4B. Line Integrals in the Plane

Similar documents
18.02 Multivariable Calculus Fall 2007

4. Line Integrals in the Plane

16.2. Line Integrals

18.02 Multivariable Calculus Fall 2007

6. Vector Integral Calculus in Space

18.02 Multivariable Calculus Fall 2007

ARNOLD PIZER rochester problib from CVS Summer 2003

Arnie Pizer Rochester Problem Library Fall 2005 WeBWorK assignment VectorCalculus1 due 05/03/2008 at 02:00am EDT.

c) LC=Cl+C2+C3; C1:x=dx=O; C2: y=1-x; C3:y=dy=0 1 ydx-xdy (1-x)~x-x(-dx)+ = Jdldx = 1.

Mathematics (Course B) Lent Term 2005 Examples Sheet 2

worked out from first principles by parameterizing the path, etc. If however C is a A path C is a simple closed path if and only if the starting point

Vector Calculus, Maths II

Math 233. Practice Problems Chapter 15. i j k

Peter Alfeld Math , Fall 2005

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr.

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives.

Name: Date: 12/06/2018. M20550 Calculus III Tutorial Worksheet 11

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, ISBN:

Notes on Green s Theorem Northwestern, Spring 2013

Section 4.3 Vector Fields

M273Q Multivariable Calculus Spring 2017 Review Problems for Exam 3

Lecture 5 - Fundamental Theorem for Line Integrals and Green s Theorem

MATH H53 : Final exam

Solutions to old Exam 3 problems

APPENDIX 2.1 LINE AND SURFACE INTEGRALS

18.02 Multivariable Calculus Fall 2007

Math Review for Exam 3

Math 31CH - Spring Final Exam

Math 11 Fall 2007 Practice Problem Solutions

Review problems for the final exam Calculus III Fall 2003

Multivariable Calculus

V11. Line Integrals in Space

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

(b) Find the range of h(x, y) (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0)

Green s Theorem in the Plane

Tom Robbins WW Prob Lib1 Math , Fall 2001

29.3. Integral Vector Theorems. Introduction. Prerequisites. Learning Outcomes

Green s Theorem in the Plane

Math 212-Lecture 20. P dx + Qdy = (Q x P y )da. C

18.02 Multivariable Calculus Fall 2007

18.1. Math 1920 November 29, ) Solution: In this function P = x 2 y and Q = 0, therefore Q. Converting to polar coordinates, this gives I =

Integral Theorems. September 14, We begin by recalling the Fundamental Theorem of Calculus, that the integral is the inverse of the derivative,

McGill University April 16, Advanced Calculus for Engineers

(a) 0 (b) 1/4 (c) 1/3 (d) 1/2 (e) 2/3 (f) 3/4 (g) 1 (h) 4/3

1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l.

C 3 C 4. R k C 1. (x,y)

MATH 332: Vector Analysis Summer 2005 Homework

(c) The first thing to do for this problem is to create a parametric curve for C. One choice would be. (cos(t), sin(t)) with 0 t 2π

Created by T. Madas LINE INTEGRALS. Created by T. Madas

Ma 1c Practical - Solutions to Homework Set 7

Practice problems. m zδdv. In our case, we can cancel δ and have z =

Line and Surface Integrals. Stokes and Divergence Theorems

In general, the formula is S f ds = D f(φ(u, v)) Φ u Φ v da. To compute surface area, we choose f = 1. We compute

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS

Math 265H: Calculus III Practice Midterm II: Fall 2014

2. Evaluate C. F d r if F = xyî + (x + y)ĵ and C is the curve y = x 2 from ( 1, 1) to (2, 4).

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative.

HOMEWORK 8 SOLUTIONS

3. The Theorems of Green and Stokes

ES.182A Topic 44 Notes Jeremy Orloff

Review Sheet for the Final

49. Green s Theorem. The following table will help you plan your calculation accordingly. C is a simple closed loop 0 Use Green s Theorem

Integral Vector Calculus

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt

f. D that is, F dr = c c = [2"' (-a sin t)( -a sin t) + (a cos t)(a cost) dt = f2"' dt = 2

Math 234 Final Exam (with answers) Spring 2017

Math 11 Fall 2016 Final Practice Problem Solutions

Name: SOLUTIONS Date: 11/9/2017. M20550 Calculus III Tutorial Worksheet 8

Math 120: Examples. Green s theorem. x 2 + y 2 dx + x. x 2 + y 2 dy. y x 2 + y 2, Q = x. x 2 + y 2

Practice problems **********************************************************

Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed.

Math Exam IV - Fall 2011

McGill University April 20, Advanced Calculus for Engineers

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Kinematics

231 Outline Solutions Tutorial Sheet 4, 5 and November 2007

18.02 Multivariable Calculus Fall 2007

Practice problems ********************************************************** 1. Divergence, curl

Name: Instructor: Lecture time: TA: Section time:

Ideas from Vector Calculus Kurt Bryan

Elements of Vector Calculus : Line and Surface Integrals

15.2 divergence, curl and del in 2D Contemporary Calculus 1

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is

Module 16 : Line Integrals, Conservative fields Green's Theorem and applications. Lecture 48 : Green's Theorem [Section 48.

Conic Sections. Geometry - Conics ~1~ NJCTL.org. Write the following equations in standard form.

1. (30 points) In the x-y plane, find and classify all local maxima, local minima, and saddle points of the function. f(x, y) = 3y 2 2y 3 3x 2 + 6xy.

In addition to the problems below, here are appropriate study problems from the Miscellaneous Exercises for Chapter 6, page 410: Problems

7a3 2. (c) πa 3 (d) πa 3 (e) πa3

MATH 52 FINAL EXAM DECEMBER 7, 2009

Review for the Final Test

MATH 2203 Final Exam Solutions December 14, 2005 S. F. Ellermeyer Name

Math 11 Fall 2018 Practice Final Exam

Exercises for Multivariable Differential Calculus XM521

Sept , 17, 23, 29, 37, 41, 45, 47, , 5, 13, 17, 19, 29, 33. Exam Sept 26. Covers Sept 30-Oct 4.

ENGI 4430 Line Integrals; Green s Theorem Page 8.01

Math 234. What you should know on day one. August 28, You should be able to use general principles like. x = cos t, y = sin t, 0 t π.

Math 211, Fall 2014, Carleton College

UNIVERSITY OF INDONESIA FACULTY OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 3 2, 5 2 C) - 5 2

Transcription:

4. Line Integrals in the Plane 4A. Plane Vector Fields 4A-1 Describe geometrically how the vector fields determined by each of the following vector functions looks. Tell for each what the largest region in which F is continuously differentiable is. xi + yj yi xj a) ai + bj, a,b constants b) xi yj c) d) r r 4A-2 Write down the gradient field w for each of the following: a) w = ax + by b) w = lnr c) w = f(r) 4A-3 Write down an explicit expression for each of the following fields: a) Each vector has the same direction and magnitude as i +2j. b) The vector at (x,y) is directed radially in towards the origin, with magnitude r 2. c) The vector at (x,y) is tangent to the circle through (x,y) with center at the origin, clockwise direction, magnitude 1/r 2. d) Each vector is parallel to i + j, but the magnitude varies. 4A-4 The electromagnetic force field of a long straight wire along the z-axis, carrying a uniform current, is a two-dimensional field, tangent to horizontal circles centered along the z-axis, in the direction given by the right-hand rule (thumb pointed in positive z-direction), and with magnitude k/r. Write an expression for this field. 4B. Line Integrals in the Plane 4B-1 For each of the fields F and corresponding curve or curves i, evaluate F dr. Use any convenient parametrization of, unless one is specified.. Begin by writing the integral in the differential form M dx+ N dy. a) F = (x 2 y)i +2xj; 1 and 2 both run from ( 1,0) to (1,0): 1 : the x-axis 2 : the parabola y = 1 x 2 b) F = xy i x 2 j; : the quarter of the unit circle running from (0,1) to (1,0). c) F = yi xj; : the triangle with vertices at (0,0), (0,1), (1,0), oriented clockwise. d) F = yi; is the ellipse x = 2cost, y = sint, oriented counterclockwise. e) F = 6yi + xj; is the curve x = t 2, y = t 3, running from (1,1) to (4,8). f) F = (x + y)i + xy j; is the broken line running from (0,0) to (0,2) to (1,2). 4B-2 For the following fields F and curves, evaluate F dr without any formal calculation, appealing instead to the geometry of F and. a) F = xi + yj; is the counterclockwise circle, center at (0,0), radius a. b) F = yi xj; is the counterclockwise circle, center at (0,0), radius a. 1

2 E. 18.02 EXERISES 4B-3 Let F = i + j. How would you place a directed line segment of length one so that the value of F dr would be a) a maximum; b) a minimum; c) zero; d) what would the maximum and minimum values of the integral be? 4. Gradient Fields and Exact Differentials 4-1 Let f(x,y) = x 3 y+y 3, and be y 2 = x, between (1, 1) and (1,1), directed upwards. a) alculate F = f. b) alculate the integral F dr three different ways: (i) directly; (ii) by using path-independence to replace by a simpler path (iii) by using the Fundamental Theorem for line integrals. 4-2 Let f(x,y) = xe xy, and be the path y = 1/x from (1,1) to (0, ). a) alculate F = f. b) alculate the integral F dr (i) directly; (ii) by using the Fundamental Theorem for line integrals. 4-3 Let f(x,y) = sinxcosy. a) alculate F = f. b) What is the maximum value F dr can have over all possible paths in the plane? Give a path for which this maximum value is attained. 4-4* The Fundamental Theorem for line integrals should really be called the First Fundamental Theorem. There is an analogue for line integrals of the Second Fundamental Theorem also, where you first integrate, then differentiate; it provides the justification for Method 1 in the reading. It runs: (x,y) If M dx+ N dy is path-independent, and f(x,y) = F dr, then f = M i + N j. (x 0,y 0) The conclusion says f x = M,f y = N; prove the second of these. (Hint: use the Second Fundamental Theorem of alculus.) 4-5 Foreachof thefollowing, tellforwhat valueof theconstantsthe field willbeagradient field, and for this value, find the corresponding (mathematical) ( potential function. ) a) F = (y 2 +2x)i + axy j b) F = e x+y (x + a)i + xj 4-6 Decide which of the following differentials is exact. For each one that is exact, express it in the form df. a) ydx xdy b) y(2x + y)dx+ x(2y + x)dy ydx xdy c)* xsinydx+ ysinxdy d)* (x + y) 2

4. LINE INTEGRALS IN THE PLANE 3 4D. Green s Theorem 4D-1 For each of the following fields F and closed positively oriented curves, evaluate F dr both directly, as a line integral, and also by applying Green s theorem and calculating a double integral. a) F : 2yi + xj, : x 2 + y 2 = 1 b) F : x 2 (i + j) : rectangle joining (0,0), (2,0), (0,1), (2,1) c) F : xy i + y 2 j, : y = x 2 and y = x, 0 x 1 4D-2 Show that 4x 3 ydx+ x 4 dy = 0 for all closed curves. 4D-3 Find the area inside the hypocycloid x 2/3 + y 2/3 = 1, by using Green s theorem. (This curve can be parametrized by x = cos 3 θ,y = sin 3 θ, between suitable limits on θ.) 4D-4 Show that the value of y 3 dx+x 3 dy around any positively oriented simple closed curve is always positive. 4D-5 Show that the value of xy 2 2 dx+(x y+2x)dy around any square in the xy-plane depends only on the size of the square, and not upon its position. 4D-6* Show that x 2 2 ydx+ xy dy > 0 around any simple closed curve. 4D-7* Show that the value of y(y + 3)dx + 2xydy around any equilateral triangle depends only on the size of the triangle, and not upon its position in the xy-plane. 4E. Two-dimensional Flux 4E-1 Let F = yi +xj. Recalling the interpretation of this field as the velocity field of a rotating fluid or just by remembering how it looks geometrically, evaluate with little or no calculation the flux integral F n ds, where a) is a circle of radius a centered at (0,0), directed counterclockwise. b) is the line segment running from ( 1,0) to (1,0) c) is the line running from (0,0) to (1,0). 4E-2 Let F be the constant vector field i + j. Where would you place a directed line segment of length one in the plane so that the flux across would be a) maximal b) minimal c) zero d) 1 e) what would the maximal and minimal values be? 4E-3 Let F = x 2 i + xy j. Evaluate F n ds if is given by r(t) = (t +1)i + t2 j, where 0 t 1; the positive direction on is the direction of increasing t. 4E-4 Take to be the square of side 1 with opposite vertices at (0,0) and (1,1), directed clockwise. Let F = xi + yj; find the flux across.

4 E. 18.02 EXERISES 4E-5 Let F be defined everywhere except at the origin by the description: dir F = radially outward, F = r m, m an integer. a) Evaluate the flux of F across a circle of radius a and center at the origin, directed counterclockwise. b) For which value(s) of m will the flux be independent of a? 4E-6* Let F be a constant vector field, and let be a closed polygon, directed counterclockwise. Show that F dr = 0. (Hint evaluate the integral along one of the directed sides; then add up the integrals over the successive sides, using properties of vectors.) 4E-7* Let F be a constant vector field, and a closed polygon, as in the preceding exercise. Show that F n ds = 0. 4F. Green s Theorem in Normal Form 4F-1 alculate the functions div F and curl F for each of the following fields. a) ai + bj (a,b constants) b) x 2 i + y 2 j c) xy(i + j) 4F-2 Let F = ω( yi+xj) be the vector field giving the velocity of a rotating fluid (reading V1, Example 4). a) alculate div F and curl F. b) Using the physical interpretation of this vector field, explain why it is reasonable that div F = 0. c) Using the physical interpretation of curl F, explain why it is reasonable that curl F = 2ω at the origin. 4F-3 Verify Green s theorem in the normal form by calculating both sides and showing they are equal if F = xi + yj, and is formed by the upper half of the unit circle and the x-axis interval [ 1,1]. 4F-4 Verify Green s theorem in the normal form by calculating both sides and showing they are equal if F = x 2 i + xy j, and is the square with opposite vertices at (0,0) and (1,1). 4F-5 alculate div F and curl F for F = r n (xi + yj). (Simplify the differentiation by using r x = x/r, r y = y/r.) For which value(s) of n is div F = 0? For which value(s) of n is curl F = 0? 4F-6*a) Supposethatallthevectorsof a field Fpointradially outward andtheirmagnitude is a differentiable function f(r) of r alone. Show that curl F = 0. b) Suppose all the vectors of a field F are parallel. Reasoning from the physical interpretation of curl F, would you expect it to be zero everywhere? Illustrate your answer by an example.

4. LINE INTEGRALS IN THE PLANE 5 4G. Simply-connected Regions. 4G-1 Using the criterion of this section, tell which of the following fields and differentials definitely are respectively conservative or exact, which of them are definitely not, and for which of them the criterion fails. a) (y 2 +2)i +2xy j b) x(cosy)dx+ y(cosx)dy xi + yj c) r 2 1 xdx + ydy d) 1 r 2 e) xi + yj 4G-2 For each of the following fields F, find f(x,y) such that F = f. a) the field of 1a b) the field of 1e c) the field of 1d; use polar coordinates. (3,4) xi + yj 4G-3 Evaluate F dr, where F =. Use the results of Example 3 in Notes V5. (1,1) 4G-4 Even though the field of Example 1, F = xy i + x 2 j, is not a gradient field, show that F dr = 0 around every simple closed curve which is symmetric about the y-axis. 4G-5 Which of the following regions are simply-connected? a) the half-plane lying above the x-axis b) the plane minus the line segment joining (0,0) and (0,1) c) the plane minus the positive x-axis d) the plane minus the entire x-axis e) in polar coordinates, the region where r > 0, 0 < θ < θ 0 f) the region between two concentric circles g) the region in the plane between the two branches of the hyperbola xy = 1 4G-6 For which of the following vector fields is the domain where it is defined and continuously differentiable a simply-connected region? a) d) xi + yj yi + xj r i + j b) 1 x 2 y 2 4G-7* By following the method outlined in the proof of equation (3) in reading V5, show that if curl F = 0 in the whole xy-plane, then F dr = 0 over each of the following closed paths (break them into as few pieces as possible): r 3 e) (i + j)ln(x 2 + y 2 ) i + j c) x 2 + y 2 1

MIT OpenourseWare http://ocw.mit.edu 18.02S Multivariable alculus Fall 2010 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.