The form factor program a review and new results

Similar documents
THE FORM FACTOR PROGRAM: A REVIEW AND NEW RESULTS, THE NESTED SU(N) OFF-SHELL BETHE ANSATZ AND THE 1/N EXPANSION

The nested SU(N) off-shell Bethe Ansatz and exact form factors

City Research Online. Permanent City Research Online URL:

U(N) Matrix Difference Equations and a Nested Bethe Ansatz

arxiv:hep-th/ v1 20 Oct 1993

City, University of London Institutional Repository

THE SPECTRUM OF BOUNDARY SINE- GORDON THEORY

Difference Equations and Highest Weight Modules of U q [sl(n)]

Operator-algebraic construction of integrable QFT and CFT

Finite temperature form factors in the free Majorana theory

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

arxiv:hep-th/ v2 1 Aug 2001

Fractional-Spin Integrals of Motion for the Boundary Sine-Gordon Model at the Free Fermion Point

Lüscher corrections for non-diagonal form factors in integrable QFTs

The boundary supersymmetric sine-gordon model revisited

On the quantum theory of rotating electrons

City, University of London Institutional Repository

Suggested Homework Solutions

Spinor Formulation of Relativistic Quantum Mechanics

SU(N) Matrix Difference Equations and a Nested Bethe Ansatz

S Leurent, V. Kazakov. 6 July 2010

Casimir effect and the quark anti-quark potential. Zoltán Bajnok,

arxiv:hep-th/ v1 20 Apr 1993

Exercises Symmetries in Particle Physics

APPLICATION OF MASSIVE INTEGRABLE QUANTUM FIELD THEORIES TO PROBLEMS IN CONDENSED MATTER PHYSICS

Baxter Q-operators and tau-function for quantum integrable spin chains

Constructing infinite particle spectra

MSci EXAMINATION. Date: XX th May, Time: 14:30-17:00

Entropy and Lorentz Transformations

arxiv:hep-th/ v1 21 Mar 2000

General Relativity and Differential

Introduction to Integrability in AdS/CFT: Lecture 4

arxiv:cond-mat/ v1 8 Jun 1993

Surface excitations and surface energy of the antiferromagnetic XXZ chain by the Bethe ansatz approach

1 What s the big deal?

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight

MTH3101 Spring 2017 HW Assignment 4: Sec. 26: #6,7; Sec. 33: #5,7; Sec. 38: #8; Sec. 40: #2 The due date for this assignment is 2/23/17.

2 Soliton Perturbation Theory

City Research Online. Permanent City Research Online URL:

Talk at the International Workshop RAQIS 12. Angers, France September 2012

City Research Online. Permanent City Research Online URL:

Introduction to Modern Quantum Field Theory

The boundary state from open string fields. Yuji Okawa University of Tokyo, Komaba. March 9, 2009 at Nagoya

Systematic construction of (boundary) Lax pairs

Finite size effects and the supersymmetric sine-gordon models

Bethe ansatz solution of a closed spin 1 XXZ Heisenberg chain with quantum algebra symmetry

Bethe Ansatz solution of the open XX spin chain with nondiagonal boundary terms

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

Since the discovery of high T c superconductivity there has been a great interest in the area of integrable highly correlated electron systems. Notabl

The dilute A L models and the integrable perturbations of unitary minimal CFTs.

Exact S-Matrix of the Adjoint SU(ΛΓ) Representation

arxiv: v1 [nucl-th] 5 Jul 2012

From continuous to the discrete Fourier transform: classical and q

On the Concept of Local Fractional Differentiation

Geometric Spinors, Generalized Dirac Equation and Mirror Particles

On String S-matrix, Bound States and TBA

Quantum metrology from a quantum information science perspective

Open string pair production & its consequences

SPECIAL RELATIVITY AND ELECTROMAGNETISM

The composite operator T T in sinh-gordon and a series of massive minimal models

Baby Skyrmions in AdS 3 and Extensions to (3 + 1) Dimensions

Spectrum of Holographic Wilson Loops

Integrable Systems in Contemporary Physics

arxiv:hep-th/ v1 24 Sep 1998

New Shape Invariant Potentials in Supersymmetric. Quantum Mechanics. Avinash Khare and Uday P. Sukhatme. Institute of Physics, Sachivalaya Marg,

Properties for systems with weak invariant manifolds

On the algebraic Bethe ansatz approach to correlation functions: the Heisenberg spin chain

The continuum limit of the integrable open XYZ spin-1/2 chain

arxiv:solv-int/ v1 5 Jan 1999

Conformal field theory on the lattice: from discrete complex analysis to Virasoro algebra

arxiv: v1 [hep-th] 18 Apr 2007

Correlation Functions of Conserved Currents in Four Dimensional Conformal Field Theory with Higher Spin Symmetry

Trigonometric SOS model with DWBC and spin chains with non-diagonal boundaries

1 Divergent series summation in Hamilton Jacobi equation (resonances) G. Gentile, G.G. α = ε α f(α)

Unitary rotations. October 28, 2014

Complex Variables & Integral Transforms

Solution set #7 Physics 571 Tuesday 3/17/2014. p 1. p 2. Figure 1: Muon production (e + e µ + µ ) γ ν /p 2

String hypothesis and mirror TBA Excited states TBA: CDT Critical values of g Konishi at five loops Summary. The Mirror TBA

A tale of two Bethe ansätze

Quantization of Scalar Field

Exact calculation for AB-phase effective potential via supersymmetric localization

City Research Online. Permanent City Research Online URL:

arxiv:hep-th/ v1 15 May 1996

Spinor Representation of Conformal Group and Gravitational Model

A Brief Introduction to Relativistic Quantum Mechanics

arxiv: v1 [math-ph] 24 Dec 2013

Sine square deformation(ssd) and Mobius quantization of 2D CFTs

Smooth SL(m, C) SL(n, C)-actions on the (2m + 2n 1)-sphere

arxiv:gr-qc/ v1 22 Jul 1994

arxiv:math/ v1 [math.qa] 11 Dec 2002

Information Loss in the CGHS Model

Quantum Electrodynamics Test

1 + z 1 x (2x y)e x2 xy. xe x2 xy. x x3 e x, lim x log(x). (3 + i) 2 17i + 1. = 1 2e + e 2 = cosh(1) 1 + i, 2 + 3i, 13 exp i arctan

Math 417 Midterm Exam Solutions Friday, July 9, 2010

Free Boundary Minimal Surfaces in the Unit 3-Ball

Prediction for several narrow N* and Λ* * resonances with hidden charm around 4 GeV

2 Lie Groups. Contents

Relativistic Spin Operator with Observers in Motion

S[Ψ]/V 26. Ψ λ=1. Schnabl s solution. 1 2π 2 g 2

Integrable Structure of Conformal Field Theory II. Q-operator and DDV equation

Transcription:

The form factor program a review and new results the nested SU(N)-off-shell Bethe ansatz H. Babujian, A. Foerster, and M. Karowski FU-Berlin Budapest, June 2006 Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 1 / 20

Contents 1 The Bootstrap Program Construct a quantum field theory explicitly Integrability 2 SU(N) S-matrix 3 Form factors Form factors equations Locality and field equations SU(N) Form factors 2-particle form factors The general formula Bethe ansatz state 4 Wightman functions Short distance behavior Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 2 / 20

The Bootstrap Program Construct a quantum field theory explicitly in 3 steps Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 3 / 20

The Bootstrap Program Construct a quantum field theory explicitly in 3 steps 1 S-matrix using 1 general Properties: unitarity, crossing etc. 2 Yang-Baxter Equation 3 bound state bootstrap 4 maximal analyticity Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 3 / 20

The Bootstrap Program Construct a quantum field theory explicitly in 3 steps 1 S-matrix using 1 general Properties: unitarity, crossing etc. 2 Yang-Baxter Equation 3 bound state bootstrap 4 maximal analyticity 2 Form factors using 1 the S-matrix 2 LSZ-assumptions 3 maximal analyticity 0 O(x) p 1,..., p n in = e ix(p 1+ +p n) F O (θ 1,..., θ n ) Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 3 / 20

The Bootstrap Program Construct a quantum field theory explicitly in 3 steps 1 S-matrix using 1 general Properties: unitarity, crossing etc. 2 Yang-Baxter Equation 3 bound state bootstrap 4 maximal analyticity 2 Form factors using 1 the S-matrix 2 LSZ-assumptions 3 maximal analyticity 3 Wightman functions 0 O(x) p 1,..., p n in = e ix(p 1+ +p n) F O (θ 1,..., θ n ) 0 O(x)O(y) 0 = n 0 φ(x) n in in n φ(y) 0 Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 3 / 20

The Bootstrap Program Construct a quantum field theory explicitly in 3 steps 1 S-matrix using 1 general Properties: unitarity, crossing etc. 2 Yang-Baxter Equation 3 bound state bootstrap 4 maximal analyticity 2 Form factors using 1 the S-matrix 2 LSZ-assumptions 3 maximal analyticity 3 Wightman functions 0 O(x) p 1,..., p n in = e ix(p 1+ +p n) F O (θ 1,..., θ n ) 0 O(x)O(y) 0 = n 0 φ(x) n in in n φ(y) 0 The bootstrap program classifies integrable quantum field theoretic models Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 3 / 20

Integrability Integrability in (quantum) field theories means: there exits -many conservation laws µ J µ L (t, x) = 0 (L Z) Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 4 / 20

Integrability Integrability in (quantum) field theories means: there exits -many conservation laws µ J µ L (t, x) = 0 (L Z) Consequence in 1+1 dim.: The n-particle S-matrix is a product of 2-particle S-matrices S (n) (p 1,..., p n ) = i<j S ij (p i, p j ) Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 4 / 20

Integrability Integrability in (quantum) field theories means: there exits -many conservation laws µ J µ L (t, x) = 0 (L Z) Consequence in 1+1 dim.: The n-particle S-matrix is a product of 2-particle S-matrices S (n) (p 1,..., p n ) = i<j S ij (p i, p j ) Further consequences Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 4 / 20

Integrability Yang-Baxter equation S 12 S 13 S 23 = S 23 S 13 S 12 = 1 2 3 1 2 3 Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 5 / 20

Integrability Yang-Baxter equation S 12 S 13 S 23 = S 23 S 13 S 12 = 1 2 3 1 2 3 bound state bootstrap equation S (12)3 Γ (12) 12 = Γ (12) 12 S 13 S 23 (12) = 1 3 2 (12) 1 2 3 Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 5 / 20

SU(N) S-matrix Example S δγ αβ (θ) = δ γ = δ αγ δ βδ b(θ) + δ αδ δ βγ c(θ). θ α 1 θ 2 β particles α, β, γ, δ = 1,..., N vector representation of SU(N) Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 6 / 20

SU(N) S-matrix Example S δγ αβ (θ) = δ γ = δ αγ δ βδ b(θ) + δ αδ δ βγ c(θ). θ α 1 θ 2 β particles α, β, γ, δ = 1,..., N vector representation of SU(N) Yang-Baxter = c(θ) = 2πi Nθ b(θ) Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 6 / 20

SU(N) S-matrix Example S δγ αβ (θ) = δ γ = δ αγ δ βδ b(θ) + δ αδ δ βγ c(θ). θ α 1 θ 2 β particles α, β, γ, δ = 1,..., N vector representation of SU(N) Yang-Baxter = c(θ) = 2πi Nθ b(θ) = a(θ) = b(θ) + c(θ) = Γ ( 1 θ 2πi Γ ( 1 + θ 2πi ) Γ ( 1 1 N + θ 2πi ) Γ ( 1 1 N θ 2πi ) ) Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 6 / 20

SU(N) S-matrix Example S δγ αβ (θ) = δ γ = δ αγ δ βδ b(θ) + δ αδ δ βγ c(θ). θ α 1 θ 2 β particles α, β, γ, δ = 1,..., N vector representation of SU(N) Yang-Baxter = c(θ) = 2πi Nθ b(θ) = a(θ) = b(θ) + c(θ) = Γ ( 1 θ 2πi Γ ( 1 + θ 2πi ) Γ ( 1 1 N + θ 2πi ) Γ ( 1 1 N θ 2πi ) ) The S-matrix has a bound state pole at θ = iη = 2πi/N. Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 6 / 20

SU(N) S-matrix Example S δγ αβ (θ) = δ γ = δ αγ δ βδ b(θ) + δ αδ δ βγ c(θ). θ α 1 θ 2 β particles α, β, γ, δ = 1,..., N vector representation of SU(N) Yang-Baxter = c(θ) = 2πi Nθ b(θ) = a(θ) = b(θ) + c(θ) = Γ ( 1 θ 2πi Γ ( 1 + θ 2πi ) Γ ( 1 1 N + θ 2πi ) Γ ( 1 1 N θ 2πi ) ) The S-matrix has a bound state pole at θ = iη = 2πi/N. Bound state of N 1 particles = anti-particle [Swieca] Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 6 / 20

Form factors Definition: Let O(x) be a local operator 0 O(0) p 1,..., p n in α 1...α n = Fα O 1...α n (θ 1,..., θ n ) = O... Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 7 / 20

Form factors Definition: Let O(x) be a local operator 0 O(0) p 1,..., p n in α 1...α n = F O α 1...α n (θ 1,..., θ n ) LSZ-assumptions + maximal analyticity } = O... = Properties of form factors Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 7 / 20

Form factor equations (i) Watson s equation (ii) Crossing F O...ij...(..., θ i, θ j,... ) = F...ji...(. O.., θ j, θ i,... ) S ij (θ i θ j ) O O =............ ᾱ 1 p 1 O(0)..., p n in,conn....α n = σ O α 1 F O α 1...α n (θ 1 + iπ,..., θ n ) = F O...α nα 1 (..., θ n, θ 1 iπ) O... conn. = σα O 1 O... = O... Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 8 / 20

Form factor equations (iii) Annihilation recursion relation 1 2i 1 2i Res F 1...n(θ O 1,..) = C 12 F3...n(θ O 3,..) ( 1 σ O ) 2 S 2n... S 23 θ 12 =iπ = O σ2 O O... Res θ 12 =iπ O... (iv) Bound state form factors... 1 Res F 123...n(θ) O = F(12)3...n O (θ (12), θ ) Γ (12) 12 2 θ 12 =iη 1 2 Res θ 12 =iη (v) Lorentz invariance O... = O... F O 1...n(θ 1 + u,..., θ n + u) = e su F O 1...n(θ 1,..., θ n ) Babujian, Foerster, wherekarowski s is the (FU-Berlin) spin of OThe form factor program Budapest, June 2006 9 / 20

Locality and field equations (i) (iv) and a general crossing formula in φ [O(x), O(y)] ψ in = 0 for all matrix elements, if x y is space like. Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 10 / 20

Locality and field equations (i) (iv) and a general crossing formula in φ [O(x), O(y)] ψ in = 0 for all matrix elements, if x y is space like. Exact form factors = Quantum field equations Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 10 / 20

Locality and field equations (i) (iv) and a general crossing formula in φ [O(x), O(y)] ψ in = 0 for all matrix elements, if x y is space like. Exact form factors = Quantum field equations E.g. sine-gordon equation: in φ ϕ(t, x) + α β : sin βϕ : (t, x) ψ in = 0 Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 10 / 20

Locality and field equations (i) (iv) and a general crossing formula in φ [O(x), O(y)] ψ in = 0 for all matrix elements, if x y is space like. Exact form factors = Quantum field equations E.g. sine-gordon equation: in φ ϕ(t, x) + α β : sin βϕ : (t, x) ψ in = 0 the bare mass α is related to the renormalized mass m by α = m 2 πν sin πν where ν = β2 8π β 2 Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 10 / 20

2-particle form factors 0 O(0) p 1, p 2 in/out = F ( (p 1 + p 2 ) 2 ± iε ) = F (±θ 12 ) where p 1 p 2 = m 2 cosh θ 12. Watson s equations F (θ) = F ( θ) S (θ) F (iπ θ) = F (iπ + θ) maximal analyticity unique solution Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 11 / 20

2-particle form factors 0 O(0) p 1, p 2 in/out = F ( (p 1 + p 2 ) 2 ± iε ) = F (±θ 12 ) where p 1 p 2 = m 2 cosh θ 12. Watson s equations F (θ) = F ( θ) S (θ) F (iπ θ) = F (iπ + θ) maximal analyticity unique solution Example: The highest weight SU(N) 2-particle form factor F (θ) = exp 0 dt t sinh 2 t e t N sinh t ( 1 1 ) ( ( 1 cosh t 1 θ )) N iπ Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 11 / 20

The general formula Fα O 1...α n (θ 1,..., θ n ) = Kα O 1...α n (θ) F (θ ij ) 1 i<j n Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 12 / 20

The general formula F O α 1...α n (θ 1,..., θ n ) = K O α 1...α n (θ) 1 i<j n F (θ ij ) Nested off-shell Bethe Ansatz Kα O 1...α n (θ) = dz 1 C θ dz m h(θ, z) p O (θ, z) L β1...β m (z)ψ β 1...β m α 1...α n (θ, z) C θ Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 12 / 20

The general formula F O α 1...α n (θ 1,..., θ n ) = K O α 1...α n (θ) 1 i<j n F (θ ij ) Nested off-shell Bethe Ansatz Kα O 1...α n (θ) = dz 1 C θ dz m h(θ, z) p O (θ, z) L β1...β m (z)ψ β 1...β m α 1...α n (θ, z) C θ h(θ, z) = n i=1 j=1 m φ(z j θ i ) τ(z) = 1 i<j m 1 φ(z)φ( z) depend only on F (θ) i.e. on the S-matrix (see below), τ(z i z j ), Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 12 / 20

The general formula F O α 1...α n (θ 1,..., θ n ) = K O α 1...α n (θ) 1 i<j n F (θ ij ) Nested off-shell Bethe Ansatz Kα O 1...α n (θ) = dz 1 C θ dz m h(θ, z) p O (θ, z) L β1...β m (z)ψ β 1...β m α 1...α n (θ, z) C θ h(θ, z) = n i=1 j=1 m φ(z j θ i ) τ(z) = 1 i<j m 1 φ(z)φ( z) depend only on F (θ) i.e. on the S-matrix (see below), p O (θ, z) = polynomial of e ±z i τ(z i z j ), depends on the operator. Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 12 / 20

Equation for φ(z) bound state ( 1,..., 1 }{{} ) N 1 (N 1) = 1 = anti-particle of 1 and the form factor recursion relations (iii) + (iv) = N 2 k=0 N 1 φ (θ + kiη) k=0 F (θ + kiη) = 1, η = 2π N Solution: ( ) ( θ φ(θ) = Γ Γ 1 1 2πi N θ ) 2πi Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 13 / 20

Bethe ansatz state Ψ β α(θ, z) = β 1 β m 1 1... z m... θ 1 α 1 z 1 θ n α n 1. 1 2 β i N 1 α i N Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 14 / 20

Wightman functions The two-point function w(x) = 0 O(x) O (0) 0 Summation over all intermediate states w(x) = n=0 1 n! dθ 1... dθ n e ix(p 1+ +p n) g n (θ) where g n (θ) = 1 (4π) n 0 O(0) p 1,..., p n in in p n,..., p 1 O (0) 0 Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 15 / 20

Wightman functions The two-point function w(x) = 0 O(x) O (0) 0 Summation over all intermediate states w(x) = n=0 1 n! dθ 1... dθ n e ix(p 1+ +p n) g n (θ) where g n (θ) = 1 (4π) n 0 O(0) p 1,..., p n in in p n,..., p 1 O (0) 0 The Log of the two-point function ln w(x) = n=1 1 n! dθ 1... dθ n e ix(p 1+ +p n) h n (θ) Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 15 / 20

Wightman functions The functions g n and h n are obviously related by the cummulant formula g I = h I1... h Ik I 1 I k =I For example g 1 = h 1 g 12 = h 12 + h 1 h 2 g 123 = h 123 + h 12 h 3 + h 13 h 2 + h 23 h 1 + h 1 h 2 h 3... Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 16 / 20

Short distance behavior The two-point Wightman function for short distances 0 O(x) O(0) 0 ( x 2) 4 for x 0 with the dimension = 1 8π n=1 1 n! dθ 1... dθ n 1 h n (θ 1,..., θ n 1, 0) Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 17 / 20

Short distance behavior The two-point Wightman function for short distances 0 O(x) O(0) 0 ( x 2) 4 for x 0 with the dimension = 1 8π n=1 1 n! dθ 1... dθ n 1 h n (θ 1,..., θ n 1, 0) Example: The sinh-gordon model ϕ + α β sinh βϕ = 0 Operator: O(x) = :exp βϕ:(x) Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 17 / 20

Short distance behavior sinh-gordon 1- and 1+2-particle intermediate state contributions where B = 0.4 0.3 0.2 0.1 0 0 1 2 2β2 4π+β 2 B 1-particle 1+2-particle Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 18 / 20

Some References S-matrix: A.B. Zamolodchikov, JEPT Lett. 25 (1977) 468 M. Karowski, H.J. Thun, T.T. Truong and P. Weisz Phys. Lett. B67 (1977) 321 M. Karowski and H.J. Thun, Nucl. Phys. B130 (1977) 295 A.B. Zamolodchikov and Al. B. Zamolodchikov Ann. Phys. 120 (1979) 253 M. Karowski, Nucl. Phys. B153 (1979) 244 Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 19 / 20

Some References Form factors: M. Karowski and P. Weisz Nucl. Phys. B139 (1978) 445 B. Berg, M. Karowski and P. Weisz Phys. Rev. D19 (1979) 2477 F.A. Smirnov World Scientific 1992 H. Babujian, A. Fring, M. Karowski and A. Zapletal Nucl. Phys. B538 [FS] (1999) 535-586 H. Babujian and M. Karowski Phys. Lett. B411 (1999) 53-57, Nucl. Phys. B620 (2002) 407; Journ. Phys. A: Math. Gen. 35 (2002) 9081-9104; Phys. Lett. B 575 (2003) 144-150. H. Babujian, A. Foerster and M. Karowski Nucl.Phys. B736 (2006) 169-198 and in preparation Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 20 / 20

Some References Form factors: M. Karowski and P. Weisz Nucl. Phys. B139 (1978) 445 B. Berg, M. Karowski and P. Weisz Phys. Rev. D19 (1979) 2477 F.A. Smirnov World Scientific 1992 H. Babujian, A. Fring, M. Karowski and A. Zapletal Nucl. Phys. B538 [FS] (1999) 535-586 H. Babujian and M. Karowski Phys. Lett. B411 (1999) 53-57, Nucl. Phys. B620 (2002) 407; Journ. Phys. A: Math. Gen. 35 (2002) 9081-9104; Phys. Lett. B 575 (2003) 144-150. H. Babujian, A. Foerster and M. Karowski Nucl.Phys. B736 (2006) 169-198 and in preparation Quantum field theory: G. Lechner math-ph/0601022 An Existence proof for interacting quantum field theories with a factorizing S-matrix. Babujian, Foerster, Karowski (FU-Berlin) The form factor program Budapest, June 2006 20 / 20