First fall: -1.5 days per century Hastings Last spring: -7.4 days per century Average Trends First fall frost date: 3.3 days per century Last spring frost date: -7.6 days per century Frost-free period length: 1.9 days per century First Fall Frost Last Spring Frost Figure 1. Time series of last spring frost and first fall frost and their linear trends for Allianc e (period of record: 191-12), Central City (1918-12), Culbertson (194-12), Fremont (1897-12), and Hastings (198-12). Positive numbers for the first fall and last spring frost days represent frosts occurring later in the respective season, and negative numbers represent earlier frosts in the respective season. Trends in Frost Date This analysis presents the linear trends of the last date in the spring that the temperature drops below 32ºF (last spring frost), the first date in the fall that the temperature drops below 32ºF (first fall frost), and the length between these two dates (frost-free period or climatological growing season). Figure 1 presents the time series and trends of the frost dates for the five locations. The greatest trends in frost dates occurred at the northern locations Central City, Fremont, and Alliance. All of these locations had significant trends toward earlier last spring frost dates (7-12 days earlier per century) and slight trends toward later first fall frosts (5-6 days later per century). These trends resulted in much longer frost-free periods, indicating longer growing seasons 13 days longer per century for Alliance, 14 days longer for Fremont, and 18 days longer for Central City. Hastings had a trend toward slightly earlier last spring frost (7.5 days per century), yet a trend of slightly earlier first fall frost (1.5 days per century), which led to only a 6 day per century increase in frost-free period. Culbertson had only a 3.5 day increase in the frost-free period, with a 2 day earlier per century trend in the last spring frost and 1.5 days later first fall frost. Trends in Daily High, Low, and Average Temperature The largest changes in daytime high temperatures occurred for the locations in the more south-central part of Nebraska during the summer and fall. Monthly average daytime high temperature decreased year-round, with the greatest monthly average decreases over 2ºF per century occurring in April and the fall months at Culbertson. At Hastings, the daytime high temperature decreased by almost 4ºF per century in July and August, and around 2ºF per century in September and October. Central City had a decrease in the daytime high temperature of 4.7ºF in July and 4.ºF in August, but also had increases in daytime highs from November through June with over 4ºF increases from January through April. 2 The Board of Regents of the University of Nebraska. All rights reserved.

There were very little changes in monthly average daytime high temperatures for the most northern locations, Alliance and Fremont. The most northern locations Alliance, Central City, and Fremont had year-round increases in monthly average nighttime low temperature. Alliance averaged a 1.5ºF per century increase in low temperature. Central City averaged a 3.1ºF increase in low temperature with increase of over 3ºF per century occurring from January through June and November. At Fremont, there was an average of almost 2ºF per century increase in low temperature with the greatest increases occurring in February (4.ºF per century) and a more than 2ºF per century increase May through August. At Hastings, low temperatures increased during the first half of the year with an up to 2.2ºF per century increase in July. Low temperatures decreased during the second half with a maximum decrease of 2.1ºF per century in September. There were only slight changes in the average nighttime low for Culbertson. The top rows of Figures 2-6 present the time series and trends of seasonal average air temperature. Central City and Fremont had the greatest increases in average temperature. Increases occurred from winter through spring for Central City, which had an average monthly increase from November through May of 4.ºF per century. At Fremont, increases in average air temperature were concentrated from late winter to mid-summer with the greatest increases occurring in February at 3.5ºF per century and June at 2.ºF per century. Alliance also experienced slight increases during spring and summer with the most significant increase occurring in July at 1.7ºF per century. At Hastings and Culbertson, late summer and fall decreases dominated the average temperature trends. At Culbertson, decreases of more than 1.5ºF per century were sustained from September through November. At Hastings, average air temperature decreases of over 2ºF per century occurred during August and September. Trends in Daily Temperature Range The middle row of Figures 2-6 presents the time series and trends of the daily temperature range (DTR) for the five locations. Daily temperature range is the daily high temperature minus the low temperature. DTR is Seasonal Total GDD ( o F) Daily Temp. Range ( o F) Average Temperature ( o F) 7 6 5 35 15 1 5 Spring Summer Fall Winter +.7 o F/century -1.8 o F/century +28 o F/century +1.1 o F/century -.9 o F/century -.5 o F/century -2.6 o F/century +8 o F/century +1.7 o F/century -1. o F/century <1 o F/century +1 o F/century Figure 2. Time series and trends in seasonal average air temperature, seasonal average daily temperature range, and seasonal total growing degree days (GDD) for Alliance, Neb., from 191-12. The Board of Regents of the University of Nebraska. All rights reserved. 3

Spring Summer Fall Winter Seasonal Total GDD ( o F) Daily Temp. Range ( o F) Average Temperature ( o F) 8 7 6 5 35 15 1 15 1 5 +4.5 o F/century +.3 o F/century + o F/century <.1 o F/century -5.4 o F/century -7 o F/century +1.6 o F/century +3.4 o F/century.2 o F/century -1. o F/century +31 o F/century +2 o F/century 1999 1999 1999 1999 Figure 3. Time series and trends in seasonal average air temperature, seasonal average daily temperature range, and seasonal total growing degree days (GDD) for Central City, Neb., from 1918-12. Spring Summer Fall Winter Seasonal Total GDD ( o F) Daily Temp. Range ( o F) Average Temperature ( o F) 8 7 6 5 45 35 15 15 1 5-1.1 o F/century -1.6 o F/century -49 o F/century -.7 o F/century -1.8 o F/century -63 o F/century -1.7 o F/century -2.4 o F/century -77 o F/century -.4 o F/century -1.1 o F/century <1 o F/century Figure 4. Time series and trends in seasonal average air temperature, seasonal average daily temperature range, and seasonal total growing degree days (GDD) for Culbertson, Neb., from 194-12. 4 The Board of Regents of the University of Nebraska. All rights reserved.

Seasonal Total GDD ( o F) Daily Temp. Range ( o F) Average Temperature ( o F) 8 7 6 5 15 15 1 5 Spring Summer Fall Winter +2. o F/century -.9 o F/century +12 o F/century +1. o F/century -3.5 o F/century -.4 o F/century -1.9 o F/century -44 o F/century +1.7 o F/century -.8 o F/century +2 o F/century +89 o F/century Figure 5. Time series and trends in seasonal average air temperature, seasonal average daily temperature range, and seasonal total growing degree days (GDD) for Fremont, Neb., from 1897-12. Seasonal Total GDD ( o F) Daily Temp. Range ( o F) Average Temperature ( o F) 8 7 6 5 35 15 15 1 5 Spring Summer Fall Winter +1.4 o F/century -.6 o F/century +54 o F/century -1.1 o F/century -3. o F/century -1.4 o F/century -.5 o F/century -11 o F/century +.7 o F/century -.2 o F/century +1 o F/century -12 o F/century Figure 6. Time series and trends in seasonal average air temperature, seasonal average daily temperature range, and seasonal total growing degree days (GDD) for Hastings, Neb., from 198-12. The Board of Regents of the University of Nebraska. All rights reserved. 5

typically between 23 and 35ºF in the drier, western part of the state, including Alliance and Culbertson. DTR is between 17 and 29ºF in the central and eastern parts of the state, including Hastings, Central City, and Fremont. DTR is usually greatest in the fall and the least during the winter and summer. Daily temperature range has been decreasing in many parts of the world, including the United States, and especially the High Plains and Midwest. The locations in this study were no different. The greatest trends in air temperature were in the daily temperature range. DTR decreased at annual average rates of 1-2ºF per century across all locations. DTR decreased yearround at Alliance, Fremont, and Culbertson, and during most months at Central City and Hastings. The greatest decreases occurred during July and August for Culbertson, Hastings, Central City, and Fremont with a monthly average decrease of up to 7.6ºF per century for July at Central City. The greatest decreases in DTR occurred during spring and fall for Alliance with the greatest decrease of 3.6ºF per century occurring for the month of November. Decreases in DTR are often associated with increases in atmospheric moisture and increased cloud cover. Increased cloud cover reduces daytime heating by blocking radiation from the sun and reduces nighttime cooling by absorbing the radiation emitted by the earth and reemitting it. Changes in weather patterns and increases in irrigation development have been noted as causes for increases in atmospheric moisture. Trends in Growing Degree Days Growing degree days are the number of heat (thermal) units usable for crop growth. It is quantified as temperature accumulation above a base temperature, which is the minimum temperature at which a given crop can perform its physiological functions. The base temperature for soybean and corn often used is 5ºF. In this research, the growing degree days were calculated as the average temperature minus 5ºF. For each month and over the growing season, the number of growing degree days was calculated as an accumulation of growing degree days. On average, the southeastern tip of Nebraska accumulates greater than 36ºF GDD each year, which decreases northwestward to ºF GDD in the Panhandle. On average, corn generally requires an accumulated 27ºF GDD to reach physiological maturity for the longer-season hybrids grown in the southeast and ºF GDD for physiological maturity for the shorter-season hybrids grown in the northwest. Farmers who have an increase in GDD throughout the growing season may want to plant longer-season, higher-yielding hybrids/varieties to take advantage of the increase in thermal units. Earlier planting may be an option for those who have had an increase in spring and early summer GDD if it is coupled with early last spring frosts. While longer-season hybrids have greater yields than shorter-season hybrids, the crop water use (evapotranspiration) is also greater for the longer-season hybrids. More research is needed to evaluate the dynamics involved with the long- and short-season hybrids, crop water use, yield, and productivity relationships, and also their implications to the water resources availability/ allocation in a given location to determine best practices for maximum crop water productivity. The bottom rows of Figures 2-6 present the time series and trends in seasonal accumulated growing degree days (GDD) for the five locations. In general, GDD increased for more northern locations, while the southern locations of Culbertson and Hastings had decreases in accumulated growing degree days associated with decreases in daily high temperature. Hastings had its greatest decreases in GDD occurring in the late summer and early fall with an annual accumulation decrease at a rate of 156ºF per century. At Culbertson, small monthly decreases in GDD from April through October led to a decrease in annual accumulated GDD of 188ºF per century. Moving northward to Central City, there were large increases in spring growing degree days with a total of a ºF per century increase for March through May. At Central City, there were also slight decreases in late summer GDD, similar to those observed at the more southern locations. The largest change at Fremont was an increase in GDD of 6ºF per century in June. There were also slight increases during spring and the rest of the summer with slight decreases (around ºF monthly per century) during September and October for Fremont. An increase of 52ºF per century during July occurred for Alliance with slight increases in GDD for most of the rest of the year, resulting in an annual total increase at a rate of 136ºF per century. Shifts in Temperature Distribution during The Growing Season Since plant growth, plant response to environmental factors, crop stress, and, ultimately, yield and crop water productivity show varying degrees of sensitivity to different ranges of air temperature, the decadal shifts in the distributions of the daily recorded high and low temper- 6 The Board of Regents of the University of Nebraska. All rights reserved.

High Temp. Range ( o F) Alliance Fremont Central City Hastings Culbertson < -5 5-6 6-7 7-8 8-9 9-1 >1 High Temp. Range ( o F) Alliance Fremont Central City Hastings Culbertson <32 32- -48 48-56 56-64 64-72 >72 Figure 7. Trends in ranges of high and low temperatures for the locations north to south: Alliance, Fremont, Central City, Hastings, and Culbertson. Green negative signs indicate that the frequency of high or low temperatures in that range is decreasing. The graphic on the top presents the decadal trends in daily high temperature, while the bottom graphic presents the trends in low temperature. Blue positive signs indicate that the frequency of high or low temperatures in that range is increasing. Three plus (+++) and minus (---) signs and darker shading indicate statistically significant trends. atures were determined. The bottom graphic in Figure 7 presents the trends for daily low temperatures. At Alliance, Fremont, and Central City, daily low temperatures had a general shift from temperatures less than 56ºF toward temperatures greater than 56ºF, with a very distinguished increase in low temperatures in the 64-72ºF range and a decrease in low temperatures less than 48ºF. The average increase in nighttime low temperatures observed at these locations, as mentioned previously, occurred due to this shift in temperatures. The shift was less pronounced at Hastings, though there was a decrease in the frequency of low temperatures less than ºF. There were no consistent shifts in low temperature at Alliance. The top graphic in Figure 7 presents the trends in daily high temperatures. At Fremont, Central City, and Hastings, daily high temperatures less than 7ºF and greater than 9ºF became less frequent, while highs between 7ºF and 9ºF became more frequent. From these shifts, it seems that the decreases in daytime temperature observed during much of the growing season at these locations were not due to an increase in the coldest temperatures, rather due to a general mildening of high temperatures. There was also a pronounced shift from temperatures greater than 9ºF to cooler temperatures. At Alliance, the high temperature shift was opposite of that at the other locations. The high temperature extremes both the coolest and warmest (less than 6ºF and greater than 9ºF) increased in frequency, while high temperatures between 6ºF and 9ºF decreased in frequency. The Board of Regents of the University of Nebraska. All rights reserved. 7

Table 1. Potential crop production practices that can be impacted by different temperature variables. Temperature variable Last spring frost First fall frost Growing season length Daytime high temperature Nighttime low temperature Daily temperature range Total growing degree days Changes in certain temperature ranges Agricultural activities that can be impacted Planting date; crop emergence; cover crop determination Freeze potential; cover crop determination; second crop viability Hybrid/variety determination; and factors listed above Plant heat and water stress potential Respiration and dry matter accumulation; crop water productivity Plant water and heat stress potential; cloud cover; radiation interception; transpiration; crop water productivity Growth rates; developmental/maturity period length; hybrid/variety determination All of the above With some locations experiencing earlier last spring frosts and longer frost-free periods, some farmers should consider earlier planting of longer-season hybrids/ varieties. It is especially important to look at long-term precipitation outlooks for the coming growing season when making the decision to use longer-season hybrids/ varieties that typically require more water, as previously mentioned. Longer-season hybrids/varieties could make the best use of air temperature and solar radiation in a longer growing season with normal or above normal rainfall. However, some locations experienced decreases in late summer-early fall growing degree day accumulation. Earlier spring planting with the use of the current hybrid /variety season length may be needed to offset the later season deficit in growing degree days to reach maturity before the first fall frost. Table 1 summarizes the potential crop production practices that can be impacted by different temperature variables studied in this Extension Circular. How plans can be impacted by these various temperature variables will not be described in this Circular. Resources In making agricultural management decisions in relation to climatic conditions and to learn more quantification of changes in climatic characteristics and changes in soil temperature, please see the following additional resources: Some weekly to seasonal temperature and precipitation outlooks are available online, such as www.cpc.ncep.noaa.gov, and daily forecasts are available from many sources, including the National Weather Service at www.weather.gov. UNL general cropping systems information: http:// cropwatch.unl.edu. For additional information on drought and available resources for potential mitigations, check the UNL Drought Resources website at: http:// droughtresources.unl.edu/ and soil temperature across the state of Nebraska in NebGuide G2122, Soil Temperature: A Guide for Planting Agronomic and Horticulture Crops in Nebraska, where shifts toward earlier soil warming have been observed. High Plains Regional Climate Center monthly climate summaries and updates of frost statistics are found at www.hprcc.unl.edu. This publication has been peer reviewed. UNL Extension publications are available online at http://extension.unl.edu/publications. 8 The Board of Regents of the University of Nebraska. All rights reserved.