The 5 basic equations of semiconductor device physics: We will in general be faced with finding 5 quantities:

Similar documents
Getting J e (x), J h (x), E(x), and p'(x), knowing n'(x) Solving the diffusion equation for n'(x) (using p-type example)

Review 5 unknowns: n(x,t), p(x,t), J e. Doping profile problems Electrostatic potential Poisson's equation. (x,t), J h

6.012 Electronic Devices and Circuits

Electronic Devices and Circuits Lecture 5 - p-n Junction Injection and Flow - Outline

Lecture 8 - Carrier Drift and Diffusion (cont.) September 21, 2001

Lecture 4 - PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium September 20, 2005

Lecture 15: Optoelectronic devices: Introduction

Lecture 7 - Carrier Drift and Diffusion (cont.) February 20, Non-uniformly doped semiconductor in thermal equilibrium

Uniform excitation: applied field and optical generation. Non-uniform doping/excitation: diffusion, continuity

Lecture 4 - PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium. February 13, 2003

Semiconductor Physics fall 2012 problems

Semiconductor Physics Problems 2015

Carriers Concentration and Current in Semiconductors

Holes (10x larger). Diode currents proportional to minority carrier densities on each side of the depletion region: J n n p0 = n i 2

Spring Semester 2012 Final Exam

EE105 Fall 2015 Microelectronic Devices and Circuits: Semiconductor Fabrication and PN Junctions

Semiconductor Junctions

ECE 340 Lecture 21 : P-N Junction II Class Outline:

Chapter 7. The pn Junction

Section 12: Intro to Devices

Section 12: Intro to Devices

Electric Field--Definition. Brownian motion and drift velocity

Fundamentals of Semiconductor Physics

MTLE-6120: Advanced Electronic Properties of Materials. Semiconductor p-n junction diodes. Reading: Kasap ,

6.012 Electronic Devices and Circuits

Diodes. anode. cathode. cut-off. Can be approximated by a piecewise-linear-like characteristic. Lecture 9-1

Semiconductor Physics fall 2012 problems

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

( )! N D ( x) ) and equilibrium

Appendix 1: List of symbols

Lecture 15 - The pn Junction Diode (I) I-V Characteristics. November 1, 2005

Lecture-4 Junction Diode Characteristics

L03: pn Junctions, Diodes

PHYSICAL OPERATION OF THE P-N JUNCTION, DIODES AND TRANSISTORS

PN Junction and MOS structure

Quiz #1 Practice Problem Set

Introduction to Power Semiconductor Devices

Lecture 2. OUTLINE Basic Semiconductor Physics (cont d) PN Junction Diodes. Reading: Chapter Carrier drift and diffusion

collisions of electrons. In semiconductor, in certain temperature ranges the conductivity increases rapidly by increasing temperature

16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE. Energy Band Diagram of Conductor, Insulator and Semiconductor:

FIELD-EFFECT TRANSISTORS

Lecture 20 - p-n Junction (cont.) October 21, Non-ideal and second-order effects

ECE-305: Spring 2018 Exam 2 Review

Metal Semiconductor Contacts

ESE 372 / Spring 2013 / Lecture 5 Metal Oxide Semiconductor Field Effect Transistor

Extensive reading materials on reserve, including

n N D n p = n i p N A

ECE 440 Lecture 20 : PN Junction Electrostatics II Class Outline:

(Refer Slide Time: 03:41)

Semiconductor device structures are traditionally divided into homojunction devices

Lecture 6 PN Junction and MOS Electrostatics(III) Metal-Oxide-Semiconductor Structure

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

Lecture 10 - Carrier Flow (cont.) February 28, 2007

junctions produce nonlinear current voltage characteristics which can be exploited

MOS CAPACITOR AND MOSFET

Classification of Solids

PHYS208 P-N Junction. Olav Torheim. May 30, 2007

Session 5: Solid State Physics. Charge Mobility Drift Diffusion Recombination-Generation

Session 6: Solid State Physics. Diode

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

Lecture 8 - Carrier Drift and Diffusion (cont.), Carrier Flow. February 21, 2007

V BI. H. Föll: kiel.de/matwis/amat/semi_en/kap_2/backbone/r2_2_4.html. different electrochemical potentials (i.e.

Current mechanisms Exam January 27, 2012

Solid State Electronics. Final Examination

Carrier Recombination

FYS3410 Condensed matter physics

ECE-305: Fall 2016 Minority Carrier Diffusion Equation (MCDE)

- A free electron in CB "meets" a hole in VB: the excess energy -> a photon energy.

ECE 305 Fall Final Exam (Exam 5) Wednesday, December 13, 2017

ECE 440 Lecture 28 : P-N Junction II Class Outline:

Junction Diodes. Tim Sumner, Imperial College, Rm: 1009, x /18/2006

Lecture 19 - p-n Junction (cont.) October 18, Ideal p-n junction out of equilibrium (cont.) 2. pn junction diode: parasitics, dynamics

8.1 Drift diffusion model

Lecture 3 Semiconductor Physics (II) Carrier Transport

Lecture 7 PN Junction and MOS Electrostatics(IV) Metal Oxide Semiconductor Structure (contd.)

A study of the silicon Bulk-Barrier Diodes designed in planar technology by means of simulation

Lecture 9 - Carrier Drift and Diffusion (cont.), Carrier Flow. September 24, 2001

PN Junctions. Lecture 7

Solid State Physics SEMICONDUCTORS - IV. Lecture 25. A.H. Harker. Physics and Astronomy UCL

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

PHYS485 Materials Physics

Electronic Devices & Circuits

ECE 606 Homework Week 7 Mark Lundstrom Purdue University (revised 2/25/13) e E i! E T

Semiconductor Device Physics

For the following statements, mark ( ) for true statement and (X) for wrong statement and correct it.

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The German University in Cairo. Faculty of Information Engineering & Technology Semiconductors (Elct 503) Electronics Department Fall 2014

Charge Carriers in Semiconductor

Semiconductors CHAPTER 3. Introduction The pn Junction with an Applied Voltage Intrinsic Semiconductors 136

This is the 15th lecture of this course in which we begin a new topic, Excess Carriers. This topic will be covered in two lectures.

Solar Cell Physics: recombination and generation

Sample Exam # 2 ECEN 3320 Fall 2013 Semiconductor Devices October 28, 2013 Due November 4, 2013

Lecture Notes 2 Charge-Coupled Devices (CCDs) Part I. Basic CCD Operation CCD Image Sensor Architectures Static and Dynamic Analysis

pn JUNCTION THE SHOCKLEY MODEL

The photovoltaic effect occurs in semiconductors where there are distinct valence and

Physics 169. Luis anchordoqui. Kitt Peak National Observatory. Wednesday, March 8, 17

EE301 Electronics I , Fall

Engineering 2000 Chapter 8 Semiconductors. ENG2000: R.I. Hornsey Semi: 1

Transcription:

6.012 - Electronic Devices and Circuits Solving the 5 basic equations - 2/12/08 Version The 5 basic equations of semiconductor device physics: We will in general be faced with finding 5 quantities: n(x,t), p(x,t), J e (x,t), J h (x,t), and E(x,t), and we have five independent equations that relate them: (1) J e (x,t) = q µ e n(x,t) E(x,t) + q D e n(x,t) (2) J h (x,t) = q µ h p(x,t) E(x,t) - q D h p(x,t) (3) n(x,t) t - 1 q J e (x,t) = g L (x,t) - [n(x,t) p(x,t) - n i 2 ] r (4) p(x,t) t + 1 q J h (x,t) = g L (x,t) - [n(x,t) p(x,t) - n i 2 ] r (5) ε E(x,t) = q [p(x,t) - n(x,t) + N d(x) - N a (x)] where the assumptions we made getting these equations are: N d + (x) Nd (x), N ā (x) N a (x), R(x,t) n(x,t) p(x,t) r r, ε, µ e, µ h, D e, and D h are assumed to be independent of position. Temperature is assumed to be constant (isothermal). (Note: n i, r, µe, µh, De, and Dh all depend on temperature). 1

This is a set of 5 coupled, non-linear differential equations that are in general not solvable analytically... BUT we know the solution in three special cases already... 1) Uniform doping, thermal equilibrium: n o, p o (See page 4 below for a discussion of this case) 2) Drift: g = 0, uniform doping (See page 4 below for a discussion of this case) 3) Uniform Low-level Injection: n, p, τ min (See pages 5-6 below for a discussion of this case) AND we are able to find APPROXIMATE ANALYTICAL solutions for two very important new situations... 1) Doping Profile Problems: non-uniformly doped material in thermal equilibrium (an important subset of these problems are solved using the depletion approximation) (See pages 7-10 below for a discussion of these problems) 2) Flow Problems: non-uniform injection of excess carriers into uniformly doped material (See pages 11-14 below for a discussion of these problems) ******** With an understanding of these solutions to the five equations we will be able to model and understand all of the important semiconductor devices, including diodes, bipolar transistors, and MOSFETs. (See page 3 for an illustration of this point) 2

Why we care: Understanding Flow Problems, the Depletion Approximation, and Drift, we can understand all of the basic devices we see in 6.012: Diodes involve flow problems in two regions and the depletion approximation about one junction: p-type n-type Flow problem Junctiion problem Flow problem Note: This is true not only for simple electronic diodes, but also for light emitting and laser diodes, and for photodiodes and solar cells. Bipolar transistors involve flow problems in three regions and the depletion approximation about two junctions: B Junction problem E n-type p n-type C Flow problems MOSFETs involve two diodes, the depletion approximation in the gate region, and drift in the channel: S G D n+ Diodes p-type Drift n+ Depletion approximation 3

Special Case: UNIFORM DOPING, THERMAL EQUIL. Uniform material, thermal equilibrium: / = 0, / t 0, and g L = 0. In this case n and p are constant and denoted as n o and p o. Equations 3 and 4 give: n o p o = n i 2, and Equation 5 gives: p o - n o + N d - N a = 0. Combining and solving for n o and p o yields: when N d - N a >> n i (i.e., n-type), n o N d - N a, and p o = n i 2 /n o and when N a - N d >> n i (i.e., p-type), p o N a - N d, and n o = n i 2 /p o Special Case: DRIFT Uniform material; uniform, slowly varying (quasistatic) externally applied electric field: / = 0, / t 0, and g L = 0. Equations (3) and (4) yield: np = n i 2, and Equation (5) yields: p - n + N d - N a = 0. Combining these we see p and n are the same as p o and n o in thermal equilibrium. Using this with Equations (1) and (2) yields: J e (t) = q µ e n o E(t), J h (t) = q µ h p o E(t) J TOT (t) = J e (t) + J h (t) = q (µ e n o + µ h p o ) E(t) We see that under these conditions we have a current proportional to any externally applied electric field. This is Ohm's law on a microscopic scale. 4

Special Case: UNIFORM OPTICAL EXCITATION (Photoconductivity) (Minority Carrier Lifetime) Uniform material; uniform optical generation, g L (t); uniform applied electric field; low level injection: / = 0 ****** We first define excess carrier populations, n' and p', as: n(t) = n o + n'(t), or n'(t) = n(t) - n o p(t) = p o + p'(t), or p'(t) = p(t) - p o Symmetry tells us we must have zero internal electric field, and since any externally applied electric field must be uniform, there is no gradient in the electric field. Using this in Equation (5), yields n'(t) = p'(t) Using all of this in Equations (1) and (2) shows us that we only have drift currents, but they are larger than in thermal equilibrium. This is photoconductivity: J e (x,t) = q µ e [n o + n'(t)] E, J h (x,t) = q µ h [p o + p'(t)] E J TOT (t) = [q (µ e n o + µ h p o ) + q (µ e + µ h ) n'(t)] E "thermal equilibrium conductivity" "photoconductivity" Returning now to p'(t) and n'(t), which are still unknowns, we know they are equal, and to determine what they are we use either Equation (3) or Equation (4): 5

dn(t) dt yielding = dn'(t) dt dn'(t) dt = g L (t) - [{n o + n'(t)}{p o + p'(t)} - n i 2 ] r = g L (t) - [{n o + p o +n'(t)} n'(t)}] r To linearize this first order differential equation we assume low level injection, i.e. n'(t) << n o + p o. This sum is essentially the majority carrier population, and we will focus on the excess minority carrier population. Assuming for sake of discussion that we have a p-type sample, we normally would write this as n'(t) << p o. In this case we have {n o + p o +n'(t)} p o and thus dn'(t) dt g L (t) - n'(t) p o r We define the minority carrier lifetime, τ e, as 1/p o r, so: dn'(t) dt + n'(t) τ e g L (t) This is a first order, linear differential equation well known to us from RC circuits. The homogeneous solutions of this equation are of the form: n'(t) = A e -t/τ e where A is chosen so that the total solution (homogeneous plus particular) satisfies the initial condition. 6

Special Case: DOPING PROFILES and JUNCTIONS Arbitrary doping profile; thermal equilibrium: / t = 0, g L = 0; arbitrary N d (x), N a (x) ****** In thermal equilibrium the currents must be zero so from Equations (3) and (4) we find that even with an arbitrary doping profile, n o (x) p o (x) = n i 2, and Equations (1) and (2) tell us that and 0 = q µ e n o (x) E(x) + q D e dn o (x) dx 0 = q µ h p o (x) E(x) - q D h dp o (x) dx We can rewrite these equations using E(x) = -dφ(x)/dx as: 1 dn o (x) n = - µ e dφ(x) o (x) dx D e dx and 1 p o (x) dp o (x) dx = µ h D h dφ(x) dx Integrating both sides with respect to x, and adapting the convention that Φ(x) is zero in intrinsic material, i.e., where n o (x) = p o (x) = n i, we have n o (x) = n i e µ e D e Φ(x) 7

and p o (x) = n i e - µ h D h Φ(x) We see immediately that the requirement that n o (x) p o (x) = n i 2, tells us that we must have: µ e D e = µ h D h In fact, the ratio of µ to D is equal to a very specific quantity, q/kt: µ e D = µ h q e D = h kt This equality is known as the Einstein relation; it is easy to remember because it rhymes as written, and it also rhymes inverted. We use it frequently. We thus have: and n o (x) = n i e qφ(x)/kt p o (x) = n i e - qφ(x)/kt Alternatively, we can write in terms of n o (x) and/or p o (x): Φ(x) = kt q ln n o(x) n i = - kt q ln p o(x) n i Finally, we use these results in Equation (5) (which also relates Φ(x), p o (x), and n o (x)) to write: ε 2 Φ(x) 2 = q [n i e - qφ(x)/kt - n i e qφ(x)/kt + N d (x) - N a (x)] 8

Once again we have reduced our five equations to one equation in one unknown (Φ(x) in this case). However, the solution of this equation is, in general, impossible to obtain analytically, but it can easily be solved iteratively by computer, and in many cases a perfectly adequate solution can be found by hand using the "depletion approximation". An important observation is that the electrostatic potential, Φ(x), depends only logarithmically on the equilibrium carrier concentrations, p o (x) and n o (x). This means that large changes in carrier concentration result in only relatively small changes in the electrostatic potential. Said the other way around, a small change in electrostatic potential corresponds to a relatively large change in the carrier concentrations. A useful rule of thumb to keep in mind is that an order of magnitude change in carrier concentration, corresponds to a 60 mv change in electrostatic potential. This is called "The 60 mv rule." Special Profiles Gradual spatial variation: If N d (x) and/or N a (x) vary only slowly with position (where "slowly" can be defined using the concept of Debye length), the equilibrium carrier concentrations track the doping profile, i.e. in an n-type sample where, N d (x) - N a (x) > 0 n o (x) N d (x) - N a (x) and p o (x) = n i 2 /n o (x) Abrupt doping changes; depletion approximation: If the doping changes abruptly, for example from p-type to n- type at a p-n junction, the majority carrier concentration will fall so quickly at the electrostatic potential begins to 9

change that a "depletion region", i.e., a region effectively void of mobile carriers will be created. In that region there will be a net charge density approximately equal to that of the net donor or acceptor concentration. For example, if the depletion region on the n-side extends from 0 to x n, the depletion approximation says that net charge density, ρ(x), can be approximated as: ρ(x) q[n d (x) - N a (x)] for 0 < x < x n The depletion approximation model gives an estimate for the net charge density profile. Having this estimate, we can integrate it once to get an estimate for the electric field profile, E(x). Integrating again gives us an estimate for the electrostatic potential profile, Φ(x). Having this we can calculate n o (x) and p o (x), recalculate ρ(x), etc., and continue interating until we are satisfied. Usually we stop after one time through, i.e., after calculating Φ(x) the first time. 10

Special Case: FLOW PROBLEMS Uniform material; quasi-static (slowly varying), low level optical excitation of arbitrary distribution, i.e. g L (x,t); no externally applied electric field (may have internal field): / t 0; n', p' << n o + p o Assume p-type for purposes of discussion. ****** We already know n o and p o in this situation, so the problem is one of finding the excess carrier populations, the currents, and the electric field. A fundamental assumption we make is that the material remains essential charge neutral. We call this condition quasineutrality, and specify it by saying that we can assume p'(x,t) n'(x,t), and n'(x,t)/ p'(x,t)/ We will not justify this assumption rigorously in 6.012, but one can show that it is well satisfied in semiconductors. You can refer to Appendix D in the course text for more. We proceed with Equation (3), which yields: - 1 q J e (x,t) g L (x,t) - n'(x,t) τ e We next turn to Equations (1) and (2), and we argue that any minority carrier drift must be negligible under low level injection conditions. The minority carrier drift 11

current is always much less than the majority carrier drift current, so the only way there will be a non-negligible minority carrier current is if it is a minority carrier diffusion current. Thus, in our present case of a p-type sample, Equation (1) becomes: J e (x,t) q D e n'(x,t) Combining the last two equations yields a single second order differential equation in the minority carrier concentration: 2 n'(x,t) 2 - n'(x,t) D e τ e - g L(x,t) D e The homogeneous solutions of this equation are of the form: n'(x,t) = A e -x/l e + B e +x/l e where we have defined the minority carrier diffusion length, L e, as L e = D e τ e The constants A and B are chosen so that the total solution, consisting of the sum of the homogeneous solution and the particular solutiion, satisfy the boundary conditions. Now we can continue to calculate the rest of the quantities of interest, i.e., p'(x,t), J e (x,t), J h (x,t), and E(x,t). We begin by noticing that once we know n'(x,t), we can calculate J e (x,t) using the equation above. 12

Then we calculate J h (x,t) using J Tot (t) = J e (x,t) + J h (x,t). We will in general know what J Tot (t) is from the problem statement, or from some other piece of information. To see that J Tot (t) is not a function of position in quasistatic situations (i.e., / t 0), subtract Equations (3) and (4) to get: J e (x,t) + J h(x,t) = [J e(x,t) + J h (x,t)] = J Tot (t) = 0 Knowing J h (x,t), we calculate E(x) using Equation (2), along with our assumptions of low level injection (i.e., p(x,t) p o ) and quasineutrality (i.e., n'(x,t)/ p'(x,t)/). Once we have E(x), we calculate p'(x) using Equation (5). Finally, we look at all of our answers and confirm that all of our assumptions were valid. If they are, we are done. If they are not, we start over, this time not making the invalid assumptions. Boundary Conditions An important aspect of solving flow problems is knowing the boundary conditions. Once you know the boundary conditions, you can often sketch the answer (usually the excess minority carrier distribution). The key boundary conditions we encounter in 6.012 can be summarized as follows: ohmic contacts - excesses are identically zero reflecting surfaces - net current in or out is zero (i.e. slope of minority carrier profile is zero) unless there is surface generation, in which case the flux away from the surface equals the generation rate 13

internal boundaries - excess concentration profiles are never discontinuous; the current can only be discontinuous if there is generation/recombination in the boundary plane, in which case the net flux out/in equals the generation/recombination rate injecting surface/boundaries - in devices we will have boundaries which establish the value of (a) the excess minority carrier population, or (b) the excess minority carrier flux (current density) Infinite Lifetime Approximation In cases where the minority carrier diffusion length, L e, is much larger than the dimensions of the sample, we can often ignore the n'/ L e 2 term in the diffusion equation, so that our equation becomes simply 2 n'(x,t) 2 - g L(x,t) D e Important points to make about this result are: 1. We can find n for an arbitrary g L simply by integrating this equation twice, and then using the boundary conditions to get the two constants of integration. 2. When g L is zero, the profiles are straight lines. 3. This is called the infinite lifetime approximation because it is equivalent to neglecting recombination. 14