Table of Integrals. x n dx = 1 n + 1 xn+1, n 1. 1 dx = ln x x. udv = uv. vdu. 1 ax + b dx = 1 ln ax + b. 1 (x + a) dx = 1. 2 x + a.

Similar documents
ke kx 1 cosx sin kx k cos kx sin x k sin kx tan x = sin x sec 2 x tan kx k sec 2 kx cosec x = 1 cosec x cot x sec x = 1

Unit 5. Integration techniques

Using integration tables

Math 3B Final Review

Section: I. u 4 du. (9x + 1) + C, 3

Trigonometry. Angle Measurement radians 180. Fundamental Identities. Right Angle Trigonometry. Trigonometric Functions. The Law of Sines sin A

CALCULUS II MATH Dr. Hyunju Ban

MA 242 Review Exponential and Log Functions Notes for today s class can be found at

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y.

11.4. Differentiating ProductsandQuotients. Introduction. Prerequisites. Learning Outcomes

2016 FAMAT Convention Mu Integration 1 = 80 0 = 80. dx 1 + x 2 = arctan x] k2

Chapter 7 Notes, Stewart 8e. 7.1 Integration by Parts Trigonometric Integrals Evaluating sin m x cos n (x) dx...

Chapter 8: Methods of Integration

Chapter 3 Differentiation Rules (continued)

Trigonometric Identities Exam Questions

Math 113 Exam 2 Practice

(1) (Pre-Calc Review Set Problems # 44 and # 59) Show your work. (a) Given sec =5,andsin <0, find the exact values of the following functions.

Math 190 Chapter 5 Lecture Notes. Professor Miguel Ornelas

First Order Differential Equations

6.1 Reciprocal, Quotient, and Pythagorean Identities.notebook. Chapter 6: Trigonometric Identities

FINAL - PART 1 MATH 150 SPRING 2017 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS No notes, books, or calculators allowed.

R3.6 Solving Linear Inequalities. 3) Solve: 2(x 4) - 3 > 3x ) Solve: 3(x 2) > 7-4x. R8.7 Rational Exponents

Some commonly encountered sets and their notations

Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions

AP Calculus AB Summer Packet

ENGI 3425 Review of Calculus Page then

Test one Review Cal 2

Lecture 31 INTEGRATION

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) A.J.Hobson

RAM RAJYA MORE, SIWAN. XI th, XII th, TARGET IIT-JEE (MAIN + ADVANCE) & COMPATETIVE EXAM FOR XII (PQRS) INDEFINITE INTERATION & Their Properties

Math Dr. Melahat Almus. OFFICE HOURS (610 PGH) MWF 9-9:45 am, 11-11:45am, OR by appointment.

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know.

Chapter 6 Techniques of Integration

AP Calculus AB Summer Packet

Math 180 Prof. Beydler Homework for Packet #5 Page 1 of 11

Chapter 1 - Functions and Variables

CHAPTER 3 ELEMENTARY FUNCTIONS 28. THE EXPONENTIAL FUNCTION. Definition: The exponential function: The exponential function e z by writing

Differential and Integral Calculus

7. Indefinite Integrals

Trigonometric substitutions (8.3).

Calculus AB. For a function f(x), the derivative would be f '(

Differentiation 2 first principles

Methods of Integration

Lesson 7.3 Exercises, pages

TO: Next Year s AP Calculus Students

Math F15 Rahman

6.1 Antiderivatives and Slope Fields Calculus

Algebra & Functions (Maths ) opposite side

B 2k. E 2k x 2k-p : collateral. 2k ( 2k-n -1)!

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

Trigonometry 1st Semester Review Packet (#2) C) 3 D) 2

Math 112 Section 10 Lecture notes, 1/7/04

cosh 2 x sinh 2 x = 1 sin 2 x = 1 2 cos 2 x = 1 2 dx = dt r 2 = x 2 + y 2 L =

In this note we will evaluate the limits of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0. f(x)

Math Calculus with Analytic Geometry II

Integration Techniques for the AB exam

MTH 133 Solutions to Exam 2 November 15, Without fully opening the exam, check that you have pages 1 through 13.

a 2 +x 2 x a 2 -x 2 Figure 1: Triangles for Trigonometric Substitution

MA 124 January 18, Derivatives are. Integrals are.

MA 201 Complex Analysis Lecture 6: Elementary functions

dx. Ans: y = tan x + x2 + 5x + C

Fundamental Trigonometric Identities

Without fully opening the exam, check that you have pages 1 through 12.

CHAPTER 4. Elementary Functions. Dr. Pulak Sahoo

MAT187H1F Lec0101 Burbulla

. Double-angle formulas. Your answer should involve trig functions of θ, and not of 2θ. sin 2 (θ) =

M 106 Integral Calculus and Applications

AQA Further Pure 2. Hyperbolic Functions. Section 2: The inverse hyperbolic functions

Math 181, Exam 1, Spring 2013 Problem 1 Solution. arctan xdx.

The Fundamental Theorem of Calculus Part 2, The Evaluation Part

Trigonometric integrals by basic methods

Data Provided: A formula sheet and table of physical constants is attached to this paper.

Math 142: Final Exam Formulas to Know

MA Exam 2 Study Guide, Fall u n du (or the integral of linear combinations

( DO NOT RECOPY

Prelim 2 Math Please show your reasoning and all your work. This is a 90 minute exam. Calculators are not needed or permitted. Good luck!

MTH 133 Exam 2 November 16th, Without fully opening the exam, check that you have pages 1 through 12.

MATH1013 Tutorial 12. Indefinite Integrals

7.3 Hyperbolic Functions Hyperbolic functions are similar to trigonometric functions, and have the following

SOLUTIONS TO THE FINAL - PART 1 MATH 150 FALL 2016 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS

HOMEWORK SOLUTIONS MATH 1910 Sections 7.9, 8.1 Fall 2016

Math RE - Calculus I Trigonometry Limits & Derivatives Page 1 of 8. x = 1 cos x. cos x 1 = lim

Integration Techniques for the BC exam

Hyperbolics. Scott Morgan. Further Mathematics Support Programme - WJEC A-Level Further Mathematics 31st March scott3142.

sec x over the interval (, ). x ) dx dx x 14. Use a graphing utility to generate some representative integral curves of the function Curve on 5

Handout 1. Research shows that students learn when they MAKE MISTAKES and not when they get it right. SO MAKE MISTAKES, because MISTAKES ARE GOOD!

Without fully opening the exam, check that you have pages 1 through 12.

The Chain Rule. This is a generalization of the (general) power rule which we have already met in the form: then f (x) = r [g(x)] r 1 g (x).

y sec 3 x dx sec x tan x y sec x tan 2 x dx y sec 3 x dx 1 2(sec x tan x ln sec x tan x ) C

du u C sec( u) tan u du secu C e du e C a u a a Trigonometric Functions: Basic Integration du ln u u Helpful to Know:

Integration Techniques for the AB exam

Complex Trigonometric and Hyperbolic Functions (7A)

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12

sin cos 1 1 tan sec 1 cot csc Pre-Calculus Mathematics Trigonometric Identities and Equations

Integration Techniques for the BC exam

Lecture Notes for Math 1000

( ) = 1 t + t. ( ) = 1 cos x + x ( sin x). Evaluate y. MTH 111 Test 1 Spring Name Calculus I

4-3 Trigonometric Functions on the Unit Circle

Transcription:

Tble of Integrls Bsic Forms () n d = n + n+, n () d = ln (3) udv = uv vdu (4) + b d = ln + b Integrls of Rtionl Functions (5) ( + ) d = + (6) ( + ) n d = ( + )n+, n n + (7) ( + ) n d = ( + )n+ ((n + ) ) (n + )(n + ) (8) + d = tn (9) + d = tn

(0) () + d = ln + + d = tn () 3 + d = ln + (3) + b + c d = + b 4c b tn 4c b (4) ( + )( + b) d = b ln + b +, b (5) ( + ) d = + ln + + (6) + b + c d = ln +b+c b 4c b tn + b 4c b Integrls with Roots (7) d = ( )3/ 3 (8) ± d = ± (9) d =

(0) d = ( 3 )3/ + ( 5 )5/, or ( 3 )3/ 4 ( 5 )5/, or ( + 3)( )3/ 5 () + b d = ( b 3 + 3 ) + b () (3) ( + b) 3/ d = ( + b)5/ 5 ± d = 3 ( ) ± (4) (5) ( ) d = ( ) tn + d = ( + ) ln [ + + ] (6) + b d = 5 ( b + b + 3 ) + b (7) ( [ + b) d = ( + b) ( + b) b ln + ] ( + b) 4 3/ (8) [ 3 b ( + b) d = b 8 + ] 3 ( + b)+ b3 3 8 ln + ( + b) 5/ (9) ± d = ± ± ln + ± 3

(30) d = + tn (3) ± d = 3 ( ± ) 3/ (3) ± d = ln + ± (33) d = sin (34) ± d = ± (35) d = (36) ± d = ± ln + ± (37) + b + c d = b + 4c b + b + c+ ln + b + ( 4 8 + b + c) 3/ (38) + b + c d = ( 48 + b + c ( 3b + b + 8(c + ) ) 5/ +3(b 3 4bc) ln b + + ) + b + c 4

(39) + b + c d = ln + b + ( + b + c) (40) + b + c d = + b + c b ln + b + ( + b + c) 3/ (4) d ( + ) 3/ = + Integrls with Logrithms (4) ln d = ln (43) (44) ln d = ln 4 ln d = 3 3 ln 3 9 (45) ( ) ln n ln d = n+ n +, n (n + ) (46) ln d = (ln ) (47) ln d = ln (48) ln( + b) d = ( + b ) ln( + b), 0 5

(49) ln( + ) d = ln( + ) + tn (50) ln( ) d = ln( ) + ln + (5) ln ( + b + c ) d = ( ) 4c b tn + b b + 4c b + ln ( + b + c ) (5) ln( + b) d = b 4 + ( b ) ln( + b) (53) ln ( b ) d = + ( b ) ln ( b ) (54) (ln ) d = ln + (ln ) (55) (ln ) 3 d = 6 + (ln ) 3 3(ln ) + 6 ln (56) (ln ) d = 4 + (ln ) ln (57) (ln ) d = 3 7 + 3 3 (ln ) 9 3 ln 6

Integrls with Eponentils (58) e d = e (59) e d = e + i π erf ( i ), where erf() = 3/ π 0 e t dt (60) e d = ( )e (6) (6) e d = ( ) e e d = ( + ) e (63) (64) ( e d = + 3 ) e 3 e d = ( 3 3 + 6 6 ) e (65) n e d = n e n n e d (66) n e d = ( )n Γ[ + n, ], where Γ(, ) = n+ t e t dt (67) e d = i π erf ( i ) 7

(68) e d = π erf ( ) (69) e d = e (70) e d = 4 π 3 erf( ) e Integrls with Trigonometric Functions (7) sin d = cos (7) sin d = sin 4 (73) sin 3 3 cos cos 3 d = + 4 (74) sin n d = [ cos F, n, 3 ], cos (75) cos d = sin (76) cos d = + sin 4 (77) cos 3 d = 3 sin 4 + sin 3 8

(78) (79) cos p d = ( + p) cos+p F [ + p,, 3 + p ], cos cos sin d = sin + c = cos + c = 4 cos + c 3 (80) cos sin b d = cos[( b)] ( b) cos[( + b)], b ( + b) (8) sin sin[( b)] sin b sin[( + b)] cos b d = + 4( b) b 4( + b) (8) sin cos d = 3 sin3 (83) cos sin b d = cos[( b)] 4( b) cos b b cos[( + b)] 4( + b) (84) cos sin d = 3 cos3 (85) sin cos bd = sin sin[( b)] sin b sin[( + b)] + 4 8 6( b) 8b 6( + b) (86) sin cos d = 8 sin 4 3 (87) tn d = ln cos 9

(88) tn d = + tn (89) ( tn n d = tnn+ n + ( + n) F,, n + 3 ), tn (90) tn 3 d = ln cos + sec (9) ( sec d = ln sec + tn = tnh tn ) (9) sec d = tn (93) sec 3 d = sec tn + ln sec + tn (94) sec tn d = sec (95) sec tn d = sec (96) sec n tn d = n secn, n 0 (97) csc d = ln tn = ln csc cot + C 0

(98) csc d = cot (99) csc 3 d = cot csc + ln csc cot (00) csc n cot d = n cscn, n 0 (0) sec csc d = ln tn Products of Trigonometric Functions nd Monomils (0) cos d = cos + sin (03) cos d = cos + sin (04) cos d = cos + ( ) sin (05) cos d = cos + sin 3 (06) n cos d = (i)n+ [Γ(n +, i) + ( ) n Γ(n +, i)] (07) n cos d = (i) n [( ) n Γ(n +, i) Γ(n +, i)]

(08) sin d = cos + sin (09) cos sin sin d = + (0) sin d = ( ) cos + sin () sin d = cos + 3 sin () n sin d = (i)n [Γ(n +, i) ( ) n Γ(n +, i)] (3) cos d = 4 + 8 cos + sin 4 (4) sin d = 4 8 cos sin 4 (5) tn d = + ln cos + tn (6) sec d = ln cos + tn

Products of Trigonometric Functions nd Eponentils (7) e sin d = e (sin cos ) (8) e b sin d = + b eb (b sin cos ) (9) e cos d = e (sin + cos ) (0) () e b cos d = + b eb ( sin + b cos ) e sin d = e (cos cos + sin ) () e cos d = e ( cos sin + sin ) Integrls of Hyperbolic Functions (3) cosh d = sinh (4) e [ cosh b b sinh b] e cosh b d = b e 4 + b = b (5) sinh d = cosh 3

(6) (7) e [ b cosh b + sinh b] e sinh b d = b e 4 tnh d = ln cosh b = b (8) (9) (30) (3) (3) (33) (34) e (+b) [ ( + b) F + b,, + ] b, eb e tnh b d = [ e F, b, + ] b, eb cos cosh b d = cos sinh b d = sin cosh b d = sin sinh b d = e tn [e ] b = b [ sin cosh b + b cos sinh b] + b [b cos cosh b + sin sinh b] + b [ cos cosh b + b sin sinh b] + b [b cosh b sin cos sinh b] + b sinh cosh d = [ + sinh ] 4 sinh cosh b d = [b cosh b sinh cosh sinh b] b c 03. From http://integrl-tble.com, lst revised August 5, 03. This mteril is provided s is without wrrnty or representtion bout the ccurcy, correctness or suitbility of this mteril for ny purpose. This work is licensed under the Cretive Commons Attribution-Noncommercil-Shre Alike 3.0 United Sttes License. To view copy of this license, visit http://cretivecommons.org/licenses/by-nc-s/3.0/ or send letter to Cretive Commons, 7 Second Street, Suite 300, Sn Frncisco, Cliforni, 9405, USA. 4