Ultrafast Laser Physics

Similar documents
Ultrafast Laser Physics

Ultrafast laser oscillators: perspectives from past to futures. New frontiers in all-solid-state lasers: High average power High pulse repetition rate

SESAM modelocked solid-state lasers Lecture 2 SESAM! Semiconductor saturable absorber

Linear pulse propagation

Strongly enhanced negative dispersion from thermal lensing or other focusing effects in femtosecond laser cavities

High average power ultrafast lasers

γ c = rl = lt R ~ e (g l)t/t R Intensität 0 e γ c t Zeit, ns

Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating

Q-switching stability limits of continuous-wave passive mode locking

Design and operation of antiresonant Fabry Perot saturable semiconductor absorbers for mode-locked solid-state lasers

MEFT / Quantum Optics and Lasers. Suggested problems Set 4 Gonçalo Figueira, spring 2015

Kurzpuls Laserquellen

Optical solitons and its applications

The Generation of Ultrashort Laser Pulses

Erzeugung und Anwendung ultrakurzer Laserpulse. Generation and Application of Ultrashort Laser Pulses

E( t) = e Γt 2 e iω 0t. A( t) = e Γt 2, Γ Γ 1. Frontiers in ultrafast laser technology. Time and length scales. Example: Gaussian pulse.

Introduction/Motivation/Overview

Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

Generation of high-energy, few-cycle optical pulses

Bound-soliton fiber laser

The structure of laser pulses

Multipulse Operation and Limits of the Kerr-Lens Mode-Locking Stability

Graphene mode-locked Cr:ZnS chirped-pulse oscillator

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

New Concept of DPSSL

Self-Phase-Modulation of Optical Pulses From Filaments to Solitons to Frequency Combs

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p.

Engineering Medical Optics BME136/251 Winter 2017

3.5 Cavities Cavity modes and ABCD-matrix analysis 206 CHAPTER 3. ULTRASHORT SOURCES I - FUNDAMENTALS

Dark Soliton Fiber Laser

Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses

Effects of resonator input power on Kerr lens mode-locked lasers

Nonlinear effects and pulse propagation in PCFs

1 Mathematical description of ultrashort laser pulses

Lukas Gallmann. ETH Zurich, Physics Department, Switzerland Chapter 4b: χ (2) -nonlinearities with ultrashort pulses.

Supplementary Information. Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons.

Nonlinear Fiber Optics and its Applications in Optical Signal Processing

Ultrafast Laser Physics!

Introduction Nonstationary regimes of ultrashort pulse generation in lasers have gained a great deal of attention in recent years. While the stable op

Microjoule mode-locked oscillators: issues of stability and noise

Highly Nonlinear Fibers and Their Applications

Supplementary Figure 1: The simulated feedback-defined evolution of the intra-cavity

Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers

plasma optics Amplification of light pulses: non-ionised media

No. 9 Experimental study on the chirped structure of the construct the early time spectra. [14;15] The prevailing account of the chirped struct

ULTRAFAST laser sources have enormous impact on many

37. 3rd order nonlinearities

Induced solitons formed by cross polarization coupling. in a birefringent cavity fiber laser

Alexander Gaeta Department of Applied Physics and Applied Mathematics Michal Lipson Department of Electrical Engineering

Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA

Vector dark domain wall solitons in a fiber ring laser

Chapter9. Amplification of light. Lasers Part 2

Dmitriy Churin. Designing high power single frequency fiber lasers

The Generation of Ultrashort Laser Pulses II

Numerical Analysis of Soft-Aperture Kerr-Lens Mode Locking in Ti:Sapphire Laser Cavities by Using Nonlinear ABCD Matrices

Dispersion and how to control it

Graphene Based Saturable Absorber Modelockers at 2µm

Theory of optical pulse propagation, dispersive and nonlinear effects, pulse compression, solitons in optical fibers

Optical Spectroscopy of Advanced Materials

All-Optical Delay with Large Dynamic Range Using Atomic Dispersion

OPTICAL COMMUNICATIONS S

Spatiotemporal coupling in dispersive nonlinear planar waveguides

Fiber-Optics Group Highlights of Micronova Department of Electrical and Communications Engineering Helsinki University of Technology

Lecture 9. PMTs and Laser Noise. Lecture 9. Photon Counting. Photomultiplier Tubes (PMTs) Laser Phase Noise. Relative Intensity

37. 3rd order nonlinearities

Simulation of Kerr Lens Behavior in a Ti:Sapphire Oscillator with Symmetric and Asymmetric Resenator

Self-induced transparency modelocking of quantum cascade lasers in the presence of saturable nonlinearity and group velocity dispersion

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii

Spectral Fraunhofer regime: time-to-frequency conversion by the action of a single time lens on an optical pulse

Generation and Applications of High Harmonics

8-fs pulses from a compact Er:fiber system: quantitative modeling and experimental implementation

7.3 Picosecond Optics

Ultrafast Wavelength Tuning and Scaling Properties of a Noncollinear Optical Parametric Oscillator (NOPO)

Low-Noise Modelocked Lasers: Pulse Dynamics, Feedback Control, and Novel Actuators

Multipulse operation of a Ti:sapphire laser mode locked by an ion-implanted semiconductor saturable-absorber mirror

Bound states of gain-guided solitons in a passively modelocked

Self-started unidirectional operation of a fiber ring soliton. laser without an isolator

Mode-locking pulse dynamics in a fiber laser with a saturable Bragg reflector

Noise and Frequency Control

Optoelectronic Applications. Injection Locked Oscillators. Injection Locked Oscillators. Q 2, ω 2. Q 1, ω 1

Mid-IR Photothermal Imaging with a Compact Ultrafast Fiber Probe Laser

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful

An electric field wave packet propagating in a laser beam along the z axis can be described as

Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates/fibers and their application to mode-locked fiber lasers

Two-Dimensional simulation of thermal blooming effects in ring pattern laser beam propagating into absorbing CO2 gas

Dissipative soliton resonance in an all-normaldispersion erbium-doped fiber laser

Computer Modelling and Numerical Simulation of the Solid State Diode Pumped Nd 3+ :YAG Laser with Intracavity Saturable Absorber

9 Atomic Coherence in Three-Level Atoms

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

ABRIDGING INTERACTION RESULT IN TEMPORAL SPREAD- ING

Steady state mode-locking of the Nd:YVO 4 laser operating on the 1.34 µm transition using intracavity SHG in BIBO or PPMgSLT

B 2 P 2, which implies that g B should be

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics

Optical Self-Organization in Semiconductor Lasers Spatio-temporal Dynamics for All-Optical Processing

PbSe quantum dots grown in a high-index low-meltingtemperature glass for infrared laser applications

CW-pumped polarization-maintaining Brillouin fiber ring laser: II. Active mode-locking by phase modulation

Computation of the timing jitter, phase jitter, and linewidth of a similariton laser

Optical phase noise and carrier-envelope offset noise of mode-locked lasers

Transcription:

Ultrafast Laser Physics Ursula Keller / Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Chapter 8: Passive modelocking Ultrafast Laser Physics ETH Zurich

Pulse-shaping in passive modelocking U. Keller, Ultrafast solid-state lasers, Landolt-Börnstein, Group VIII/1B1, edited by G. Herziger, H. Weber, R. Proprawe, pp. 33-167, 007, ISBN 978-3-540-6033-

Slow saturable absorber and dynamic gain saturation loss gain pulse time Conditions for stable modelocking: 1) at the beginning loss is larger than gain: l 0 > g 0 ) absorber saturates faster than the gain: 3) absorber recovers faster than the gain: E sat,a < E sat,l A A σ A τ A < τ L < A L σ L

Colliding pulse modelocking (CPM) Amplifier jet: Rhodamine 6G (R6G) Saturable absorber jet: DODCI (3,3-Diethylocadicarbocyanin) Rhodamine 6G (R6G) σ L = 1.36 10 16 cm τ L = 4 ns DODCI σ A = 0.5 10 16 cm τ A =. ns Photo-isomer σ A = 1.08 10 16 cm τ A 1 ns

Colliding pulse modelocking (CPM) CPM Rhodamine 6G-laser FWHM pulse duration τp Emission wavelength λl Average power Pav Resonator length L Repetition rate frep Pulse peak power in resonator Ppeak Output coupling transmission Tout Pump power Amplifier jet thickness (at focus) and pressure Absorber jet thickness (at focus) and pressure Prisms for GDD-compensation Typical Best [86Val] 100 fs 7 fs 60 nm 60 nm 5 mw 0 mw 3.3 m 3.3 m 100 MHz 100 MHz 100 kw 190 kw.5 % 3.5 % 5 W at 514 nm 4 W at 514 nm 80 m 300 m nozzle, 40 psi 30 50 m 10 m nozzle, 15 psi Quartz glass

Loss modulation for a slow and fast saturable absorber dq( t) dt = q( t) q 0 τ A q t ( ) P ( t) E sat,a slow saturable absorber: τ p << τ A fast saturable absorber: τ p >> τ A neglect recovery within pulse duration follows immediately incoming power dq( t) dt q t ( ) P ( t) E sat,a 0 = q( t) q 0 τ A q t ( ) P ( t) E sat,a T R P ( t) = E p f ( t), where f t 0 ( )dt = 1 ( ) ( ) P sat,a = E sat,a, P t = I t A τ A P sat,a I sat,a ( ) = q 0 exp E p q t t f ( t )d t E sat,a 0 q( t) = q 0 1+ I A t ( ) I sat,a

Slow saturable absorber and dynamic gain saturation q( t) = σ A N A d A e E p( t) E sat,a P ( t) = E p f ( t) E p ( t) = A L A t t ( ) d t loss gain pulse time g( t) = σ L N L d L e E p( t) E sat,l Assume slow saturable absorber and slow gain saturation net gain window: g T ( t) = g t ( ) q( t) = g 0 e E p t ( ) E sat,l q A e E p( t) E sat,a l R resonator loss: s-parameter: l 0 = q A + l R s E sat,l E sat,a q A = σ A N A d A

Slow saturable absorber and dynamic gain saturation g T ( t) = g( t) q( t) = g 0 e E p( t) E sat,l q A e E p( t) E sat,a l R e x 1+ x + x g T (E) (g 0 q A l R ) + (q A g 0 s ) E + 1 g 0 s q A For stable pulse generation we need to have g T < 0 at both beginning and end of the pulse. (see later that this does not always need to be the case - see soliton modelocking) E loss gain g T ( 0) 0 g T Shorter pulses for larger max ( E p ) 0 g T pulse time g T max = g T ( E max ), with g T E E=Emax = 0

Slow saturable absorber and dynamic gain saturation g T (E) (g 0 q A l R ) + (q A g 0 s ) E + 1 g 0 s q A E For stable pulse generation we assume to have g T < 0 at both beginning and end of the pulse. g T max loss gain pulse time g T ( 0) 0 g T max E Shorter pulses for larger ( p ) 0 g T g T max = g T g T max = l 0 ( E max ), with ( 1 1 s) 1 1 s ( ) g T E E=Emax = 0 optimize s-parameter: goal in CPM s 3 < s = σ AA L σ L A A < 1

Colliding pulse modelocking (CPM) jet thickness 30-50 µm jet thickness 80 µm Amplifier jet: Rhodamine 6G (R6G) Saturable absorber jet: DODCI (3,3-Diethylocadicarbocyanin) 3 < s = σ AA L σ L A A < 1 Optimization of s-parameter: mode size: factor of 4 colliding pulse in absorber (bi-directional pulse propagation in ring laser): factor of - 3 need thin absorber < spatial extend of pulses (100 fs pulses) d s 1 A < c n τ p 0 µm

Slow saturable absorber and dynamic gain saturation Master equation: A( T,t) T R T = g t ( ) q( t) + g 0 Ω g d dt + t D d dt A T,t ( ) = 0 SAM (self-amplitude modulation) time shift of pulse A out ( t) = exp q( t) A in t ΔA q( t) A( T,t) ( ) q( t) = q A exp A t L σ A A ( t ) A A hν d t q A : unsaturated loss of the absorber Solution: A ( t ) = A sech t Rhodamin 6G: 0 τ τ 4 π Δν g Δν g 4 10 13 Hz With SPM: factor of shorter (Martinez numerically) 1 ΔA 3 = t D H. A. Haus, Theory of modelocking with a slow saturable absorber, IEEE J. Quantum Electron. 11, 736, 1975 d dt A T,t ( ) τ p = 1.76 τ 56 fs

Passive mode locking with an ideally fast saturable absorber loss loss gain gain pulse pulse time time Semiconductor and dye lasers: Dynamic gain saturation G.H.C. New, Opt. Com. 6, 188, 1974 Solid-state lasers (e.g. Ti:sapphire) Kerr lens modelocking (KLM) Ideally fast saturable absorber Opt. Lett. 16, 4, 1991

Ultrashort pulse generation with modelocking dye laser 7 fs with 10 mw FWHM pulse width (sec) 10 ps Ti:sapphire laser 5.5 fs with 00 mw 1 ps 100 fs 10 fs compressed Science 86, 1507, 1999! 1 fs 1960 1960 A. J. De Maria, D. A. Stetser, H. Heynau Appl. Phys. Lett. 8, 174, 1966 1970 1970 1980 1980 # Year 1990 1990 KLM! 000 000 Year# Kerr lens modelocking (KLM): 00 ns/div# 50 ns/div# Nd:glass first passively modelocked laser Q-switched modelocked! discovered - initially not understood ( magic modelocking ) D. E. Spence, P. N. Kean, W. Sibbett, Opt. Lett. 16, 4, 1991 KLM mechanism explained for the first time: U. Keller et al., Opt. Lett. 16, 10, 1991# c

World record pulse duration at ETH Tages Anzeiger 7./8. Juni 1997

How does such a short pulse look like? λ/c =.7 fs @800 nm# The shortest pulses ( 5 fs at 800 nm) in the VIS-IR spectral region are still generated with KLM Ti:sapphire lasers 1.5 µm # speed of light# under laser lab conditions KLM is stable 1 fs 0.3 µm spatial extent of a 5-fs pulse

Kerr Lens Modelocking (KLM) D. E. Spence, P. N. Kean, W. Sibbett, Optics Lett. 16, 4, 1991 Effective Saturable Absorber Fast Self-Amp. Modulation Saturation fluence Loss Gain Loss Pulse fluence on absorber Pulse Time

Kerr Lens Modelocking (KLM) First Demonstration: D. E. Spence, P. N. Kean, W. Sibbett, Optics Lett. 16, 4, 1991 Explanation: U. Keller et al., Optics Lett. 16, 10, 1991 Advantages of KLM very fast thus shortest pulses very broadband thus broader tunability Disadvantages of KLM not self-starting critical cavity adjustments (operated close to the stability limit) saturable absorber coupled to cavity design (limited application)

Kerr Lens Modelocking (KLM) q( t) = q 0 γ A A( t) g( t) = g Ideally fast saturable absorber and cw gain saturation for solid-state lasers (no dynamic pulse-to-pulse gain saturation)

Ideally fast saturable absorber modelocking cw Argon-Ionen Pumplaser f=1.5 cm R=10cm Ti:Saphir, 4mm dick R=10cm Fused Quartz Prismen 60 cm Master equation: T = 3-10 % Auskopplung T R A T = g 1+ 1 Ω g t A l A + γ A 0 A A + id t A iδ A A iψ A = 0

Master equation without SPM and GDD A T R T = g 1+ 1 Ω g t A l A + γ A 0 A A = 0 ( ) = A sech t 0 τ A t τ = 4D g γ A E p Limit of very long pulses (cw limit): g = l 0 1 + 1 Ω g τ g = l 0, for τ H. A. Haus, J. G. Fujimoto, E. P. Ippen, Structures for additive pulse modelocking, J. Opt. Soc. Am. B 8, 068, 1991

Master equation without SPM and GDD A T R T = g 1+ 1 Ω g t A l A + γ A 0 A A = 0 ( ) = A sech t 0 τ A t τ = 4g Ω g γ A E p = 4D g γ A E p Comparison with active modelocking: τ 4 = g M 1 ω m Ω g E p = P ( t) dt = A dt = A0 Mω m γ A A 0 τ t sech τ dt = A 0 τ H. A. Haus, J. G. Fujimoto, E. P. Ippen, Structures for additive pulse modelocking, J. Opt. Soc. Am. B 8, 068, 1991

Master equation with SPM and GDD T R A T = g 1 + 1 Ω g t A l A + γ A 0 A A + id t A iδ A A iψ A = 0

Linearized operators: self-phase modulation (SPM) n > 0 I(t) ( ) I t φ ( t) = kn I ( t) L K = kn L K A( t) δ A( t) leading edge SPM: red Pulsfront Gaussian Pulse Zeitabhängige Intensität trailing Pulsflanke edge SPM: blue ( ) t ω ( t) t Verbreiterung des Spektrums Spectral broadening ω t ω 0 0 t δ kn L K ( ) = dφ ( t ) dt = δ di ( t) dt E ( L K,t) = A 0,t ( )exp iω 0 t + iφ ( t) = A( 0,t)exp iω 0t ik n ω 0 A( L K,t) = e iδ A A( 0,t)e ik n ω 0 ( )L K δ A <<1 ( ( ) ) A 0,t 1 iδ A t ( ) L K iδ A( t) ( )e ik n ω 0 ( )L K ΔA SPM iδ A( T,t)

Linearized operators: group delay dispersion (GDD) A ( z,δω ) = A ( 0,Δω )e iδknz = A 0,Δω ( )e i k n ω 0 +Δω ( ) k n ω 0 ( ) z k n ( ω ) k n ( ω 0 ) + k n Δω + 1 k Δω n +... A ( z, Δω ) A 0, Δω Δ AGDD ( )exp i 1 k nδω k n Δω <<1 A 0, Δω ( Δω ) i 1 k nδω A ( Δω ) idδω A ( Δω ) ( ) 1 i 1 D 1 k n k nδω ω i t ω t = i t Fourier transformation: Δω t ΔA GDD id t

Master equation with SPM and GDD T R A T = g 1 + 1 Ω g t A l A + γ A 0 A A + id t A iδ A A iψ A = 0 Here normalize pulse envelope as follows: P ( t) = A( t) Therefore: δ δ δ A L γ A γ A γ A A A

Master equation with SPM and GDD T R A T = g 1 + 1 Ω g t A l A + γ A 0 A A + id t A iδ A A iψ A = 0 ( ) = A sech t 0 τ A t g l 0 + 1 β τ g Ω g 1 τ = γ A A 0 g β Ω g 1+iβ βd τ = 0 ( ) 3βD β = 1 3 D g D ± 9 D g D + 8 + 4 δ A 0τ D no SPM and GDD: ( ) = A sech t 0 τ A t g l 0 + g Ω g τ = 4g Ω g γ A E p D δ = D g γ A 1 τ = 0 = 4D g γ A E p β = 0 H. A. Haus, J. G. Fujimoto, E. P. Ippen, Structures for additive pulse modelocking, J. Opt. Soc. Am. B 8, 068, 1991

Master equation with SPM and GDD T R A T = g 1 + 1 Ω g t A l A + γ A 0 A A + id t A iδ A A iψ A = 0 ( ) = A sech t 0 τ A t 1+iβ β = 3 χ ± 3 χ + H. A. Haus, J. G. Fujimoto, E. P. Ippen, J. Opt. Soc. Am. B 8, 068, 1991 τ n E p D g τ D n D g Ω = D 3β g D g β = δ + γ D A n δ D n γ A 1 χ

Master equation with SPM and GDD T R A T = g 1 + 1 Ω g t A l A + γ A 0 A A + id t A iδ A A iψ A = 0 ( ) = A sech t 0 τ A t 1+iβ τ n = β 3βD n γ A = D n + D n β 3β δ H. A. Haus, J. G. Fujimoto, E. P. Ippen, J. Opt. Soc. Am. B 8, 068, 1991 τ n E p D g τ D n D g Ω = D 3β g D g β = δ + γ D A n δ D n γ A 1 χ

Master equation with SPM and GDD T R A T = g 1 + 1 Ω g t A l A + γ A 0 A A + id t A iδ A A iψ A = 0 ( ) = A sech t 0 τ A t 1+iβ Stability of solution (a simple criteria): l cw > g g l cw < 0 l cw > 1 T R T R 0 l ( t)dt l cw l 0 g l 0 = ( 1 β ) g Ω g τ + βd < 0 τ S ( 1 β ) βd n > 0 τ n E p D g τ D n D g Ω = D 3β g D g β = δ + γ D A n δ D n γ A 1 χ

Master equation with SPM and GDD T R A T = g 1 + 1 Ω g t A l A + γ A 0 A A + id t A iδ A A iψ A = 0 ( ) = A sech t 0 τ A t 1+iβ S ( 1 β ) βd n > 0 H. A. Haus, J. G. Fujimoto, E. P. Ippen, J. Opt. Soc. Am. B 8, 068, 1991 τ n E p D g τ D n D g Ω = D 3β g D g β = δ + γ D A n δ D n γ A 1 χ

Master equation with SPM and GDD H. A. Haus, J. G. Fujimoto, E. P. Ippen, J. Opt. Soc. Am. B 8, 068, 1991

Self-starting modelocking? Fast Absorber without Dynamic Gain Saturation Modelocking Driving Force Active Modelocking Slow Absorber with dynamic gain saturation Dispersion Limit ( 1 / Pulse width ) shorter pulse width E. P. Ippen, Principles of passive modelocking, Appl. Phys. B 58, 159, 1994

Ultrashort pulse generation with modelocking A. J. De Maria, D. A. Stetser, H. Heynau Appl. Phys. Lett. 8, 174, 1966 Q-switching instabilities continued to be a problem until 199" SESAM# 00 ns/div# First passively modelocked (diode-pumped) solid-state laser without Q-switching 50 ns/div# Nd:glass first passively modelocked laser Q-switched modelocked! KLM! IEEE JSTQE, 435, 1996 Nature 44, 831, 003 # # 1960 1970 Flashlamp-pumped solid-state lasers! 1980 Year# U. Keller et al. Opt. Lett. 17, 505, 199 1990 000 Diode-pumped solid-state lasers (first demonstration 1963)#

SESAM modelocking U. Keller et al. Opt. Lett. 17, 505, 199 IEEE JSTQE, 435, 1996# Progress in Optics 46, 1-115, 004" Nature 44, 831, 003# SESAM solved Q-switching problem for diode-pumped solid-state lasers Gain! Output coupler! SESAM SEmiconductor Saturable Absorber Mirror # self-starting, stable, and reliable # modelocking of diode-pumped ultrafast solid-state # lasers

KLM vs. Soliton modelocking loss loss gain gain pulse pulse time Kerr lens modelocking (KLM) Fast saturable absorber D. E. Spence, P. N. Kean, W. Sibbett Opt. Lett. 16, 4, 1991 time Soliton modelocking not so fast saturable absorber F. X. Kärtner, U. Keller, Opt. Lett. 0, 16, 1995

Passive mode locking with slow saturable absorbers loss loss gain gain pulse pulse time Semiconductor lasers: Dynamic gain saturation G.H.C. New, Opt. Com. 6, 188, 1974 time Ion-doped solid-state lasers: Constant gain saturation: soliton modelocking F. X. Kärtner, U. Keller, Opt. Lett. 0, 16, 1995

Pulse-shaping VECSEL KLM Solid-state and SESAM Gain window can be up to 0 times longer than the pulse before mode locking becomes unstable fast/broadband sat. abs.# critical cavity adjustment: KLM better at cavity stability limit # typically not self-starting not so fast sat. abs absorber independent of cavity design self-starting For stable pulse generation it was initially assumed that we need g T < 0 at both beginning and end of the pulse. This is however not the case! See SESAM modelocking with slow saturable absorber and soliton modelocking

Slow saturable absorber modelocking R. Paschotta, U. Keller, Appl. Phys. B 73, 653, 001 absorber delays pulse! loss Fully saturated absorber:# leading edge of pulse# negligible loss for# has significant loss from # trailing edge of pulse# the saturable absorber# time Dominant stabilization process:! Picosecond domain: absorber delays pulse# The pulse is constantly moving backward and # can swallow any noise growing behind itself# Femtosecond domain: dispersion in soliton modelocking#

Soliton modelocking: GDD negative, n > 0 Outputcoupler Group Delay Velocity Dispersion Self- Phase- Modulation Gain Slow Absorber A out ( T,t) = e q(t ) A in ( T,t) Master equation: ( ) = 1 q( t) A in ( T,t) ( ) = q( t) A( T,t) A out T,t ΔA T,t T R T A T,t ( ) = id ( ) iδ A T,t t A T,t ( ) + g l + D g t q t ( ) A T,t ( ) = 0 ( ) = A sech t 0 τ A T,t exp iφ 0 T T R + continuum τ = 4 D δ F p,l

Soliton modelocking: GDD negative, n > 0 F. X. Kärtner, U. Keller, Optics Lett. 0, 16, 1995 Invited Paper: F. X. Kärtner, I. D. Jung, U. Keller, IEEE JSTQE,, 540, 1996 Soliton # Perturbation # Theory:# A(T,t) = Asech t τ T exp i Φ 0 T R { soliton + small perturbations { continuum only GDD & SAM (no SPM) Continuum Loss GDD Continuum spreading GDD Gain Gain Pulse Pulse Frequency Time Frequency domain Time domain Stabilization: Dispersion spreads continuum out where it sees more loss

A T,t Soliton modelocking: GDD negative, n > 0 Solution: stable soliton pulses ( ) = A sech t 0 τ exp iφ 0 T T R 0 τ = 4 D + continuum δ F p,l Continuum Loss GDD Continuum GDD Gain Gain Pulse Pulse Frequency Frequency domain Time Time domain Stabilization: Dispersion spreads continuum out where it sees more loss

Experimental confirmation: example Ti:sapphire laser T=3% output coupler SF 10 prism 45 cm 5 µm etalon SF 10 prism ROC 10cm Ti:sapphire 4mm, 0.15% doping 40cm ROC 10cm Argon pump d R=10cm Absorber (A-FPSA) SESAM SESAM: LT-GaAs Impulse response measured with 300 fs pulses clearly a slow saturable absorber No KLM: cavity operated in the middle of cavity stability regime (and use etalon for bandwidth limitation) Reflection, % 98.4 98. 98.0 97.8 97.6 97.4 97. 0 A = 10 ps 10 0 30 Time delay, ps 40 50 I. D. Jung, F. X. Kärtner, L. R. Brovelli, M. Kamp, U. Keller, "Experimental verification of soliton modelocking using only a slow saturable absorber," Opt. Lett., vol. 0, pp. 189-1894, 1995

Experimental confirmation: example Ti:sapphire laser Solution: soliton pulse A s ( T,t) = F p,l soliton phase per resonator roundtrip φ 0 = D τ = δ F p,l 4τ Stability (soliton perturbation theory): continuum loss l c is larger than soliton loss l s Normalized abs. recovery lc/q0, ls/q0 1.0 0.8 0.6 0.4 0. τ sech t τ e iφ 0 Kontinuumverluste continuum loss soliton loss Solitonverluste T T R τ FWHM stabiles stable regime Regime τ FWHM = 1.76 τ = 1.76 4 D δ F p,l unstabiles unstable regime Regime 1000 800 600 400 Pulse Width τ FWHM, fs w = τ A τ q 0 φ 0 = τ A q 0 D 1 D 0.0 0 10 0 30 Normalized Absorber Recovery Time w 40 00 I. D. Jung, F. X. Kärtner, L. R. Brovelli, M. Kamp, U. Keller, "Experimental verification of soliton modelocking using only a slow saturable absorber," Opt. Lett., vol. 0, pp. 189-1894, 1995

Experimental confirmation: example Ti:sapphire laser 1.0 1000 τ FWHM = 1.76 τ = 1.76 4 D δ F p,l lc/q0, ls/q0 0.8 0.6 0.4 0. τ FWHM stabiles Kontinuumverluste stable continuum loss Regime regime Solitonverluste soliton loss unstabiles unstable regime Regime 800 600 400 Pulse Width τ FWHM, fs 0.0 0 10 0 30 40 00 Normalized Absorber Recovery Time w Autocorrelation, a. u. - D = 00 fs - D = 300 fs - D = 500 fs - D = 800 fs - D = 1000 fs - D = 100 fs -000-1000 0 1000 000 Time, fs FWHM = 31 fs FWHM =391 fs FWHM = 469 fs I. D. Jung, F. X. Kärtner, L. R. Brovelli, M. Kamp, U. Keller, "Experimental verification of soliton modelocking using only a slow saturable absorber," Opt. Lett., vol. 0, pp. 189-1894, 1995 Intensity, a. u. - D = 00 fs - D = 300 fs - D = 500 fs - D = 800 fs - D = 1000 fs - D = 100 fs f =.68THz 80 804 806 808 Wavelength, nm f =.97 THz f =.85 THz 810 81

Experimental confirmation: example Ti:sapphire laser 1.0 1000 τ FWHM = 1.76 τ = 1.76 4 D δ F p,l lc/q0, ls/q0 0.8 0.6 0.4 0. τ FWHM stabiles Kontinuumverluste stable continuum loss Regime regime Solitonverluste soliton loss unstabiles unstable regime Regime 800 600 400 Pulse Width τ FWHM, fs 0.0 0 10 0 30 40 00 Normalized Absorber Recovery Time w Autocorrelation, a. u. - D = 00 fs - D = 300 fs - D = 500 fs - D = 800 fs - D = 1000 fs - D = 100 fs -000-1000 0 1000 000 Time, fs FWHM = 31 fs FWHM =391 fs FWHM = 469 fs High dynamic range autocorrelation: 330 fs Opt. Lett. 0, 1889, 1995 I. D. Jung, F. X. Kärtner, L. R. Brovelli, M. Kamp, U. Keller, "Experimental verification of soliton modelocking using only a slow saturable absorber," Opt. Lett., vol. 0, pp. 189-1894, 1995 Autocorrelation, a.u. 10 0 10-1 10-10 -3 10-4 10-5 10-6 -3 - -1 0 1 3 Time, ps

Coupled cavity modelocking Chapter 8.5: for historical reasons summarized here - not used much anymore The soliton laser L. F. Mollenauer, R. H. Stolen, "The soliton laser," Optics Lett., vol. 9, pp. 13-15, 1984. Additive pulse modelocking (APM) K. J. Blow and D. Wood, "Modelocked lasers with nonlinear external cavities," J. Opt. Soc. Am B, vol. 5, pp. 69-63, 1988 P. N. Kean, X. Zhu, D. W. Crust, R. S. Grant, N. Landford, W. Sibbett, "Enhanced modelocking of color center lasers," Optics Lett., vol. 14, pp. 39-41, 1989 9 E. P. Ippen, H. A. Haus, L. Y. Liu, "Additive Pulse Modelocking," J. Opt. Soc. Am. B, vol. 6, pp. 1736-1745, 1989 Resonant passive modelocking (RPM) U. Keller, W. H. Knox, and H. Roskos, "Coupled-Cavity Resonant Passive Modelocked Ti:Sapphire Laser," Optics Lett., vol. 15, pp. 1377-1379, 1990 H. A. Haus, U. Keller, and W. H. Knox, "Theory of Coupled-Cavity Modelocking with a Resonant Nonlinearity," J. Opt. Soc. Am. B, vol. 8, pp. 15-158, 1991