Microelectronic Devices and Circuits Lecture 9 - MOS Capacitors I - Outline Announcements Problem set 5 -

Similar documents
Bipolar junction transistor operation and modeling

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Lecture 8 PN Junction and MOS Electrostatics (V) Electrostatics of Metal Oxide Semiconductor Structure (cont.) October 4, 2005

Microelectronic Devices and Circuits Lecture 13 - Linear Equivalent Circuits - Outline Announcements Exam Two -

Lecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.)

Lecture 04 Review of MOSFET

Electronic Devices and Circuits Lecture 5 - p-n Junction Injection and Flow - Outline

Electrical Characteristics of MOS Devices

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Lecture 7 PN Junction and MOS Electrostatics(IV) Metal Oxide Semiconductor Structure (contd.)

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

Lecture 11: MOS Transistor

6.012 Electronic Devices and Circuits

6.012 Electronic Devices and Circuits

Lecture 12: MOS Capacitors, transistors. Context

Lecture 7 - PN Junction and MOS Electrostatics (IV) Electrostatics of Metal-Oxide-Semiconductor Structure. September 29, 2005

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

Week 3, Lectures 6-8, Jan 29 Feb 2, 2001

The Gradual Channel Approximation for the MOSFET:

EECS130 Integrated Circuit Devices

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

Electronic Devices and Circuits Lecture 15 - Digital Circuits: Inverter Basics - Outline Announcements. = total current; I D

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

6.012 Electronic Devices and Circuits Spring 2005

Lecture 12: MOSFET Devices

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime

EE105 - Fall 2006 Microelectronic Devices and Circuits

Electronic Devices and Circuits Lecture 14 - Linear Equivalent Circuits - Outline Announcements

FIELD-EFFECT TRANSISTORS

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias

6.012 MICROELECTRONIC DEVICES AND CIRCUITS

Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Metal-oxide-semiconductor field effect transistors (2 lectures)

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

Lecture 6 PN Junction and MOS Electrostatics(III) Metal-Oxide-Semiconductor Structure

The Devices. Jan M. Rabaey

Integrated Circuits & Systems

MOSFET: Introduction

Review - Differential Amplifier Basics Difference- and common-mode signals: v ID

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Lecture #27. The Short Channel Effect (SCE)

MOSFET. Id-Vd curve. I DS Transfer curve V G. Lec. 8. Vd=1V. Saturation region. V Th

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

MOS Capacitor MOSFET Devices. MOSFET s. INEL Solid State Electronics. Manuel Toledo Quiñones. ECE Dept. UPRM.

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

CMOS scaling rules Power density issues and challenges Approaches to a solution: Dimension scaling alone Scaling voltages as well

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

EE105 - Fall 2005 Microelectronic Devices and Circuits

Section 12: Intro to Devices

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Spring Semester 2012 Final Exam

Lecture 17 - The Bipolar Junction Transistor (I) Forward Active Regime. April 10, 2003

ECE 342 Electronic Circuits. 3. MOS Transistors

MOS Transistor I-V Characteristics and Parasitics

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering

Chapter 4 Field-Effect Transistors

EE 560 MOS TRANSISTOR THEORY

EE105 - Spring 2007 Microelectronic Devices and Circuits. Structure and Symbol of MOSFET. MOS Capacitor. Metal-Oxide-Semiconductor (MOS) Capacitor

Lecture 11: J-FET and MOSFET

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Lecture 3: CMOS Transistor Theory

VLSI Design and Simulation

Lecture 28 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 18, 2007

Recitation 17: BJT-Basic Operation in FAR

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University

Content. MIS Capacitor. Accumulation Depletion Inversion MOS CAPACITOR. A Cantoni Digital Switching

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

Quantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current.

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling

Semiconductor Devices. C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 5

Lecture 5: CMOS Transistor Theory

MOSFET Capacitance Model

ECE 340 Lecture 39 : MOS Capacitor II

Device Models (PN Diode, MOSFET )

Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER

MOS Transistor Properties Review

GaN based transistors

Lecture 6 - PN Junction and MOS Electrostatics (III) Electrostatics of pn Junction under Bias February 27, 2001

ECE 546 Lecture 10 MOS Transistors

Lecture 4 - PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium September 20, 2005

The Devices: MOS Transistors

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006

MOS Transistor Theory

Figure 1: MOSFET symbols.

Charge Storage in the MOS Structure. The Inverted MOS Capacitor (V GB > V Tn )

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

Semiconductor Physics fall 2012 problems

Chapter 13 Small-Signal Modeling and Linear Amplification

Electronics Fets and Mosfets Prof D C Dube Department of Physics Indian Institute of Technology, Delhi

Section 12: Intro to Devices

Device Models (PN Diode, MOSFET )

MOS CAPACITOR AND MOSFET

Transcription:

6.012 - Microelectronic Devices and Circuits Lecture 9 - MOS Capacitors I - Outline Announcements Problem set 5 - Posted on Stellar. Due net Wednesday. Qualitative description - MOS in thermal equilibrium Definition of structure: metal/silicon dioide/p-type Si Electrostatic potential of metal relative to silicon: Zero bias condition: Si surface depleted if > -Si Negative bias on metal: depletion to flat-band to accumulation Positive bias on metal: depletion to threshold to inversion (Eample: n-mos) (typical situation) Quantitative modeling - MOS in thermal equilibrium, v BC = 0 Depletion approimation applied to the MOS capacitor: 1. Flat-band voltage, 2. Accumulation layer sheet charge density, q A 3. Maimum depletion region width, 4. Threshold voltage, V T 5. Inversion layer sheet charge density, q N Quantitative modeling - v BC 0; impact of v BC < 0 Voltage between n+ region and p-substrate: 2-Si 2-Si - v BC Clif Fonstad, 10/8/09 Lecture 9 - Slide 1

n-channel MOSFET: Connecting with the npn MOSFET A very similar behavior, and very similar uses. MOSET G i G + i D D + v DS id Linear or Triode Saturation (FAR) i D! K [v GS - V T (v BS )]2/2! BJT B i B + v BE i C C + v CE E v GS ib! IBSe qvbe/kt vce > 0.2 V i B S FAR ic Saturation Cutoff Forward Active Region ic!!f ib vds Cutoff vbe 0.6 V 0.2 V Cutoff Input curve Output family Clif Fonstad, 10/8/09 Lecture 9 - Slide 2 vce

MOS structures G S v GS + v DS i G D i D n+ n+ p-si An n-channel MOSFET v BS + B In an n-channel MOSFET, we have two n-regions (the source and the drain), as in the npn BJT, with a p-region producing a potential barrier for electrons between them. In this device, however, it is the voltage on the gate, v GS, that modulates the potential barrier height. The heart of this device is the MOS capacitor, which we will study today. To analyze the MOS capacitor we will use the same depletion approimation that we introduced in conjunction with p-n junctions. i B Clif Fonstad, 10/8/09 Lecture 9 - Slide 3

The n-mos capacitor C S n+ v GS (= ) + G SiO 2 Right: Basic device with v BC = 0 p-si B Below: One-dimensional structure for depletion approimation analysis + SiO 2 p-si G B -t o 0 Note: We can't forget the n+ region is there; we will need electrons, and they will come from there. Clif Fonstad, 10/8/09 Lecture 9 - Slide 4

Electrostatic potential and net charge profiles φ() Zero bias: = 0 -t o d ρ() d d -t o q D = - d Clif Fonstad, 10/8/09 Lecture 9 - Slide 5

Electrostatic potential and net charge profiles φ() Depletion: < < 0 -t o d < 0 ρ() d d -t o - d Clif Fonstad, 10/8/09 Lecture 9 - Slide 6

Electrostatic potential and net charge profiles φ() Flat band : = -t o = = ρ() = -t o Clif Fonstad, 10/8/09 Lecture 9 - Slide 7

Electrostatic potential and net charge profiles φ() Accumulation : < -t o < ρ() -t o C ( - ) o - C ( - ) o Clif Fonstad, 10/8/09 Lecture 9 - Slide 8

Electrostatic potential and net charge profiles φ() Flat band : = = -t o = ρ() -t o Clif Fonstad, 10/8/09 Lecture 9 - Slide 9

Electrostatic potential and net charge profiles φ() Depletion: < < 0 -t o d < < 0 ρ() d d -t o - d Clif Fonstad, 10/8/09 Lecture 9 - Slide 10

Electrostatic potential and net charge profiles φ() Depletion: = 0 -t o d ρ() d d -t o q D = - d Clif Fonstad, 10/8/09 Lecture 9 - Slide 11

Electrostatic potential and net charge profiles φ() Depletion: 0 < < V T Weak inversion: φ(0) > 0 -t o d 0 < < V T ρ() J = 0 n() = n i e -qφ()/kt and p() = n i e qφ()/kt d φ(0) n(0) -t o q D = - d d Weak inversion: φ(0) > 0 n(0) > p(0) Clif Fonstad, 10/8/09 Lecture 9 - Slide 12

Electrostatic potential and net charge profiles = V T φ() Threshold: = V T - At threshold φ(0) = - -t o ρ() φ(0) = - n(0) = N A -t o q D = - Clif Fonstad, 10/8/09 Lecture 9 - Slide 13

Electrostatic potential and net charge profiles φ() Threshold: = V T = V T V T -t o - /C o = (2ε Si 2 / ) 1/2 2 ρ() V T = 2 + /C o V B )1/2 T = + 2 + (2ε Si 2 ) 1/2 /C o V F -t o q D = - q D = - = -(2ε Si 2 ) 1/2 Clif Fonstad, 10/8/09 At threshold φ(0) = - Lecture 9 - Slide 14

Electrostatic potential and net charge profiles V T < φ() Inversion: V T < -φp -t o 2 + C o ( - V T ) ρ() q N = Inversion layer charge (sheet of mobile electrons in Si near the Si-oide interface) -t o q D = - q D, depletion region q N = - C o ( - V T ) charge unchanged Clif Fonstad, 10/8/09 Lecture 9 - Slide 15

Electrostatic potential and net charge profiles - regions and boundaries φ() φ() -φ -t o -t o d -t o φ φ φ m m + p φ() m 2 ρ() C ( - V T ) ρ() d o ρ() - C ( - ) -t -t q D = - C q o ( - ) v D = - GB d q N = - C o ( - V T ) -t o o o d o X DT Acccumulation Depletion Inversion < < < V T V T < Flat Band Voltage Threshold Voltage φ V ) 1/2 T = + 2 +(2ε Si 2 /C = m o φ() φ() - -t -t o 2 o φ φ p ρ() m φp ρ() -t o -t o q D = - Clif Fonstad, 10/8/09 Lecture 9 - Slide 16

Electrostatic potential and net charge profiles - the grand procession from accumulation to inversion - V T φ() Accumulation : < - 0 -t o < ρ() - C ( - ) o -t o C o ( - ) Clif Fonstad, 10/8/09 Lecture 9 - Slide 17

Electrostatic potential and net charge profiles - the grand procession from accumulation to inversion - V T φ() Flat band : = φ(0) = 0 = - -t o = ρ() -t o = Clif Fonstad, 10/8/09 Lecture 9 - Slide 18

Electrostatic potential and net charge profiles - the grand procession from accumulation to inversion - V T φ() Depletion: < < 0 < φ(0) - -t o d 0 < < 0 ρ() d d -t o - d Clif Fonstad, 10/8/09 Lecture 9 - Slide 19

Electrostatic potential and net charge profiles - the grand procession from accumulation to inversion - V T φ() Depletion: = 0 < φ(0) < 0-0 -t o d ρ() d -t o d q D = - d Clif Fonstad, 10/8/09 Lecture 9 - Slide 20

Electrostatic potential and net charge profiles - the grand procession from accumulation to inversion - V T φ() - d Depletion: 0 < < V T Weak Inversion: φ(0) > 0 0 0 < -t o < V T d ρ() -t o q D = - d d Clif Fonstad, 10/8/09 Lecture 9 - Slide 21

Electrostatic potential and net charge profiles - the grand procession from accumulation to inversion - V T = V T φ() Threshold: = V T φ(0) = - 0 - -t o ρ() -t o q D = - V T = + 2 + (2ε Si 2 qna )1/2 /Co Clif Fonstad, 10/8/09 Lecture 9 - Slide 22

Electrostatic potential and net charge profiles - the grand procession from accumulation to inversion - V T V T < φ() Inversion: V T < - < φ(0) 0 - -t o 2 + C ( - V T ) o ρ() -t o qd = - q N = - C ( - V T ) o Clif Fonstad, 10/8/09 Lecture 9 - Slide 23

Bias between n+ region and substrate, cont. Reverse bias applied to substrate, I.e. v BC < 0 C v GC + G SiO 2 v BC < 0 v BC + n+ p-si Soon we will see how this will let us electronically adjust MOSFET threshold voltages when it is convenient for us to do so. B Clif Fonstad, 10/8/09 Lecture 9 - Slide 24

With voltage between substrate and channel, v BC < 0 V T (0) Flat band: = φ() No difference from when v BC = 0 0 = -t o = φp ρ() -t o Clif Fonstad, 10/8/09 Lecture 9 - Slide 25

φ() With voltage between substrate and channel, v BC < 0 V T (0) Depletion: 0 < < V T (v BC ) - v BC - d No difference from when v BC = 0 0 -t o VFB d ρ() -t o q D = - d d Clif Fonstad, 10/8/09 Lecture 9 - Slide 26

φ() With voltage between substrate and channel, v BC < 0 V T (0) Depletion: 0 < < V T (v BC ) No difference from when v BC = 0 - v BC - 0 -t o ρ() -t o qd = - Clif Fonstad, 10/8/09 Lecture 9 - Slide 27

V T (v BC ) φ() With voltage between substrate and channel, v BC < 0 V T (0) = V T (v BC ) At threshold: = V T (v BC ) Big difference from when v BC = 0 - v BC 2 v BC 0 - -t o (v CB = 0) (v BC < 0) ρ() (v BC < 0) -t o q N = - DT Clif Fonstad, 10/8/09 Lecture 9 - Slide 28

φ() With voltage between substrate and channel, v BC < 0 = V T (v BC ) - v BC - 2 v BC -t o X (v DT CB = 0) (v BC < 0) Threshold: v GC = V T (v BC ) with v BC < 0 -vbc )qna]1/2 /Co ρ() V T (v BC ) = + 2 + [2ε Si ( 2 {This is v GC at threshold} (v BC < 0) = [2ε Si ( 2 -v BC )/ ] 1/2 -t o q N = - DT -v BC ) ]1/2 Clif Fonstad, 10/8/09 Lecture 9 - Slide 29 q N = -[2ε Si ( 2 (v BC < 0)

6.012 - Microelectronic Devices and Circuits Lecture 9 - MOS Capacitors I - Summary Qualitative description Three surface conditions: accumulated, depleted, inverted Two key voltages: flat-band voltage, ; threshold voltage, V T The progression: accumulation through flat-band to depletion, then depletion through threshold to inversion Quantitative modeling Apply depletion approimation to the MOS capacitor, v BC = 0 Definitions: such that φ(0) = -Si V T such that φ(0) = -Si C o ε o /t o Results and epressions (For n-mos eample) 1. Flat-band voltage, = -Si 2. Accumulation layer sheet charge density, q A = C o ( ) 3. Maimum depletion region width, = [2ε Si ( 2-Si -v BC )/ ] 1/2 4. Threshold voltage, V T = 2-Si + [2ε Si ( 2-Si -v BC )] 1/2 /C o 5. Inversion layer sheet charge density, q N = C o ( V T ) Clif Fonstad, 10/8/09 Lecture 9 - Slide 30

MIT OpenCourseWare http://ocw.mit.edu 6.012 Microelectronic Devices and Circuits Fall 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.