ESE 570 MOS TRANSISTOR THEORY Part 2

Similar documents
ESE 570: Digital Integrated Circuits and VLSI Fundamentals

The Devices. Devices

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

N Channel MOSFET level 3

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

The Devices: MOS Transistors

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling

ECE 342 Electronic Circuits. 3. MOS Transistors

APPENDIX A: Parameter List

MOSFET: Introduction

EEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Practice 3: Semiconductors

Lecture 3: CMOS Transistor Theory

VLSI Design The MOS Transistor

EE 560 MOS TRANSISTOR THEORY

MOS Transistor I-V Characteristics and Parasitics

EKV MOS Transistor Modelling & RF Application

APPENDIX A: Parameter List

EE5311- Digital IC Design

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

Conduction in Semiconductors -Review

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

Integrated Circuits & Systems

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

FIELD-EFFECT TRANSISTORS

MOS Transistor Theory

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

APPENDIX D: Binning BSIM3v3 Parameters

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

The Physical Structure (NMOS)

Lecture 4: CMOS Transistor Theory

Device Models (PN Diode, MOSFET )

ESE 570 MOS TRANSISTOR THEORY Part 1. Kenneth R. Laker, University of Pennsylvania, updated 5Feb15

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

EE105 - Fall 2006 Microelectronic Devices and Circuits

(S&S ) PMOS: holes flow from Source to Drain. from Source to Drain. W.-Y. Choi. Electronic Circuits 2 (09/1)

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Chapter 4 Field-Effect Transistors

ECE 497 JS Lecture - 12 Device Technologies

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Device Models (PN Diode, MOSFET )

Lecture 5: CMOS Transistor Theory

ECE 546 Lecture 10 MOS Transistors

The Devices. Jan M. Rabaey

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

CHAPTER 5 MOS FIELD-EFFECT TRANSISTORS

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

CHAPTER 3 - CMOS MODELS

Virtual Device Simulation. Virtual Process Integration

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

EE105 - Fall 2005 Microelectronic Devices and Circuits

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

MOS Transistor Theory

MOSFET Capacitance Model

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

Nanoscale CMOS Design Issues

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

The simulated two volt performance of CMOS circuits with submicron transistors

MOS Device Modeling. C.K. Ken Yang UCLA Courtesy of Agilent eesoft EE 215B

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

APPENDIX D: Model Parameter Binning

Content. MIS Capacitor. Accumulation Depletion Inversion MOS CAPACITOR. A Cantoni Digital Switching

Introduction and Background

MOS Transistor Properties Review

The Intrinsic Silicon

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Practice 7: CMOS Capacitance

Lecture 11: MOS Transistor

ECE-305: Fall 2017 MOS Capacitors and Transistors

CMOS Digital Integrated Circuits Analysis and Design

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

Lecture 04 Review of MOSFET

EECS130 Integrated Circuit Devices

Microelectronics Part 1: Main CMOS circuits design rules

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

Lecture 12: MOSFET Devices

VLSI Design and Simulation

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOSFET N-Type, P-Type. Semiconductor Physics.

Chapter 2 MOS Transistor theory

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

CS/EE N-type Transistor

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

ECE315 / ECE515 Lecture-2 Date:

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

Transcription:

ESE 570 MOS TRANSISTOR THEORY Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation

CMOS = NMOS + PMOS 2

TwoTerminal MOS Capacitor > nmos Transistor VGS << VT0 NMOS TRANSISTOR IN CUTOFF REGION VG VD VS Substrate or Bulk B Depletion region p Immobile acceptor ions 3

TwoTerminal MOS Capacitor > nmos Transistor VGS = VT0n + δ Onset of INVERSION VG QI VD QB0 4

MOS Transistor Regions of Operation + n + n 5

MOS Transistor Regions of Operation + n + n 6

MOS Transistor Regions of Operation VDS = VD VDSAT = VGS VT0 VDS VDSAT VGD = VGS VDS < VT0 z n+ VCS(y) = VDSAT n+ 7

MOSFET CURRENT VOLTAGE CHARACTERISTICS VG = VGS > VT0 and VGD > VT0 VD = small n+ z z n+ yy x 2 dy V sec cm dr= 0.= 2 W 7n Q I 0 y cm C µn = U0 = electron mobility = cm2/{v sec} 8

VG = VGS > VT0 VD = VDS n+ n+ z VCS(y) VCS(y = 0) = VS = 0 VCS(y = L) = VDS Ey >> Ex, Ez Mobile charge in inverted channel: QI(y) = Cox [VGS VCS(y) VT0] I = V R 9

QI(y) = Cox [VGS VCS(y) VT0] VCS(y = 0) = VS = 0 VCS(y = L) = VD dvcs ID dv CS = I D dr= dy W 7n Q I 0 y 0 VCS(y) VDS dvcs VGS VCS VT0 dv CS 2 CS (VGS VT0)VCS V /2 VCS = VDS VCS = 0 0

KP > Transconductance Parameter 2 cm C C /s A KP=7n C ox =0 0 = 2 = 2 2 Vs V cm V V

ID(VDS = VDSAT) and VDSAT = VGS VT0 Assumptions: 2

@VDS = VDSAT = VGS VT0 7n C ox W 2 I D 0 sat = 0V GS V T0 2 L ID(VDS = VDSAT) = ID(sat) LINEAR SAT IN GENERAL ID(sat) 3

VDSAT + n 2L n+ V DS V DSAT,6V DS 2 L 6V DS for 6V DS L 4

Compatible Eqs.? ID = f(vgs, VDS) 6 0 6 0 6 0 5

DISCONTINUOUS! @ VDS = VDSAT 6

6V DS 7

/ / V T =V T0,30 2 8 F V SB 2 8 F 6V DS 8

(VT = VTn > 0) V GD.V T VGS > VT, VDS < VGS VT VGS > VT, VDS VGS VT (VT = VTp < 0) V GD V T V GD V T VGS < VT, VDS > VGS VT VGS < VT, VDS VGS VT V GD.V T 9

D G B => SAT S 20

=> SAT 2

n+ n+ 22

V GS E ox = volts /cm t ox E= q N A x volts /cm 4si 23

V GS E ox = volts/cm t ox Year E= q N A x volts/cm 4 si 993 995 997 999 200 Feature Size (µm) 0.80 0.60 0.35 0.25 0.8 2003 2005 2007 0.3 0.09 0.045 Historical reduction in min feature size for typical CMOS process 24

Load Capacitance (Ccap) WL (/tox) Gate Delay (T) V Ccap/I 25

+ n LD n+ LD + n n+ 26

(nmos, pmos) Model Depletion Region Capacitances 27

MOSFET CAPACITANCES Recall Cox = COX and tox = TOX in SPICE CGS0(overlap) = CoxWLD CGD0(overlap) = CoxWLD CGB0(overlap) = CoxWovLM SPICE: CoxLD = CGS0 = CGD0 in F/m; CoxWov = CGB0 in F/m Wov n+ LD W n+ Wov 28

CBG0 GatetoBulk Overlap Capacitance CBG0 Gate Extension Design Rule Weff SiO2 = Wov poly n+ p CGB0 = CoxWovLM C4 = 2λ = Wov = SiO2 Wov (conservative estimate) 29

Cgb, Cgs and Cgd n+ n+ Leff Leff n+ n+ MOSFET Saturation Region n+ n+ Leff 30

GatetoBulk, Drain & Source Oxide Capacitances Summary + 2CGB0 0 + 2CGB0 0 + 2CGB0 Application of Oxide Capacitance Model:. Approximate: For hand calculations, assume that C gb, Cgd and Cgs are connected in parallel for each region of operation, i.e. Cg(tot) = CoxWLeff + 2CGB0 + CGD0 + CGS0 Cutoff Region; Cg(tot) = CoxWLeff + 2CGB0 + CGD0 + CGS0 Linear Region; Cg(tot) = 2/3 CoxWLeff + 2CGB0 + CGD0 + CGS0 Saturation Region. and use the maximum value Cg(tot) = CoxWLeff + 2CGB0 + CGD0 + CGS0 3

Depletion Region Capacitances > Cdb, Csb n+ n+ 32

Depletion Region Capacitances > Cdb, Csb n+ + n V = Ext Bias > VSB, VDB + Qj = depletionregion charge A = junction area dq j A C j0 0 AS, AD CJ (F) C j 0V = = = m MJ dv V V 0, 0, PB 80 where 4 Si q 4 Si N A N D 2 (F/cm ) CJ =C j0 = = 0 xd 2 N A,N D 8 0 / ND m = MJ = grading coefficient m = ½ for abrupt junction [AS, AD > Source, Drain Areas in SPICE] [CJ > Cj0 in SPICE] [PB > O0 in SPICE] [MJ > m in SPICE] 33

Depletion Region Capacitances > Cdb, Csb Assume Weff = W 34

SUMMARY n+, p Junctions C j 0V = where / A C j0 0 AS, AD CJ (F) = m MJ V V 0, 0, PB 80 q 4 Si N A N D CJ =C j0 = 0 2 N A,N D 80 SPICE Parameters (F/cm2) Cj(0) = A Cj0 when V = 0 [AS, AD > Source, Drain Areas in SPICE] [CJ > Cj0 in SPICE] [PB > O0 in SPICE] [MJ > m in SPICE] 35

n+, p Junctions C j 0V = A C j0 0 AS, AD CJ = m MJ V V 0, 0, PB 80 voltage dependent EQUIVALENT LINEAR LARGE SIGNAL CAPACITANCE V 2Q Q j 0V 2 Q j 0V C eq = = = C 0V dv V 2 V V 2 V V j 2V 2 A C j0 80 V 2 m V m C j 0V C eq= [0, 0, ] V 2 V m 80 80 NOTE voltage independent approximation 0 < Keq < > Voltage Equivalence Factor where V V V2 V = Ext Bias > VSB, VDB for nmos VBS, VBD for pmos C j 0V = A C j0 K eq =0 AS, AD CJ K eq 36

[PS, PD > Source, Drain Perimeters in SPICE] (F/cm2) [CJSW > C in SPICE] jsw [PBSW > O0SW in SPICE] [MJSW > m(sw) in SPICE] (F/cm) dq jsw C jsw 0V = = dv [XJ > xj in SPICE] P C jsw 0 PS, PD CJSW = m0sw MJSW V V 0, 0, PBSW 80sw m0 sw (F) m0 sw V2 V Recall for n+, p8junctions 0sw K eq 0 sw= [0, 0, 0V 2 V 0 m0 sw dq j A C j0 80 0sw AS, AD CJ 80sw C j 0V = = = (F) m MJ V junction V m(sw) = ½ dv for an abrupt 0, 0, PB 80 ] 37

dq jsw C jsw 0V = = dv P C jsw 0 PS, PD CJSW = MJSW V m0sw V 0, 0, PBSW 80sw voltage dependent voltage independent approximation where V V V2 V = Ext Bias > VSB, VDB for nmos VBS, VBD for pmos 38

4 CJ =.35 x 08 F/cm2 CJSW = 5.83 x 02 F/cm PB = 0.896 V PBSW = 0.975 V XJ = x 04 cm MJ = MJSW = ½ D n+ n+ S 39

C j 0V = A C j0 K eq = AD CJ K eq MJ V2 PB K eq = [0, 0V 2 V 0 MJ PB MJ V 0, PB ] CJ =.35 x 08 F/cm2 CJSW = 5.83 x 02 F/cm PB = 0.896 V PBSW = 0.975 V XJ = x 04 cm MJ = MJSW = /2 /2 2 0.896 V 5V 0.5 V /2 = [0, 0, ]=0.52 05V 0.5 V 0.896 V 0.896 v C jsw 0V =P C jsw K eq 0sw =PD CJSW K eq 0sw MJSW V2 PBSW K eq 0 sw= [0, 0V 2 V 0 MJSW PBSW /2 MJSW V 0, PBSW ] / 2 = 2 0.975 V [0, 5 V 0, 0.5 V ]=0.53 K eq 05V 0.5 V 0.975V 0.975 v 40

CJ =.35 x 08 F/cm2 CJSW = 5.83 x 02 F/cm PB = 0.896 V PBSW = 0.975 V XJ = x 04 cm MJ = MJSW = /2 8 2 8 2 C j 0V = A C j0 K eq = AD CJ K eq =055 x 0 cm 0.35 x 0 F / cm 0.52=3.86 ff C jsw 0V =P C jsw K eq 0 sw =PD CJSW K eq 0 sw = 02.5 x 0 3 cm 05.83 x 0 2 F / cm 0.53=7.72 ff C db = AD CJ K eq,pd CJSW K eq 0sw =.58 ff 4

MOSFET CAPACITANCE SUMMARY OXIDE CAPACITANCES Cgb = COX WLeff + CGB0 Cgd = (/2) COX WLeff + CGD0 Cgs = (2/3) COX WLeff + CGS0 Leff = LM 2LD DEPLETION CAPACITANCES Csb = Cj(VSB) + Cjsw(VSB) Cdb = Cj(VDB) + Cjsw(VDB) C j 0V = 0 AS, AD CJ 0 AS, AD CJ K eq Assume: AS = AD MJ V 0, MJ MJ V V PB PB K eq = [0, 2 0, ] 0V 2 V 0 MJ PB PB C jsw 0V = 0 PS, PD CJSW 0 PS, PD CJSW K eq 0 sw Assume: PS = PD MJSW V 0, PBSW V 2 MJSW V MJSW PBSW K eq 0 sw= [0, 0, ] 0V 2 V 0 MJSW PBSW PBSW 42

Short Channel Effects Leff xj Velocity saturation limit Reduced electron, hole mobility Reduced threshold voltage V T0 Narrow Channel Effects W xdm Increased threshold voltage V T0 Subthreshold Current VGS < VT0 Nonzero drain current when V < VT0 GS 43

SHORT CHANNEL ISSUES v sat cm V cm2 70 =0 /0 = sec cm V sec I D 0sat =W v sat C ox 0V GS V T 7n0 7n 0eff,50V GS V T (Lvl 3) 44

SHORT CHANNEL ISSUES CONT. Short Channel Effect Leff xj (source, drain diffusion depth) G S n+ pn+ depletion region G D n+ QB0 Leff xj pn+ depletion region VGS induced depletion region Q ox Q B0 V T0 0long channel =V FB 28 F C ox C ox S D n+ n+ Leff QB0(sc) QB0(sc) << QB0 VT0 (short channel) = VT0 (long channel) ΔVT0 22 45

NARROW CHANNEL ISSUES Narrow Channel Effect W xdm (depletion region depth) fieldoxide W gateoxide Gate Extension design rule fieldoxide QB0(nc) QB0(nc) > QB0 Q ox Q B0 V T0 0long channel =V FB 28 F C ox C ox 46

I D 0 subthreshold =I S e V GS n kt / q V DS 0 e kt /q 0,6V DS + 4Si t ox subthreshold swing coefficient: n, 4ox t Si 7 C ox W kt 2 I S 0 L q [SPICE Parameter: N0 > n subthreshold swing coefficient NOTE: ID (subthreshold) is leakage current for stronginversion operation ID (subthreshold) is primary current for weakinversion operation + J. Rabaey, A. Chandrakasan and B. Nikolic; Digital Integrated Circuits 2nd Edition, Prentice Hall, 2003, pp99. 47

(MOSIS: Level 3 model used for min feature size µm) (MOSIS: BISIM3 model used for min feature size < µm) 48

Complexity of SPICE Models vs. Time BSIM4v6.5 (2009) EKV = EnzKrummenacherVittoz (EKV) model is for lowpower analog circuit simulation. SPICE Parameter Calculator Rochester Institute of Technology http://people.rit.edu/lffeee/spice_parameter_calculator.xls 49

MOS SPICE MODEL PARAMETERS Name Model Parameters LEVEL Model type (, 2, or 3) L W LD WD Channel Channel Lateral Lateral VTO U0 KP GAMMA PHI LAMBDA Zerobias threshold voltage Mobility Transconductance Bulk threshold parameter Surface potential Channellength modulation (LEVEL = and 2) RD RS RG RB RDS RSH NRS IS JS PB length (designer input) width (designer input) diffusion length diffusion width Drain ohmic resistance Source ohmic resistance Gate ohmic resistance Bulk ohmic resistance Drainsource shunt resistance Drainsource diffusion sheet Resistance Number of squares of RD, RS Bulk pn saturation current Bulk pn saturation/current area Bulk pn potential Units m m m m V cm**2/vs A/V**2 V**/2 V /V Ohms Ohms Ohms Ohms Ohms Ohms/sq. A A/m**2 V 50

MOS SPICE MODEL PARAMETERS CONT. Name Model Parameters Units LEVEL Model type (, 2, or 3) CBD CBS CJ CJSW MJ MJSW FC CGSO CGDO CGBO Bulkdrain zerobias pn cap (not used) F Bulksource zerobias pn cap (not used) F Bulk pn zerobias bottom cap/area F/m**2 Bulk pn zerobias perimeter cap/length F/m Bulk pn bottom grading coefficient Bulk pn sidewall grading coefficient Empirical bulk pn forwardbias cap coefficient Gatesource overlap cap/channel width F/m Gatedrain overlap cap/channel width F/m Gatebulk overlap cap/channel width F/m NSUB NSS NFS TOX TPG XJ Substate doping density Surfacestate density Fast surfacestate density Oxide thickness Gate material type: + = opposite of substrate, = same as substrate, 0 = aluminum Metallurgical junction depth /cm**3 /cm**2 /cm**2 m m 5

MOS SPICE MODEL PARAMETERS CONT. Name Model Parameters Units LEVEL Model type (, 2, or 3) UCRIT DELTA THETA ETA KAPPA Mobility degradation critical field V/cm (LEVEL=2) Empirical mobility degradation exponent (LEVEL=2) Maximum carrier drift velocity (Level=2) m/s Empirical channel charge coefficient (LEVEL=2) Empirical Fraction of channel charge attributed to drain (Level=2) Empirical channel width effect on VT Empirical mobility modulation (LEVEL=3) /V Empirical static feedback on VT (LEVEL=3) Empirical saturation field factor (LEVEL=3) KF AF Flicker noise coefficient Flicker noise exponent UEXP VMAX NEFF XQC 52

Level 3 SPICE Parameters KP (in A/V2) = k'n (k'p) VT0 (in volts) = VTn (VTp) U0 (in cm2/{vs}) = µn (µp) 53