Lecture 20. The Chemical Potential

Similar documents
Effect of adding an ideal inert gas, M

Some properties of the Helmholtz free energy

The Chemical Potential

Remember next exam is 1 week from Friday. This week will be last quiz before exam.

Lecture 11: Models of the chemical potential

4.1 Constant (T, V, n) Experiments: The Helmholtz Free Energy

Thermodynamics: Lecture 6

Chapter 5. Chemistry for Changing Times, Chemical Accounting. Lecture Outlines. John Singer, Jackson Community College. Thirteenth Edition

Thermodynamics of Reactive Systems The Equilibrium Constant

Lecture 28. Uniformity of Chemical Potential at Equilibrium

Chemical Equilibria. Chapter Extent of Reaction

Chapter 11. Molecular Composition of Gases

OCN 623: Thermodynamic Laws & Gibbs Free Energy. or how to predict chemical reactions without doing experiments

Chemical reactors. H has thermal contribution, pressure contribution (often negligible) and reaction contribution ( source - like)

Chapter 5. Simple Mixtures Fall Semester Physical Chemistry 1 (CHM2201)

Lecture 6 Free energy and its uses

10, Physical Chemistry- III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Surface chemistry, Fast kinetics)

The Euler Equation. Using the additive property of the internal energy U, we can derive a useful thermodynamic relation the Euler equation.

Thermodynamics and Equilibrium. Chemical thermodynamics is concerned with energy relationships in chemical reactions.

The Second Law of Thermodynamics (Chapter 4)

MME 2010 METALLURGICAL THERMODYNAMICS II. Partial Properties of Solutions

More on phase diagram, chemical potential, and mixing

CHEMISTRY 443, Fall, 2014 (14F) Section Number: 10 Examination 2, November 5, 2014

Introduction into thermodynamics

1. Heterogeneous Systems and Chemical Equilibrium

Thermodynamic Processes and Thermochemistry

Thermodynamic and Stochiometric Principles in Materials Balance

Lecture 6 Free Energy

MS212 Thermodynamics of Materials ( 소재열역학의이해 ) Lecture Note: Chapter 7

Chemical reaction equilibria

NENG 301 Week 8 Unary Heterogeneous Systems (DeHoff, Chap. 7, Chap )

AP CHEMISTRY SCORING GUIDELINES

FLOW REACTORS FOR HOMOGENOUS REACTION: PERFORMANCE EQUATIONS AND APPLICATIONS

The N 2 O 4 -NO 2 Equilibrium

Apply the concept of percent yield to stoichiometric problems. Methanol can be produced through the reaction of CO and H 2 in the presence of a

Lecture 17. Conditions of Equilibrium

Videos 1. Crash course Partial pressures: YuWy6fYEaX9mQQ8oGr 2. Crash couse Effusion/Diffusion:

General Gibbs Minimization as an Approach to Equilibrium

Chapter 19 The First Law of Thermodynamics

Introduction Statistical Thermodynamics. Monday, January 6, 14

Thermodynamics (Classical) for Biological Systems Prof. G. K. Suraishkumar Department of Biotechnology Indian Institute of Technology Madras

Thermodynamic Variables and Relations

Thermodynamic condition for equilibrium between two phases a and b is G a = G b, so that during an equilibrium phase change, G ab = G a G b = 0.

Thermodynamics of Solutions Partial Molar Properties


ESCI 341 Atmospheric Thermodynamics Lesson 12 The Energy Minimum Principle

Grand Canonical Formalism

Chemistry. Lecture 10 Maxwell Relations. NC State University

I: Life and Energy. Lecture 2: Solutions and chemical potential; Osmotic pressure (B Lentz).

The mathematical description of the motion of Atoms, Molecules & Other Particles. University of Rome La Sapienza - SAER - Mauro Valorani (2007)

AP Study Questions

Mixtures. Partial Molar Quantities

Chapter 11 Solution Thermodynamics: Theory

Disorder and Entropy. Disorder and Entropy

Reacting Gas Mixtures

General Chemistry revisited

AP CHEMISTRY NOTES 8-1 CHEMICAL EQUILIBRIUM: AN INTRODUCTION

Thermodynamics of reacting mixtures

3.5. Kinetic Approach for Isotherms

Courtesy of Marc De Graef. Used with permission.

ADIABATIC PROCESS Q = 0

Stoichiometry. The quantitative study of reactants and products in a chemical reaction. Burlingame High School Chemistry

Experiment #14 Virtual Chemistry Laboratory (Chemical Equilibrium) Le-Chatelier s principle

aa + bb ---> cc + dd

The Standard Gibbs Energy Change, G

Quantities and Variables in Thermodynamics. Alexander Miles

Chapter 3. Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc.

The Gibbs Phase Rule F = 2 + C - P

Summary of Gas Laws V T. Boyle s Law (T and n constant) Charles Law (p and n constant) Combined Gas Law (n constant) 1 =

HOMEWORK 11-1 (pp )

Enthalpy, Entropy, and Free Energy Calculations

(g) + 3H 2. (g) 2NH 3. (g) (a) Explain what is meant by a dynamic equilibrium. (2)

Physics 360 Review 3

Chemical Potential. Combining the First and Second Laws for a closed system, Considering (extensive properties)

Chemical Equilibrium. Chapter

FUEL CELLS: INTRODUCTION

Introduction. Statistical physics: microscopic foundation of thermodynamics degrees of freedom 2 3 state variables!

15.1 The Concept of Equilibrium

Entropy, Free Energy, and Equilibrium

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 Notes on the Microcanonical Ensemble

S A 0.6. Units of J/mol K S U /N

Chapter 15 Equilibrium

CHEMISTRY 202 Hour Exam I. Dr. D. DeCoste T.A.

4.3.1 Chemical measurements, conservation of mass and the quantitative interpretation of chemical equations

Phases of matter and phase diagrams

rate of reaction forward conc. reverse time P time Chemical Equilibrium Introduction Dynamic Equilibrium Dynamic Equilibrium + RT ln f p

UNIT 15: THERMODYNAMICS

Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics

Chapter 18 Thermal Properties of Matter

Physics Nov Phase Transitions

Thermodynamics I. Properties of Pure Substances

Chapter 11. Preview. Lesson Starter Objectives Pressure and Force Dalton s Law of Partial Pressures

Introduction to Chemical Thermodynamics. (10 Lectures) Michaelmas Term

We now turn to the subject of central importance in thermodynamics, equilibrium. Since

Phase Diagrams. NC State University

Thus, the volume element remains the same as required. With this transformation, the amiltonian becomes = p i m i + U(r 1 ; :::; r N ) = and the canon

CHAPTER 6 CHEMICAL EQUILIBRIUM

Gas Volumes and the Ideal Gas Law

Chapter 19. Entropy, Free Energy, and Equilibrium

Chem 105/107 Exam #3 Fall 2012

Transcription:

MIT 3.00 Fall 2002 c W.C Carter 135 Last Time Internal Degrees of Freedom Lecture 20 The Chemical Potential At constant P, T : G, which represents the internal degrees of freedom, is minimized. The Chemical Potential µ i The Chemical Potential in a Closed System It was demonstrated that a system that can exchange energy and volume with a reservoir is in equilibrium with the reservoir when the pressure is the same in the system as in the reservoir. This idea can be extended to a complicated set of many interacting subsystems to arrive at the conclusion that pressure and temperature must be uniform at equilibrium. Recall the method that was used to demonstrate the uniformity of P and T : from a conservation principle (i.e., constant internal energy and constant volume) for an extensive variable, and with a maximal principle for entropy (i.e., ds universe = 0) it followed that the intensive variables associated with the conserved quantities must be equal at equilibrium.

MIT 3.00 Fall 2002 c W.C Carter 136 At constant temperature and pressure, the Gibbs free energy of the system is minimized at equilibrium this is another extremal principle With another conservation principle, another equality can be derived. For a closed system, the total number or atoms or molecules of a particular type is conserved; this is an additional constraint for each species in the f possible phases: N A total = constant =N α A + N β A +... + N i A +... N f A dn total A = 0 =dn α A + dn β A +... + dn A i +... dn f A ( ) dn f A = dna α + dn β A +... + dn A i +... dn f 1 A (20-1) where the equations are written out for the A-type atoms. Using a similar expression for each of the C-conserved species and putting this into the expression for dg: dg = SdT + V dp + f 1 C j=1 ( ) µ i j µ f j dnj i (20-2) Because G is minimized at equilibrium at constant P and T, it follows that if any species j can be exchanged between the i-phase and the f-phase (i.e., one can consider virtual changes with nonzero values of dn j i = dn f i ) then it follows from Equation 20-2 that µi j = µ f j at equilibrium. To see this consider three different cases: µ i j > µ f j Species can flow from the i-phase into the f-phase (dn j i < 0) and the Gibbs free energy can be decreased at constant P and T ((dg) P,T < 0). µ i j < µ f j Species can flow from the f-phase into the i-phase (dn j i > 0) and the Gibbs free energy can be decreased at constant P and T ((dg) P,T < 0). µ i j = µ f j Any direction of flow of species (dn j i 0 or dn j i < 0) will not decrease G ((dg) P,T = 0). In other words, a chemical species could be spontaneously transported from a phase of larger chemical potential to one of lower chemical potential.

MIT 3.00 Fall 2002 c W.C Carter 137 At equilibrium, the chemical potential of any transportable species, ( ) ( ) G G µ i = (20-3) N i P,T,N j N i X i P,T,X j X i must be uniform throughout the system. 19 Application to Mixtures of Ideal Gases It has been shown that if several phases are in equilibrium with each other, then the chemical potential of any chemical species will be the same in each phase. Therefore, if we can calculate the chemical potential in some phase we know its value in any other phase that is in equilibrium with it. A clever approach would be to determine the chemical potential in the phase where it is most simple to calculate. It is particularly simple to calculate the chemical potential in an ideal gas mixture. In this manner, the determination of chemical potential in any phase can be determined by finding the ideal gas mixture that is equilibrium with it. We begin by applying the condition that applies for equilibrium to a a single phase mixture of ideal gases at constant pressure and temperature. To apply equilibrium condition: C µ i dn i = 0 (20-4) to an ideal gas, an expression for the Gibbs free energy associated with each component is calculated. For an ideal gas, U is a function of T only. And since H = U + P V = U + N, H is a function of T only. µ i is the Gibbs free energy per mole of species i (this will be shown to be true later), so we need to find an expression for: G i = H i T S i (20-5) for each deal gaseous species i that comprises and ideal gas mixture at constant pressure, P and temperature, T. 19 For the partial derivative with respect to X i in Equation 20-3, there is a constraint between the variables Xi = 1, that must be considered when taking the derivative of the molar free energy. Later, we will derive an important graphical construction for the determination of µ i from curves of G.

MIT 3.00 Fall 2002 c W.C Carter 138 To find a model for the chemical potential in an ideal gas mixture 20, one might imagine that the system is in contact with C pistons and each of the pistons only interacts with one gas. The total pressure is the sum of the partial pressures on each of the pistons. Or, one might associate a sub-volume with each of the C components. For an ideal gas, T ds i =du i + P d ds i =C V,i dt T + Rd (20-6) Because the individual volumes associated with each gas species are the internal degrees of freedom which may adjust themselves so that the system attains equilibrium, an expression for the the molar entropy can be calculated for any ideal gas species occupying volume at some temperature T by integrating that volume from some reference state. It will be useful to introduce a particular reference state, ref, which is the volume that a mole of isolated gas would occupy at some temperature T and some reference pressure P ref21 Therefore changing the state of each of species i from its reference state to any molar volume at constant temperature can be calculated by integrating Equation 20-6 along an isotherm: S i ( ) S i ( ref ) = R Vi ref S i ( ) S i ( ref ) = R log dv V ref (20-7) 20 That is a system of particles that occupy a neglible volume and are non-interacting. Each particle is identified with a chemical species. If the species are assumed to react, then the combinations of particles to form another vary according to the stoicheometric coefficients of a chemical reaction of the form rr +qq bb +aa 21 All the chemical species i should use the same reference pressure so the subscript can be dropped. Whenever a subscript appears below, it will refer to a partial pressure, i.e., i P i = P total

MIT 3.00 Fall 2002 c W.C Carter 139 And because P i = P ref ref ref = P ref (20-8) P i therefore G i (, ref, T ) = Hi (T ) log Can be written by changing variables from V to P : ref G i (P i, P ref, T ) =G i (T ) + log P i P ref G i (P i, P ref, T ) =N i G i (T ) + N i log P i P ref =N i G i (T ) + N i log P ip total P total P ref =N i G i (T ) + N i log P total P ref + N i log X i ( G(P total C C, T, N i ) = G i = = N i G i (T ) + N i log P total ) P ref + N i log X i (20-9) (20-10) where in an ideal gas, the ratio of partial pressure to the total pressure P i /P total = X i. if we take P ref to be some convenient standard state (i.e. STP) then P i /P ref = P i /1atm P i atm is the partial pressure of the gaseous species i with respect to one atmosphere. Pi atm is the numerical value of the partial pressure of the i th species, but it is really unitless. Typically, a standard is adopted where all pressure measurements are assumed to be in atmospheres and thus the log P i /P ref term is written as log P i where it is understood that

MIT 3.00 Fall 2002 c W.C Carter 140 P i is exactly the numerical value of the unitless P i atm and there is no difficulty in carrying around units like log(atmospheres). We will adopt this standard below. From these considerations derives an expression for the chemical potentials of ideal gases in a mixture: µ i (P i, T ) =µ i (T ) + log P i µ i (X i, P total, T ) =µ i + log P total + log X i (20-11) Compare this to G = µ = H T S S i = R log P i = R log P total R log X i G i (T ) =µ i (T ) = H i (T ) (20-12) for an ideal gas mixture. Models for Chemical Potentials in Solutions The are various models for the chemical potential in a solution; the simplest is the ideal gas. 22 The following are definitions that will be used when we discuss solution behavior, but are useful to introduce in the context of ideal gases. 22 An ideal single gas: µ(p, T ) = µ (T ) + log P/P. Note, you will often see formulae like µ = µ + log P, you know that P cannot have units so a convenient P = 1 has been picked.

MIT 3.00 Fall 2002 c W.C Carter 141 An Ideal Gas Mixture µ i (P i, T ) = µ i (T ) + log P i P µ i (X i, T ) = µ i (T ) + log X i (20-13) An Ideal Solution In an ideal solution, the system is made slightly more complicated by allowing chemical potential to become a function of pressure. µ i (X i, P, T ) = µ i (P, T ) + log X i (20-14) A General Solution In the general case, a new term (the activity a i ) is introduced to generalize the dependence on concentration: µ i (X i, P, T ) = µ i (P, T ) + log a i (20-15) a i is called the activity of species i it is a generalized composition. Factoring out the X i : a i = γ i X i (20-16) γ i is called an activity coefficient. In the most general case, it could also be a function of c i, but limiting cases where it is independent of c i will be discussed later. Equilibrium Compositions in an Ideal Reacting Gas Mixture

MIT 3.00 Fall 2002 c W.C Carter 142 The simple expression for the chemical potentials in an ideal gas can be put into the equilibrium condition: C µ i dn i = 0 (20-17) and equilibrium amounts of material can be calculated. If we have a closed system (fixed number of moles of the independent species), then A Simple Example Consider the gaseous reaction C µ i dx i = 0 (20-18) Reaction: H 2 1 2 O 2 H 2 O Initial: 1 1 0 During Rx.: 1 x 1 1 2 x x Therefore, dx H2 = dx H2 O and dx O 2 = 1dX 2 H 2 O (Every mole of hydrogen gas that appears is associated with the disappearance of one mole of water vapor; every mole of water vapar that appears is associated with the disappearance of one half a mole of oxygen gas). Therefore, the condition for equilibrium (Equation 20-18) for an ideal gas mixture becomes: (µ (H + log P 2 ) H 2 )dx H2 + 0 = (µ (O + log P 2 ) O 2 )dx O2 + (20-19) (µ (H + log P 2 O) H 2 O )dx H 2 O + which is possible only if (µ (H 2 O) µ (H 2 ) 1 2 µ (O 2 ) ) = (log P H 2 O log P H 2 1 2 log P O 2 ) (20-20) P H2 O P H2 P 1/2 O 2 X H2 O = P total K X H2 X 1/2 eq = O 2 K eq = e G rxn P total e G rxn G rxn (µ (H 2 O) µ (H 2 ) 1 2 µ (O 2 ) ) (20-21)

MIT 3.00 Fall 2002 c W.C Carter 143 In general for ideal gas mixture with reaction pp + qq rr + mm P R r P M m P P p P Q q = e G rxn = K eq (T ) X R r Xm M X P p = P p+q r s K Xq total eq (T ) Q (20-22) where the molar free energy change of the reaction is: and generalizing even more a r R am M a p P aq Q = γr R γm M X R r Xm M γ P p γq Q X P p Xq Q = e Grxn (20-23) A Slightly More Complicated Worked Example Let s consider a more complicated gaseous reaction: CO + H 2 O H 2 + CO 2 (20-24)

MIT 3.00 Fall 2002 c W.C Carter 144 Suppose we have a container at 1 atm and at 1000 C with initially two moles of water vapor and one mole of carbon dioxide. Here are some questions that one might ask: How many moles of oxygen gas will exist at equilibrium? If the reaction is carried out at a different pressure, how will the concentration of carbon monoxide vary? The first question may seem a little odd there appears to be no oxygen in the reaction 20-24. However, if reaction 20-24 is written as the sum of two reactions: and CO + 1 2 O 2 CO 2 0 mole + 0 mole 1 mole initial 2Y + Y 1 2Y equilibrium (20-25) H 2 O 1O 2 2 + H 2 2 mole 0 mole + 0 mole initial (20-26) 2 2X X + 2X equilibrium Then it is clear that oxygen plays a role in the reaction 20-24 as the there are two independent reactions contained in the three reactions 20-24, 20-25. and 20-26. Furthermore, the sum of the standard free energies for the reaction will also add like the reactions and each of the reactions will have a standard reaction and the dependent reaction will be related to the others: H 2 O 1 2 O 2 + H 2 G rxn H 2 O CO + 1 2 O 2 CO 2 G rxn CO 2 (20-27) H 2 O + CO H 2 + CO 2 G rxn CO 2 G rxn H 2 O The total number of moles of ideal gas in the system at equilibrium will be N total = 3 + X + Y. (n.b., the reaction 20-25 produces Y moles and the reaction 20-26 prooduces X moles in addition to the initial 3 moles.) Every independent reaction must be at equilibrium independently Therefore we can write the two equilibrium conditions for the reaction 20-25! and for reaction 20-26, 2Y 3+X+Y 1 2Y 3+X+Y ( X+Y 3+X+Y ) 1/2 = e G rxn CO 2 (20-28)

MIT 3.00 Fall 2002 c W.C Carter 145 ( 2X X+Y 3+X+Y 3+X+Y 2 2X 3+X+Y ) 1/2 = e G rxn H 2 O! (20-29) so there are two independent equations and two unknowns, so it is now algebra to find X and Y and therefore the concentration of oxygen (X + Y )/(3 + X + Y ). To find how the concentration of carbon monoxide depends on pressure, rewrite Eq. 20-28 in terms of partial pressures: P CO 2 Ptotal ( P P ) 1/2 = e CO O 2 Ptotal Ptotal P CO2 P CO P 1/2 O 2 = P 1/2total e G rxn CO 2 Grxn CO 2!! (20-30)